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Abstract
Numerous research efforts have been made to stabilize the
training of the Generative Adversarial Networks (GANs),
such as through regularization and architecture design. How-
ever, we identify the instability can also arise from the fragile
balance at the early stage of adversarial learning. This pa-
per proposes the CoopInit, a simple yet effective cooperative
learning-based initialization strategy that can quickly learn a
good starting point for GANs, with a very small computation
overhead during training. The proposed algorithm consists of
two learning stages: (i) Cooperative initialization stage: The
discriminator of GAN is treated as an energy-based model
(EBM) and is optimized via maximum likelihood estimation
(MLE), with the help of the GAN’s generator to provide syn-
thetic data to approximate the learning gradients. The EBM
also guides the MLE learning of the generator via MCMC
teaching; (ii) Adversarial finalization stage: After a few itera-
tions of initialization, the algorithm seamlessly transits to the
regular mini-max adversarial training until convergence. The
motivation is that the MLE-based initialization stage drives
the model towards mode coverage, which is helpful in allevi-
ating the issue of mode dropping during the adversarial learn-
ing stage. We demonstrate the effectiveness of the proposed
approach on image generation and one-sided unpaired image-
to-image translation tasks through extensive experiments.

1 Introduction
Generative modeling has proven to be an effective approach
in many scenarios, e.g., image synthesis (Xie et al. 2016,
2018; Brock, Donahue, and Simonyan 2019; Karras, Laine,
and Aila 2019; Zhao, Xie, and Li 2021) and sequence gen-
eration (Tulyakov et al. 2018; Yu et al. 2017). One of the
most popular and powerful generative frameworks to date
is the Generative Adversarial Network (GAN) (Goodfellow
et al. 2014), which defines a mini-max game seeking a Nash
equilibrium between a discriminator and a generator. De-
spite the recent successes of GANs in modeling complex
high-dimensional distributions and generating realistic im-
ages (Brock, Donahue, and Simonyan 2019; Karras et al.
2020b), their training suffers from instability issues due to
alternating parameter update (Heusel et al. 2017), the sensi-
tivity to the hyper-parameter choices (Salimans et al. 2016)
and mode collapse issues (Arora, Risteski, and Zhang 2018).
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To alleviate these issues, several techniques have been pro-
posed, including gradient penalty (Arjovsky, Chintala, and
Bottou 2017; Mescheder, Geiger, and Nowozin 2018), spec-
tral normalization (Miyato et al. 2018), discriminator bot-
tleneck (Zhao et al. 2020c) and data augmentation (Karras
et al. 2020a). In contrast, Generative Cooperative Networks
(CoopNets) (Xie et al. 2018) are another class of generative
framework that jointly trains a descriptor and a generator,
which has been successfully applied to image synthesis (Xie,
Zheng, and Li 2021; Xie et al. 2022b), 3D generation (Xie
et al. 2020b), supervised conditional learning (Xie et al.
2022a), salient object prediction (Zhang et al. 2022), un-
paired image-to-image translation (Xie et al. 2021), and im-
age hashing (Doan et al. 2022). Unlike GANs, CoopNets are
optimized through cooperative maximum likelihood estima-
tion (MLE). The descriptor, essentially a generative energy-
based model (EBM) (Xie et al. 2016; Nijkamp et al. 2019;
Du and Mordatch 2019), incorporates the Stochastic Gra-
dient Markov Chain Monte Carlo (SG-MCMC) to approx-
imate the data distribution. The generator is an amortized
sampler that simultaneously chases the descriptor towards
the data distribution. The MLE-based learning scheme is of-
ten more stable and does not suffer from mode collapse is-
sues. However, the training of CoopNets relies on an expen-
sive MCMC sampler. It has also been suggested (Xie et al.
2020a) that likelihood-based generative models tend to gen-
erate blurry images because they are obliged to fit all the
major modes of the empirical data distribution. If they can-
not fit the modes closely, they interpolate the major modes.

