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Abstract

Most of the existing incomplete multi-view clustering
(IMVC) methods focus on attaining a consensus represen-
tation from different views but ignore the important infor-
mation hidden in the missing views and the latent intrinsic
structures in each view. To tackle these issues, in this pa-
per, a unified and novel framework, named tensorized incom-
plete multi-view clustering with intrinsic graph completion
(TIMVC IGC) is proposed. Firstly, owing to the effective-
ness of the low-rank representation in revealing the inherent
structure of the data, we exploit it to infer the missing in-
stances and construct the complete graph for each view. Af-
terwards, inspired by the structural consistency, a between-
view consistency constraint is imposed to guarantee the sim-
ilarity of the graphs from different views. More importantly,
the TIMVC IGC simultaneously learns the low-rank struc-
tures of the different views and explores the correlations of
the different graphs in a latent manifold sub-space using a
low-rank tensor constraint, such that the intrinsic graphs of
the different views can be obtained. Finally, a consensus rep-
resentation for each sample is gained with a co-regularization
term for final clustering. Experimental results on several real-
world databases illustrates that the proposed method can out-
perform the other state-of-the-art related methods for incom-
plete multi-view clustering.

Introduction
In recent years, multi-view clustering (MVC) has become
attractive, where it has been applied to a variety of appli-
cations, i.e., image retrieval, webpage retrieval, and speech
recognition (Huang, Zhang, and Pižurica 2021; Mitra et al.
2018; Xu et al. 2022; Cui et al. 2020). Since features col-
lected from multiple views contain more complementary in-
formation, MVC has the potential to gain a better perfor-
mance than single-view clustering (Tao et al. 2018; Chao,
Sun, and Bi 2021; Wang et al. 2021a). Up to now, a va-
riety of MVC methods have achieved significant perfor-
mances, such as structured low-rank matrix factorization
based MVC (Wang et al. 2018), agglomerative neural net-
works for MVC (Liu et al. 2021), parameter-free consen-
sus embedding learning based IMVC (Wu et al. 2021), joint
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partition and graph learning based IMVC (Li, Wan, and He
2021), and deep multiview clustering (Zhang et al. 2021).
Commonly, these MVC methods require that all views are
complete. Nevertheless, due to the fact that many reasons
can bring about the deficiency of the views, such as data
corruption, breakdown of the sensors, the privacy policies,
etc., the incomplete multi-view data causes a view-missing
challenge in MVC tasks, called incomplete multi-view clus-
tering (IMVC). The conventional MVC methods will be in-
valid for the IMVC tasks, since some instances from some
views are missing (Wen et al. 2020a; Xu et al. 2021; Wen
et al. 2022).

Some problems may arise in the IMVC applications, on
account of the missing view: 1) The multi-view data cannot
provide complete views for the exploration of the comple-
mentary information; 2) The broken data causes a serious
imbalance problem, owing to the fact that the views may
have several numbers of features. Some researchers have
made many efforts to tackle these demanding IMVC issues.
For instance, Wen et al. (Wen et al. 2020a) proposed an
adaptive graph completion based method, Zhao et al. (Zhao
et al. 2021) proposed an intrinsic and complete structure in-
ferring strategy, and Xia et al. (Xia et al. 2022) proposed
a tensor completion based method. Generally, the existing
IMVC methods can be divided into two categories accord-
ing to their exploited techniques, i.e., matrix factorization-
based IMVC (MF IMVC) and graph learning-based IMVC
(GL IMVC). MF IMVC seeks to learn a low-dimensional
consensus representation from the original multi-view data
adopting the matrix factorization approach. In this way,
partial MVC will learn a common latent sub-space for all
views, such that instances from different views could share
a same low-dimensional representation (Li, Jiang, and Zhou
2014). However, partial PMVC could only handle the in-
complete multi-view data with two views. Different from
Partial MVC, Shao et al. (Shao, He, and Yu 2015a) filled
the absent instances with the average value of the collected
data for their corresponding view. However, this simple data
completion strategy easily leads to the over-fitting problem,
since the intrinsic structure is ignored.