In this work, we aim to combine adversarial learning and
cooperative learning to create stable, efficient, and powerful
generative models. We propose a novel approach that lever-
ages the strengths of both learning schemes. We first demon-
strate that CoopNets and GAN can share network structures,
so that we can treat them as one framework conveniently.
Specifically, the discriminator in GAN can be transformed
into the descriptor in CoopNets, and vice versa. In other
words, a bottom-up ConvNet, which plays the role of energy
function of a descriptor in cooperative learning, can take a
new role of discriminator in adversarial learning.

Moreover, we propose a hybrid and effective strategy to
train generative models. Specifically, the proposed frame-
work consists of two networks, a bottom-up network Dθ pa-
rameterized by θ and a top-down network Gϕ parameterized
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Figure 1: Comparison between standard GAN training (top row) and the GAN training with proposed CoopInit strategy (bottom
row) trained on a 2D synthetic data distribution shown in the rightmost plot. Each column displays the generated distributions
by the two methods at a different time step during training. The red vertical line displayed in the bottom row separates the
cooperative initialization stage (left part) and the adversarial finalization stage (right part). The standard GAN training fails to
converge to the target distribution because it encounters a severe mode collapse issue. In contrast, the GAN training using the
CoopInit can benefit from the initial cooperative learning which helps overcome the mode collapse issue.

by ϕ. Our hybrid learning algorithm includes two stages,
each of which corresponds to a different learning scheme:
At the first stage (cooperative initialization): we train Dθ

and Gϕ in the cooperative learning scheme, where Dθ serves
as an expressive EBM, to encourage mode coverage; at the
second stage (adversarial finalization): we continue to train
Dθ and Gϕ in the adversarial learning scheme, with param-
eters {θ, ϕ} initialized from the first stage. The cooperative
initialization stage only takes a small amount of time at the
very beginning of the whole learning process. Intuitively, we
first allow the stable cooperative learning to capture the ma-
jority of the mode structure of the data distribution to avoid
mode collapse or dropping, and then the subsequent adver-
sarial learning focus on refining the synthesis details through
mode chasing. We call the proposed method the CoopInit,
which can be considered a learning-based initialization ap-
proach for GAN training. We demonstrate the effectiveness
of CoopInit through a synthetic experiment in Figure 1. We
highlight our main contributions below:

• We are the first to study how to combine the adver-
sarial learning (i.e., GAN) and the cooperative learning
(i.e., CoopNets) for generative modeling. It stabilizes and
improves the adversarial training by firstly performing
likelihood-based cooperative learning for initialization.

• We conduct extensive experiments for model analysis
and ablation study in order to understand the behavior
of the proposed learning algorithm.

• We demonstrate that the proposed training strategy can
outperform previous CoopNets and GANs, and obtain
state-of-the-art performance in image generation bench-
marks and one-sided image translation benchmarks.

The rest of the paper is organized as follows: In Section 2,
we present preliminaries of adversarial learning and coop-
erative learning. Section 3 describes the proposed learning
framework and its theoretical understanding in detail. In
Section 4, we present prior arts that are related to our model.
In Section 5, we validate the proposed method via extensive
experiments. Finally, in Section 6, we conclude our work.

2 Preliminaries
The generator, denoted by Gϕ, seeks to transform a prior dis-
tribution of latent space z ∼ p(z), via a top-down network,
into a distribution that can approximate the ground truth data
distribution pdata(x). The generator Gϕ can pair up with ei-
ther a discriminator for adversarial training or a descriptor
for cooperative training, both of which can be parameterized
by a bottom-up network Dθ. θ and ϕ are parameters.

2.1 Adversarial Learning
GANs (Goodfellow et al. 2014) define a minimax game
between the discriminator Dθ and the generator Gϕ. The
generator Gϕ tries to generate realistic examples to fool
the discriminator Dθ whereas the discriminator Dθ aims to
distinguish between the generated examples Gϕ(z) where
z ∼ p(z) and the real data examples x ∼ pdata(x). Goodfel-
low et al. (2014) proposed an adversarial loss, given by

Ladv = Epdata(x)[logDθ(x)]− Ep(z)[log(1−Dθ(Gϕ(z)))].

The generator tries to minimize Ladv while the discrim-
inator tries to maximize Ladv. In practice, to circumvent
the vanishing gradient issues caused by a saturated dis-
criminator, the generator is instead trained to maximize
Ep(z)[logDθ(Gϕ(z))]. This non-saturating (NS) loss is used
in a series of StyleGAN models (Karras, Laine, and Aila
2019; Karras et al. 2020b,a) and related works (Choi et al.
2020; Pidhorskyi, Adjeroh, and Doretto 2020). Wasserstein
distance (Arjovsky, Chintala, and Bottou 2017) (WAS) is
also a standard divergence used to train GANs. However,
the introduced Lipschitz constraint in WGAN usually relies
on weight clipping and is sensitive to parameters. A follow-
up WGAN-GP (Gulrajani et al. 2017) instead proposes to
add a gradient penalty (GP) to the WAS for enforcing the
Lipschitz continuity. A notable example of WAS-GP is the
ProgressiveGAN (Karras et al. 2018). The hinge loss (Lim
and Ye 2017; Tran, Ranganath, and Blei 2017) (Hinge) is
another common objective used to train GANs, for example
in BigGAN (Brock, Donahue, and Simonyan 2019) and SN-
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GAN (Miyato et al. 2018). We will evaluate the three afore-
mentioned variants of adversarial loss in the experiments.

2.2 Cooperative Learning
In contrast to GANs, CoopNets apply a cooperative learning
strategy to train the generator G and the descriptor D simul-
taneously via MCMC teaching. The descriptor D is essen-
tially an EBM (Xie et al. 2016), which is defined as:

pθ(x) =
1

Z(θ)
exp[Dθ(x)], (1)

where Dθ(x) is the negative energy function defined on data
domain and Zθ is the intractable normalizing constant. To
learn the descriptor, we seek to maximize the log-likelihood:

L = Epdata(x)[log pθ(x)], (2)

which is equivalent to minimizing the Kullback-Leibler di-
vergence KL(pdata(x)||pθ). Its derivative is given by

∇θL = Epdata(x)[∇θDθ(x)]− Epθ(x)[∇θDθ(x)]

≈ 1

n

n∑
i=1

∇θDθ(xi)−
1

n

n∑
i=1

∇θDθ(x̃i), (3)

where {xi} ∼ pdata(x) are observed examples and {x̃i} ∼
pθ(x) are synthesized examples generated via MCMC, such
as Langevin dynamics (Zhu and Mumford 1998) that iterates
the following step

xt+1 = xt + η∇xDθ(xt) + ϵt, ϵt ∼ N (0,
√

2ηI), (4)

with t indexing the Langevin time step and xt=0 being ini-
tialized by random noise. η is a hyperparameter for Langevin
step size. In high dimensional modeling cases, the MCMC
can be expensive and difficult to converge. However, Coop-
Nets can improve the sampling by using a generator Gϕ to
generate initial synthesized examples to initialize a finite-
step MCMC that samples and trains the descriptor Dθ. The
generator serves as an amortized sampler for the descrip-
tor. The generator updates its parameters by directly learn-
ing from the synthesized examples produced by the MCMC,
which is called MCMC teaching. The descriptor learns from
the difference between MCMC outputs and training exam-
ples, while the generator learns from how the descriptor re-
vises the initial outputs. Algorithm 1 presents one iteration
of the cooperative learning.

Algorithm 1: Cooperative Learning

Require: descriptor Dθ, generator Gϕ, Langevin dy-
namics step size η, number of Langevin steps T .
# Step G1 : Generate initial examples x̂

ẑi ∼ p(z), x̂i = Gϕ(ẑi)
# Step D1 : Revise ~x for T steps via LD

Initialize x̃i = x̂i

for 1 to T do
x̃i ← x̃i + η∇xDθ(x̃i) + ϵ, ϵ ∼ N (0,

√
2ηI)

end for
# Step D2 : Train descriptorDθ

Train Dθ with gradient descent via Eq. (3)
# Step G2 : Train generator Gϕ

Train Gϕ with Adam on 1
n

∑n
i=1 ||x̃i −Gϕ(ẑi)||2

Algorithm 2: Training a GAN with CoopInit

Require: descriptor Dθ , generator Gϕ, number of
examples consumed by cooperative initialization
Ncoop, and number of examples consumed by ad-
versarial finalization Nadv, batch size n.
N ← 0
# Train D and G as CoopNets