Many GL IMVC based methods have also been pro-
posed for more flexible application scenarios. Specifically,
GL IMVC desires to produce a consensus representation
from multiple graphs constructed from different views,
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which can characterize the local structures of the data
(Wen, Xu, and Liu 2018; Zhao et al. 2021). For example,
Wang et al. (Wang et al. 2019) proposed a perturbation-
oriented IMVC method, that learned a consensus represen-
tation from pre-defined similar graphs from different views.
Besides this, in (Wen et al. 2020b), a graph-regularized ma-
trix factorization strategy was developed for local geomet-
ric structure preserving, then a common representation was
learned for clustering. However, these methods are troubled
with a restriction that the incomplete graphs constructed
from the defective views cannot provide unabridged rela-
tionships of samples. To solve this problem, some graph
completion-based IMVC methods have been proposed. For
instance, Wen et al. (Wen et al. 2020a) proposed an adaptive
graph completion based method, which learned the complete
graphs by adopting two constraints of within-view preser-
vation and between-view inferring. Nevertheless, the pre-
defined graphs of multiple views could not reflect the in-
trinsic structures of the data.

From the analysis of the aforementioned IMVC methods,
two defects still limit the performance in IMVC tasks (Lu
et al. 2019; Wang et al. 2021b; Hu, Lou, and Ye 2021). On
the one hand, existing methods neglect the important infor-
mation hidden in the missing views. On the other hand, the
consistency of the structures from different views is not con-
sidered in the iterative learning procedure. To tackle these
issues, in this paper, a novel missing view inferring based
IMVC model, named TIMVC IGC is proposed. Specifi-
cally, owing to the effectiveness of low-rank representation
in revealing the inherent structure of the data, we first ex-
ploit it to infer the missing instances and construct the com-
plete graph for each view. Afterwards, inspired by the struc-
tural consistency, a between-view consistency constraint is
imposed to improve the similarity of the graphs from differ-
ent views. In this way, TIMVC IGC simultaneously learns
the low-rank structures and explores the correlations of dif-
ferent graphs in a latent manifold sub-space using a low-rank
tensor constraint, such that the intrinsic graphs of different
views can be obtained. Finally, a low-dimensionality con-
sensus representation shared by all views is learned for each
sample using a co-regularization term. The main contribu-
tions of the proposed method can be briefly summarized as
follows:

1) The proposed TIMVC IGC provides a novel and effec-
tive approach for all kinds of incomplete multi-view clus-
tering cases, which sufficiently explores the recovered full
information and the correlative structure learning of differ-
ent views for intrinsic graph construction.

2) A tensor low-rank regularization is introduced to learn
the structures of the recovered complete data for different
views, where a between-view preserving constraint is also
proposed to enhance the similarity of the different graphs.
In such a manner, the intrinsic structures can be constructed
and preserved in different views.

Preliminaries
Spectral clustering aspires to capture a graph from the data
points for clustering, where the graph can characterize the
inherent correlations between different data points (Zhu

et al. 2018; Sharma and Seal 2021). For multi-view cluster-
ing, a general approach is to learn a consistency representa-
tion of the multiple graphs learned from different views. For
examples, Gao et al. (Gao et al. 2015) proposed a classical
multi-view clustering model for the consensus representa-
tion learning as follows:

min
F

V∑
v=1

Tr(FTLS(v)F ) s.t. FTF = I (1)

where F ∈ Rn×c denotes the consensus representation of
the different views, n indicates the number of subjects, c
is the cluster number, and LS(v) denotes the Laplacian ma-
trix of the graph S(v). In particular, LS(v) is attained by
LS(v) = D(v) − (S(v) + S(v))/2, where D(v) denotes a
diagonal matrix that the ith diagonal element is computed as
D

(v)
i,i =

∑V
j=1(S

(v)
i,j + S

(v)
j,i )/2.

To capture the higher-order correlations between the ad-
jacency graphs from different views, especially for original
spatial structure, it is desirable that third-order tensors can
be operated like matrices using linear algebra tools. The ten-
sor nuclear norm is defined as follows (Wen et al. 2021; Wu
et al. 2020; Cheng, Jing, and Ng 2018):

Definition 1 For a tensor D ∈ Rn1×n2×n3 , the t-SVD
based tensor nuclear norm is defined as:

∥ D ∥⊛=
n3∑
k=1

∥ D(k)
f ∥∗=

min(n1,n2)∑
i=1

n3∑
k=1

|S(k)
f (i, i)|

where Df is the fast Fourier transformation (FFT) of ten-
sor D along the third dimension, i.e., Df = fft(D, [], 3).
∥ D(k)

f ∥∗ presents the nuclear norm of the kth frontal slice

of tensor Df . S(k)
f (i, i) is the ith singular value of D(k)

f cal-

culated by SVD on D(k)
f like

D
(k)
f = U (k)

f (i, i)S(k)
f (i, i)V(k)

f (i, i)
T
.

The Proposed Method
Fig. 1 shows some cases of the multi-view data. For the un-
broken multi-view data, the paired instances from all views
are complete. Case 1 - Case 3 present the varying degrees of
the instance missing for different views. Specifically, in Case
3 features from more than two views are arbitrarily missing.

Model of TIMVC IGC
Graph learning based methods have achieved positive per-
formances in clusterig, which aims to capture the intrinsic
structure of the data (Pan and Kang 2021; Zhang et al. 2022;
Chen et al. 2021; Zhu et al. 2022). In such a manner, the
correlations between each two arbitrary data points can be
attained. From the previous analysis, it can be seen that low-
rank representation is an effective approach for drawing such
a graph. Let {X̃(v) ∈ Rd(v)×n}Vv=1 denote a multi-view data
set, where V represents the number of views, d(v) is the fea-
ture dimensionality of the vth view, and n is the total num-
ber of data points. Then, we can construct the naive low-rank
representation for each view of X̃ as follows:
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Figure 1: Some cases of multi-view data with different degrees of missing samples for each view.

min
Z(v)

V∑
v=1

∥ Z(v) ∥∗ +λ ∥ B(v) ∥1

s.t. X̃(v) = X̃(v)Z(v) +B(v), diag(Z(v)) = 0,

(2)

where Z(v) ∈ Rn×n is the low-rank representation matrix,
E(v) ∈ Rd(v)×n characterizes the noise in each view, and
λ ≥ 0 is a penalty parameter.

Formula (2) requires that all views of X̃ are complete,
which will be invalid for a IMVC task, since graphs con-
structed from the incomplete views still have different sizes
(Abhadiomhen et al. 2021; Jia et al. 2021; Hu, Shi, and Ye
2020). Many researchers fill in the absent instances with
the average feature vector of the corresponding view (Gao,
Peng, and Jian 2016). However, these filled instances will
be regarded as the same classes contributing error con-
nected weights to the construction of the graph. In contrast,
the completion graph can be learned by exploiting the re-
tained structure information from the other views (Wen et al.
2020a; Li and He 2020). However, the incomplete problem
of paired instances for each of the two samples will lead
to the failure of this method in the case that the incomplete
paired instances cannot be utilized to calculate the connected
weights for all views. To handle the incomplete multi-view
data, where each view has the potential to be lost, we intro-
duce a missing view inferring strategy integrating the intrin-
sic graph learning for each view as follows:

min
Z(v),E(v)

V∑
v=1

||Y (v) − Y (v)Z(v)||1 + λ1||E(v)||2F

+λ2||W (v)||2F + λ3||Z||∗
s.t. Y (v) = X(v) + E(v)W (v), Z(v) ≥ 0,

diag(Z(v)) = 0, Z(v)1 = 1

(3)

where X(v) ∈ Rd(v)×n and E(v) ∈ Rd(v)×n(v)

represent the
collected instances and absent instances as well as the recon-
structed missing instances from the vth view, respectively.
Besides this, λ1, λ2, and λ3 are the nonnegative penalty pa-
rameters. Z(v)1 = 1 guarantees that all instances from dif-
ferent views can be connected with at least on instance. In
particular, the missing instances in X(v) are filled as zero
vectors. In addition, W (v) ∈ Rn(v)×n signifies a prior map-
ping matrix that projects the missing instance matrix to the

recovered complete data matrix in its corresponding loca-
tions as follows:

W
(v)
i,j =

{
1, if the ith missing instance is x

(v)
j

0, otherwise.
(4)

where x(v)j indicates the jth instance of the vth view.
Overall Objective Function Though formula (3) can

learn a complete graph by recovering the missing instances
for each view, the correlations between different views is
still neglected, such that the complementary information re-
tained by each view cannot be fully utilized. Furthermore,
we also need to consider the semantic consistency hidden in
different views, so as to guarantee that all views can have a
similar clustering decision. To address these problems, we
propose a tensor based TIMVC IGC framework for spectral
clustering as follows:

min
Z(v),E(v),H,F

V∑
v=1

∥ Y (v) − Y (v)Z(v) ∥1 +

V∑
v=1

λ1 ∥ Z(v) −
V∑

i=1,i ̸=v

Z(i)Hi,v ∥2F +λ2 ∥ E(v) ∥2F


+

V∑
v=1

λ3Tr(F
TLZ(v)F )+ ∥ Z ∥⊛

s.t. Y (v) = X(v) + E(v)W (v), Z(v) ≥ 0,

diag(Z(v)) = 0, Z(v)1 = 1, FTF = I, 0 ≤ hi,v ≤ 1,

V∑
i=1,i ̸=v

Hi,v = 1, Hv,v = 0.