while N ≤ Ncoop do
Run Algorithm 1 to update Dθ and Gϕ

N ← N + n
end while
# Train D and G as GAN

while N ≤ (Nadv +Ncoop) do
Update Dθ and Gϕ according to Ladv

N ← N + n
end while

3 CoopInit: A Strategy to Initialize GAN
Training via Cooperative Learning

3.1 Proposed Framework
Our generative learning framework, shown in Figure 2, inte-
grates CoopNets and GAN, enabling us to smoothly switch
between cooperative learning and adversarial learning. The
proposed method begins with limited iterations of coop-
erative learning and then switches to adversarial learning
until completion. We monitor the training progress using
the number of training examples processed by the model.
Specifically, We use Ncoop and Nadv to represent the numbers
of training examples consumed during cooperative learning
and adversarial learning, respectively. The full description
of training a GAN with CoopInit is shown in Algorithm 2.
In this paper, we always ensure that Ncoop/Nadv < 3 to keep
the computational overhead from MCMC negligible.

One might question why we don’t simply use a combined
objective of cooperative and adversarial learning. However,
in practice, we have found that their compatibility is poor,
resulting in an FID (Heusel et al. 2017) of approximately
35 for image generation on CIFAR-10 (Krizhevsky 2009)
dataset using both cooperative and adversarial learning si-
multaneously. The cooperative learning leads to an MLE
solution, which corresponds to a forward Kullback–Leibler
(KL)-divergence, while the adversarial learning corresponds
to Jensen–Shannon divergence, which involves a reverse
KL-divergence. Thus, learning the models using these two
objectives at the same time might lead to undesirable out-
come due to incompatibility. Although both CoopNets and
GAN use an alternating optimization procedure between Dθ

and Gϕ, the key difference between cooperative and adver-
sarial learning lies in that CoopNets uses MLE but GAN
uses an adversarial loss. Further analysis of their optimiza-
tion procedures reveals the following:

(i) The role of Dθ differs in the optimization of GAN and
CoopNets. In GAN, Dθ functions as a classifier that distin-
guishes between real data and generated data. In CoopNets,
Dθ is a score (negative energy) function that assigns lower
scores to generated data and higher scores to real data.
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Figure 2: An illustration of the CoopInit technique for improving GAN training. D: discriminator or descriptor. G: generator.

(ii) The objective of Gϕ differs in the optimization of
GAN and CoopNets. In GAN, Gϕ is optimized by fooling
Dθ into believing that generated examples are real. On the
other hand, in CoopNets, Gϕ is optimized by moving the
generator’s distribution towards the descriptor’s distribution.

3.2 Theoretical Understanding
We useMθ to denote the T -step MCMC transition kernel of
the descriptor pθ. We also useMθqϕ to denote the marginal
distribution obtained by running the Markov transitionMθ

starting from the generator qϕ. At each iteration t, the coop-
erative learning algorithm alternates the following two steps:
(i) Update θ: it learns θ by minimizing

KL(pdata∥pθ)− KL(Mθ(t)qϕ(t)∥pθ) (5)
over θ, which is a modified contrastive divergence (Xie et al.
2018) for the energy-based model pθ, and (ii) Update ϕ: it
learns ϕ by minimizing

KL(Mθ(t)qϕ(t)∥qϕ) (6)
over ϕ. In an idealized situation where the generator qϕ has
infinite capacity, the objective in Eq. (6) can be minimized
to zero, which means that qϕ becomes the stationary distri-
bution of Mθ, i.e., Mθqϕ = qϕ, or equivalently pθ = qϕ
(the generator has caught up with the descriptor and be-
come an amortized sampler for the descriptor). Once this
happens, the second KL-divergence in Eq. (5) vanishes, be-
cause KL(Mθqϕ∥pθ) = KL(qϕ∥pθ) = 0. Then the learning
of θ becomes maximum likelihood estimate that minimizes
only the first KL-divergence KL(pdata∥pθ) in Eq. (5). Since
qϕ chases pθ toward pdata, the learning of ϕ is also a maxi-
mum likelihood estimate.