(5)

where H ∈ RV×V is the self-representation matrix, F ∈
Rn×c denotes the consistency representation, and c is the
dimensionality of each representation vector in F .

Specifically, the tensor low-rank constraint ∥ Z ∥⊛ can
crucially capture the higher-order correlations between dif-
ferent views (Zhang et al. 2020). Besides this, the between-
view preserving constraint ∥ Z(v) −

∑V
i=1,i̸=v Z

(i)Hi,v ∥2F
can enhance the similarity of different graphs by adopting
the complementary information from each view. After the
intrinsic graphs have been attained for different views, we
can learn the semantic consistency representation F shared
by all views for final spectral clustering.
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Solution to TIMVC IGC
In this sub-section, we exploit the ALM strategy (Zhang
et al. 2017) to alternatively achieve the optimum solution
for each variable of (5). To make (5) separable, the auxil-
iary variables B(v) and P are introduced to (6) and the aug-
mented Lagrangian function is re-formulated as follows:

min
ψ

V∑
v=1



||B(v)||1 + λ2||E(v)||2F
+λ1||Z(v) −

∑V
i=1,i ̸=v Z

(i)Hi,v||2F
+λ3Tr(F

TLZ(v)F )+
µ
2
||Y (v) −X(v) − E(v)W (v) +

C
(v)
1
µ

||2F
+µ

2
||Y (v) − Y (v)Z(v) −B(v) +

C
(v)
2
µ

||2F
+µ

2
||Z(v) − P (v) +

C
(v)
3
µ

||2F


+ ||P||⊛

s.t. Z(v) ≥ 0, diag(Z(v)) = 0, Z(v)1 = 1, FTF = I,

0 ≤ Hi,v ≤ 1,

V∑
i=1,i ̸=v

Hi,v = 1, Hv,v = 0, Z(v) = P (v).

(6)
where ψ = {Z(v), E(v), F,B(v), P (v), H} and P ∈
Rn×n×V denotes a 3-order tensor calculated from
{P (v)}Vv=1.
Z(v)-Step: By fixing the other variables, we can obtain

Z(v) by minimizing the following optimization problem:

L(Z(v)) = min
Z(v)

λ1||Z(v) −
V∑

i=1,i ̸=v

Z(i)Hi,v||2F

+
µ

2
||Y (v) − Y (v)Z(v) −B(v) +

C
(v)
2

µ
||2F

+
µ

2
||Z(v) − P (v) +

C
(v)
3

µ
||2F +

λ3

2

n∑
i,j

Qi,jZ
(v)
i,j

(7)

where qij =∥ fi,: − fj,: ∥22 denotes the element of Q.
Then, we can attain Z̃(v) via setting ∂L/∂Z(v) = 0 as

follows:

Z̃(v) = (
2λ1(V − 1)2

V 2
I + µI + µY (v)TY (v))−1

(2
V − 1

V 2
λ1R

(v) + µP (v) + λ2Q− C
(v)
3 +K(v))

(8)

where R(v) =
∑V

i=1,i̸=v Z
(i)Hi,v and K(v) =

Y (v)T (µ(Y (v) −B(v)) + C
(v)
2 ).

Afterwards, we can achieve the optimal Z(i) by solving
the following minimization problem:

min
Z(v)≥0, diag(Z(v))=0, Z(v)I=I

∥ Z(v) − Z̃(v) ∥2F (9)

Specifically, (9) is independent with respect to all
columns. Hence, we can obtain the optimal solution column
to column as follows (Zhao et al. 2021; Nie et al. 2016):

Z
(v)
i,j =

{
(Z̃

(v)
i,j + η)+, i ̸= j

0, i = j
(10)

where function (A)+ = max(A, 0) ensures all elements of
A to be non-negative. Otherwise, η can be gained as follows:

η =

1−
n∑

i=1,i ̸=j

Z̃
(v)
i,j

 /(n− 1) (11)

B(v)-Step: By fixing the other variables, we can attain
B(v) by solving the following minimization problem:

L(B(v)) =

min
B(v)

V∑
v=1

∥ B(v) ∥1 +
µ

2
∥ Y (v) − Y (v)Z(v) −B(v) +

C
(v)
2

µ
∥2F .