In the second stage of the proposed algorithm, known as
adversarial finalization, we continue to train Gϕ, which is
initialized by the cooperative learning, to further refine its
ability to capture major modes. Since Gϕ already aims to
cover all modes during the cooperative initialization stage,
it is less likely to dropping major modes it already covers
at the second stage. As to the discriminator or the descrip-
tor Dθ, in the stage of cooperative initialization, the output
of the descriptor Dθ is a score representing negative energy.
Real data typically receives higher scores (i.e., lower energy)
from descriptor Dθ. Similarly, in the adversarial finalization
stage, the discriminator Dθ assigns larger probabilities to
real data. Thus, both the descriptor and the discriminator can
be viewed as classifiers with a shared objective. This allows
us to initialize the discriminator with the descriptor.

4 Related Work
The following themes are closely related to our work, and
we will briefly review each of them and explain their con-
nection to our work.

Regularization Techniques for GANs: This line of re-
search is based on both theoretical investigations and empiri-
cal studies on the convergence properties of GANs, in which
regularization is used to ensure a good local equilibrium
with new model assumptions. Various research efforts have
been made in this direction, e.g., adding loss penalty (Gul-
rajani et al. 2017; Mescheder, Geiger, and Nowozin 2018),
weight regularization (Miyato et al. 2018; Brock, Donahue,
and Simonyan 2019) and implementing a discriminator bot-
tleneck (Zhao et al. 2020c). We can interpret the CoopInit as
a special regularization technique, which only takes effect at
the early stage of the learning process, to enforce the model
to cover most of the modes in the data distribution.

Link MLE to GAN: The most successful works in linking
MLE to GAN exist in the applications of GAN-based text
generation (Yu et al. 2017; Nie, Narodytska, and Patel 2019).
To mitigate the gradient estimation difficulty and mode col-
lapse issues on discrete data, they apply large amount of
MLE pretraining and limited adversarial fine-tuning. How-
ever, our CoopInit simultaneously trains both networks as a
whole in an MLE-based cooperative manner using very lim-
ited time, whereas MLE pretraining used in Yu et al. (2017)
trains them separately for most of the time. Besides, another
work Flow-GAN (Grover, Dhar, and Ermon 2018) uses a
normalizing flow (Kingma and Dhariwal 2018) as the gen-
erator to build a GAN. But, the expressive power of a nor-
malizing flow is limited due to its restrictive network design.
Zhao et al. (2020a) explore unifying the advantages of MLE
and adversarial learning via α-divergence but only trains the
generator by MLE. Our method seamlessly bridges the MLE
and GAN by the energy-based cooperative learning.

Link EBM to GAN: Several works have investigated the
relationship between EBMs and GANs (Finn et al. 2016;
Che et al. 2020). Among these, DDLS (Che et al. 2020) is
the most relevant, as it considers the discriminator as an en-
ergy function and employs MCMC in the latent space to gen-
erate refined samples. But, our CoopInit differs from DDLS
in that we jointly train an EBM and a generator before GAN
training, whereas DDLS only refines samples via MCMC
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after GAN training, without explicitly training an EBM.

5 Experiments
In this section, we extensively evaluate the effectiveness of
our proposed initialization strategy, CoopInit, for GANs.
We begin by testing our method on image generation and
unpaired image-to-image translation, comparing our frame-
work to state-of-the-art models. Then we perform some
analysis on our model. All experiments were conducted on
4 Nvidia Titan Xp (12GB) GPUs and Google Colab.

5.1 Experimental Setup
Base Model In terms of performance, StyleGAN2 is cur-
rently the most attractive GAN model that can achieve state-
of-the-art results on a variety of image synthesis tasks, such
as image generation (Karras et al. 2020a; Zhao et al. 2020b),
image translation (Richardson et al. 2020; Zhao and Chen
2020) and image manipulation (Abdal, Qin, and Wonka
2019). StyleGAN2-ADA (Karras et al. 2020a) is a specifi-
cally tuned GAN with techniques such as shallow mapping,
disable style mixing regularization (Karras, Laine, and Aila
2019), path length regularization, and residual connections
in the discriminator. This model currently achieves state-
of-the-art results on CIFAR-10 (Krizhevsky 2009) image
generation among all GANs. BigGAN (Brock, Donahue,
and Simonyan 2019) that was designed for generating high-
resolution and high-fidelity images is also considered.

Datasets We evaluate the performance of image genera-
tion on four widely used datasets listed below:

(i) CIFAR-10 (Krizhevsky 2009): This dataset consists of
60K 32×32 images in 10 evenly distributed classes, includ-
ing 50K training images and 10K testing images.

(ii) ImageNet (Russakovsky et al. 2015): To balance the
computational budget, we use a down-sampled version of
ImageNet that consists of 32×32 images. ImageNet contains
over 10 million natural images of 1,000 classes.

(iii) FFHQ (Karras, Laine, and Aila 2019): This dataset
consists of 70K high-quality and diverse human facial im-
ages. We choose to use a down-sampled version of the data
with a resolution of 256× 256.

Metric Frèchet Inception Distance (FID) (Heusel et al.
2017) is a widely used metric for evaluating the quality
of generated images. It computes the distance between the
Inception feature vectors for real and generated images. It
is also consistent with increasing disturbances and human
judgment. A low FID indicates that the model can create
high-quality images. We adopt the commonly used 50K-
FID, which generates 50K examples to evaluate image gen-
eration quality, as in most contemporary GAN works.

5.2 Image Generation
Evaluation on CIFAR-10 Dataset We compare the pro-
posed approach with state-of-the-art models on CIFAR-10
generation, and the results are shown in Table 1. It is worth
noting that when we disable the adaptive discriminator aug-
mentation (ADA) in the base model StyleGAN2-ADA, the
CoopInit can greatly reduce the FID from 6.40 to 4.34, even

without R1 regularization (Mescheder, Geiger, and Nowozin
2018) (i.e., we set the hyperparameter of R1 regularization
γ = 0). This is currently the best FID achieved by GANs on
CIFAR-10 without using ADA. We further find that increas-
ing the network depth hurts performance. When we double
the width, the performance of tuned StyleGAN2-CoopInit
is on par with that of NCSN++cont. and achieves a new
state-of-the-art result of GAN on CIFAR-10. We report the
best FID of the generated images and evaluate the Inception
Score (IS). Figure 3 shows uncurated generated examples.

Models FID↓ IS↑
Conditional
BigGAN
(Brock, Donahue, and Simonyan 2019) 14.73 9.22
MultiHinge (Kavalerov and Czaja 2019) 6.40 9.58
FQ-GAN (Zhao et al. 2020c) 5.59 8.48
BigGAN + CoopInit (ours) 6.95 9.35
StyleGAN2 w/ ADA (Karras et al. 2020a) 2.42 10.14
+ CoopInit + tuning (ours) 2.20 10.20
Unconditional
CoopNets (Xie et al. 2018) 33.61 -
CoopVAEBM (Xie, Zheng, and Li 2021) 36.20 -
CoopFlow (Xie et al. 2022b) 15.80 -
CF-EBM (Zhao, Xie, and Li 2021) 16.71 -
ProGAN (Karras et al. 2018) 15.52 8.56
NCSNv2 (Song and Ermon 2020) 10.87 8.40
CAS (Jolicoeur-Martineau et al. 2021) 3.65 -
DDPM (Ho, Jain, and Abbeel 2020) 3.17 9.46
StyleGAN2-ADA (Karras et al. 2020a) 2.92 9.83
NCSN++cont. (Song et al. 2021) 2.20 9.89
StyleGAN2 w/o ADA (γ = 0.01) 6.40 9.55
+ CoopInit (ours) (γ = 0.00) 4.34 9.69
StyleGAN2 w/ ADA (Karras et al. 2020a) 2.92 9.83
+ CoopInit (ours) 2.82 9.88
+ tuning (ours) 2.55 9.94

Table 1: FID and Inception score (IS) comparison on condi-
tional and unconditional CIFAR-10 image generation.

Models FID ↓
BigGAN (Brock, Donahue, and Simonyan 2019) 11.48
U-Net GAN
(Schonfeld, Schiele, and Khoreva 2020) 7.48
StyleGAN2 3.84
+ CoopInit (Ours) 3.61

Table 2: FID comparison on FFHQ 256× 256.