(12)
We can solve the sparsity optimization problem (12) as

follows:

B(v) = Θµ
2
(Y (v) − Y (v)Z(v) +

C
(v)
2

µ
), (13)

where Θ denotes the shrinkage operator (Candès et al. 2011;
Zhao, Zhang, and Li 2020).

E(v)-Step: By fixing the other variables, we can attain
E(v) by solving the following minimization problem:

L(E(v)) = min
E(v)

V∑
v=1

λ2

2
∥ E(v) ∥2F +

µ

2
∥ G

(v)
2 − E(v)W (v) ∥2F .

(14)

where G(v)
2 = Y (v) −X(v) −B(v) +

C
(v)
1

µ .

By setting ∂L/∂E(v) = 0, we can attain E(v) as follows:

E(v) = µG
(v)
2 W (v)T (λ2 + µW (v)W (v)T )−1. (15)

F -Step: By fixing the other variables, F can be obtained
by solving the following problem:

L(F ) = λ3 min
F

V∑
v=1

Tr(FTLZ(v)F ) s.t. FTF = I. (16)

It can be seen that (16) is an eigenvalue decomposition
problem. Then, F can be expressed as [f1, f2, ..., fc] ∈
Rn×c, where f1, f2, ..., fc correspond to the first cminimum
eigenvalues of

∑V
v=1 LZ(v) .

H-Step: By fixing the other variables,H can be obtained
by solving the following problem:

L(H) = min
H

V∑
v=1

λ1||Z(v) −
V∑

i=1,i ̸=v

Z(i)Hi,v||2F

s.t. 0 ≤ Hi,v ≤ 1,

V∑
i=1,i ̸=v

Hi,v = 1, Hv,v = 0

(17)

Problem (17) can be simplified as follows:

min
0≤Hi,v≤1,

∑V
i=1,i ̸=v

Hi,v=1, Hv,v=0

V∑
v=1

||U:,v − UH:,v||22, (18)
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where U ∈ Rn2×V is a matrix produced from {Z(v)}Vv=1,
whose vth column is the vector stacked by all columns of
matrix Z(v).

Problem (18) is a typical simplex representation based op-
timization problem and can be quickly solved via the accel-
erated projected gradient method.

P (v)-Step: By fixing the other variables, P (v) can be ob-
tained by solving the following problem:

L(P (v)) = min
P (v)

V∑
v=1

µ

2
||Z(v) − P (v) +

C
(v)
3

µ
||2F + ||P||⊛

→ P = min
P

||P||⊛ +
µ

2
||Z − P +

C

µ
||2F

(19)

where C ∈ Rn×n×V is a tensor collected by all {C(v)
3 }Vv=1.

Problem (19) is a typical t-SVD based tensor nuclear norm
minimization problem and has the following closed-form so-
lution:

P = UKµ̂(S)VT (20)

where µ̂ = nµ, Z+A/µ = USVT is obtained by the t-SVD
operation. Kµ̂ = SJ , where J ∈ Rn×l×n is a diagonal
tensor whose diagonal elements in the Fourier domain are
expressed as Jf (i, i, j) = max(1− µ̂/S(j)

f (i, i), 0).

Updated C
(v)
1 , C(v)

2 , C(v)
3 , and µ: We gain the La-

grangian multipliers C(v)
1 , C(v)

2 , C(v)
3 , and the parameter µ

as follows:

C
(v)
1 = C

(v)
1 + µ(Y (v) −X(v) − E(v)W (v)), (21)

C
(v)
2 = C

(v)
2 + µ(Y (v) − Y (v)Z(v) −B(v)) (22)

C
(v)
3 = C

(v)
3 + µ(Z(v) − P (v)), (23)

µ = min(ρµ, µmax) (24)

where ρ and µmax are two constants.
The detailed optimization processes for each variable in

problem (6) are summarized in Algorithm 1.