Evaluation on FFHQ Dataset Compared to CIFAR-10
and CIFAR-100 datasets, the image distribution of FFHQ
dataset is more concentrated but less diverse. The CoopInit
method can consistently outperform the baseline, as shown
in Table 2. Qualitative results are presented in Figure 4.

Evaluation on ImageNet Dataset In our previous study,
we show that CoopInit can significantly improve the per-
formance of GANs in various scenarios. To further evalu-
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Figure 3: Generated examples by the StyleGAN2-CoopInit-ADA models trained on the CIFAR10 dataset. (Left: Unconditional
generation. Right: Conditional generation.)

Figure 4: Qualitative results of FFHQ 256× 256 image generation.

ate its effectiveness, we conduct a study on a more complex
dataset, ImageNet. The results in Table 3 indicate that al-
though CoopInit performs better on unconditional genera-
tion, its performance on conditional generation is only com-
parable to the baseline. We suspect that this is because the
label information can alleviate the mode collapse issue to
some extent, which aligns with the objective of CoopInit.

Models FID↓
ImageNet (32× 32)
PixelCNN (Van den Oord et al. 2016) 33.27
PixelIQN (Ostrovski, Dabney, and Munos 2018) 22.99
IGEBM (Du and Mordatch 2019) 14.31
StyleGAN2 w/o labels 6.87
+ CoopInit (ours) 5.84
StyleGAN2 w/ labels 3.87
+ CoopInit (ours) 3.84
ImageNet (64× 64)
BigGAN w/ labels
(Brock, Donahue, and Simonyan 2019) 10.55
+CoopInit 10.63

Table 3: FID comparison on ImageNet dataset.

5.3 Unpaired One-sided Image Translation
The proposed CoopInit is also tested in the context of ad-
versarial image-to-image translation. We evaluate our ap-
proach on the recently proposed approach CUT (Park et al.
2020), which enables one-sided image-to-image translation
using patch-wise contrastive learning and adversarial learn-
ing for content preservation and style transfer. The results,
both quantitative and qualitative, shown in Table 4 and Fig-
ure 5, outperform the baselines. We observe an improvement
in the performance of CUT when CoopInit is employed. The
baseline method CF-EBM (Zhao, Xie, and Li 2021) is an
energy-based model that uses short-run Langevin dynamics
as a flow-like generator to transform images from the source

domain to the target domain. We encountered difficulties
when applying CF-EBM to the Horse⇒Zebra task, and we
suspect that this may be due to misalignment between the
source and target datasets. Additionally, it is worth noting
that in the cooperative initialization stage, our generator per-
forms a direct transformation of the source domain images
to the target domain. The output is then fed into the Langevin
dynamics of the descriptor for a few steps of revision. Com-
pared to CF-EBM, CoopInit employs a top-down generator
to amortize the computationally expensive MCMC process.

Models FID↓
C⇒D H⇒Z

Distance (Benaim and Wolf 2017) 155.3 72.0
SelfDistance (Benaim and Wolf 2017) 144.4 80.8
GCGAN (Fu et al. 2019) 96.6 86.7
CF-EBM (Zhao, Xie, and Li 2021) 55.1 -
CUT (Park et al. 2020) 76.2 45.5
+ CoopInit (ours) 61.3 38.7

Table 4: Comparison on one-sided unpaired image-to-image
translation. (C⇒D: Cat⇒Dog. H⇒Z: Horse⇒Zebra)

5.4 Model Analysis
To investigate the impact of adversarial loss functions and
hyperparameters, we test the CoopInit on CIFAR-10 dataset
for image generation. Following Zhao et al. (2020b), we
halve the number of channels of feature maps at higher res-
olution layers (i.e., 16×16 and above) to enable faster com-
putation. We further apply the non-saturating loss, set the
learning rate to 0.0025, and use the original connection un-
less specified otherwise, following the approach of Karras
et al. (2020a). To ensure fair comparisons, we temporar-
ily disable the lazy mode of R1 regularization. This is be-
cause the lazy mode leads to a different optimization pro-
cess, which requires a decrease in the learning rate and hy-
perparameters in the Adam optimizer (Karras et al. 2020b).
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Figure 5: Comparison of qualitative results for one-sided un-
paired image-to-image translation using the baseline CUT
and our method CUT+CoopInit.

We use 100M real images for each run with data augmenta-
tion and 25M without.

Impact of Loss Functions We conduct an investigation
into the impact of different adversarial loss variants on train-
ing GANs, including Hinge loss (Hinge), non-saturating loss
(NS), and Wasserstein distance with gradient penalty (WAS-
GP). After extensive hyper-parameter tuning, we select the
best learning rate and report the FIDs in Table 5. To en-
sure a fair comparison, all tests share the same architecture,
and each column uses the same optimizers. As shown in Ta-
ble 5, CoopInit consistently yields lower FIDs on the three
loss variants, with the most significant improvements ob-
served on Hinge and NS losses. We also find that the de-
fault NS loss with R1 regularization is the most appropriate
loss function to train StyleGAN2, but this is no longer the
case when CoopInit is applied. Interestingly, CoopInit with
StyleGAN2-Hinge is found to yield a much better FID com-
pared with StyleGAN2-NS with R1 regularization.

Methods NS Hinge WAS-GP
StyleGAN2 13.95 (8.71∗) 11.64 13.21

+ CoopInit (ours) 5.85 5.09 11.83

Table 5: CoopInit improves StyleGAN2 with different vari-
ants of adversarial loss. The sign ∗ indicates a performance
obtained using R1 regularization with γ = 0.01.

Impact of Hyperparameters We evaluate the impact of
hyperparameters, including learning rate lr and R1 regular-
ization strength γ, on the proposed learning algorithm.

Learning Rate. We conduct two sets of experiments with
non-saturating (NS) loss and Hinge loss, respectively, to
study how our CoopInit technique behaves when the learn-
ing rate varies. The results are shown in Figure 6 (left) and
Table 6. As shown in Figure 6 (Left), StyleGAN2-Hinge
benefits greatly from the CoopInit technique across all dif-
ferent learning rates. In particular, when we increase the
learning rate lr to 0.003, CoopInit can eliminate the acute

Figure 6: Learning curves with different GAN variants.

Methods γ
lr × 10−3

2.0 2.5 3.0
StyleGAN2 0.00 13.21 13.95 14.94
+ CoopInit 6.16 6.07 5.85
StyleGAN2 0.01 9.28 8.95 8.71
+ CoopInit 8.87 8.29 7.58

Table 6: CoopInit improves StyleGAN2-NS across different
learning rates (lr) and two R1 regularization settings.

oscillation of the original StyleGAN2-Hinge and drive the
model to reach the fastest convergence rate among all learn-
ing rate settings. This verifies the effectiveness of CoopInit
and the importance of a good initial point for GAN training.
Table 6 also confirms the results under different R1 regular-
ization hyperparameters γ with NS loss.

R1 Regularization Strength. R1 regularization is a criti-
cal technique to stabilize StyleGAN2-NS training and helps
to reach a local equilibrium faster (Mescheder, Geiger, and
Nowozin 2018). In the right panel of Figure 6, we plot learn-
ing curves for models using various values of γ, which is
a hyperparameter in R1 regularization and represents the
strength. We observe that StyleGAN2-NS is very sensitive
to the regularization strength, and the performance deterio-
rates after some iterations. We find that γ = 0.01 works best,
which is consistent with Karras et al. (2020a). In contrast,
the minimum FID and the most stable learning curve can
be obtained when we replace R1 regularization by CoopInit
in training StyleGAN2-NS. Results in Table 6 demonstrates
that CoopInit works best without using R1 regularization.

6 Conclusion
To summarize, this paper establishes a new connection
between cooperative learning and adversarial learning by
proposing to adopt cooperative learning (i.e., CoopNets al-
gorithm) to initialize GAN training. Our hybrid learning
scheme, CoopInit, allows us to seamlessly integrate the
strengths of both CoopNets and GAN, and it is compati-
ble with various techniques for stabilizing and enhancing
GANs. We demonstrate significantly improved performance
across extensive experimental settings and datasets. We also
achieve a new state-of-the-art result for image generation on
CIFAR-10 dataset. Future works can explore broader appli-
cations of CoopInit, e.g., generative representation learning.
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