Computational Complexity Analysis
Since the Z(v)-Step and H-Step only include some sim-
ple element-wise operations, the computational cost of these
two steps can be neglected. Besides this, due to the fact
that the shrinkage operator takes very little computational
cost, it also can be neglected in the B(v)-Step. For the E(v)-
Step, the time cost for the inverse operation is calculated as
O(m3). To solve the eigenvalue decomposition problem in
the F -Step, a function‘eigs’ in (Wright and Trefethen 2001)
is applied to accelerate the computing efficiency, which only
requires O(cn3). In the P (v)-Step, the most time cost in-
corporates t-SVD as well as FFT and inverse FFT oper-
ations, which can be respectively computed as O(V 2n2)
and O(V n2log(n)). In accordance with the above analy-
sis, the total time consumption for Algorithm 1 is about
O(τ(m3 + cn3 +V 2n2 +V n2log(n))), where τ represents
the iteration number.

Algorithm 1: The proposed TIMVC IGC

1: Input: Incomplete multi-view data matrix {X(v) ∈
Rd(v)×n(v)}Vv=1, parameters of λ1, λ2, and λ3.

2: Initialization: Initialize Z(v) via the k-nearest neigh-
bor graph of each view; Initialize F with the eigenvalue
decomposition on the Laplacian graph of each trans-
formed complete view; C(v)

1 = 0, C(v)
2 = 0; C(v)

3 = 0;
µ = 0.1, ρ = 1.01, and µmax = 108.

3: while iteration < R do
4: Update Z(v) using (11).
5: Update B(v) using (13).
6: Update E(v) using (15).
7: Update F using (16).
8: Update H using (18).
9: Update P (v) using (20).

10: Update C(v)
1 , C(v)

2 , C(v)
3 , and µ using (21), (22), (23),

and (24), correspondingly.
11: end
12: Output: Z(v), B(v), E(v), F , H , and P (v).

Experiments and Analysis
Database Description
Handwritten Multi-feature Dataset1 (Handwritten) in-
cludes 10 classes, i.e., digits ’0-9’, where each class contains
200 handwritten samples. Specifically, six types of features,
i.e., pixel averages, Fourier coefficients, profile correlations,
Zernike moment, Karhunen-love coefficient, and morpho-
logical, were extracted from each sample as six views. The
Columbia Object Image Library2 (COIL-20) totally in-
cludes 1,440 images from 20 classes. We extracted three
types of features, i.e., deep feature of VGG-F (Zhao, Zhang,
and Chen 2019), LBP feature (Oliva and Torralba 2001),
and vectored pixel feature from each image to construct the
multi-view dataset. Caltech101 database totally consists of
101 objects, where each class contains 40-800 images (Fei-
Fei, Fergus, and Perona 2004). In this paper, a subset of
Caltech101 containing 1474 images from 7 classes was se-
lected for the comparison experiments. Particularly, the se-
lected multi-view dataset contains two views of GIST and
LBP (Li et al. 2015). Referring to (Zhao, Liu, and Fu 2016),
a subset of the BUAA-visnir face database 3 (BUAA) was
selected to evaluate the proposed method in this study, which
contains two views of 90 visual images and 90 near-infrared
images of the first 10 classes.

Incomplete multi-view data construction: In this pa-
per, we constructed the incomplete multi-view data by ran-
domly removing p% (p = {10%, 30%, 50%}) instances in
each view to simulate Case 3 in Fig. 1. For each dataset,
each method was performed 10 times and the everage value
was reported as the final result. Moreover, the clustering ac-
curacy (ACC), normalized mutual information (NMI), and

1https://archive.ics.uci.edu/ml/datasets/MultipleFeatures.
2http://www.cs.columbia.edu/CAVE/software/softlib/coil-

20.php
3https://github.com/hdzhao/IMG/tree/master/data.
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Data Methods ACC (%) NMI (%) Purity (%)
0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

H
an

dw
ri

te
BSV 60.80±9.94 41.18±5.05 26.57±2.31 51.44±8.47 35.06±5.22 19.93±2.62 57.76±8.91 42.11±4.71 27.81±2.26

Concat 61.40±1.10 45.25±0.94 30.85±0.67 55.52±0.92 39.83±1.04 25.13±0.68 61.72±0.76 45.92±0.93 31.74±0.59
GPMVC 47.03±2.92 34.39±4.82 25.70±1.43 38.59±4.92 26.06±3.39 15.84±1.39 48.55±5.69 35.40±3.21 27.22±2.28

MIC 53.34±5.99 41.01±2.19 24.87±1.07 48.37±3.89 33.66±3.11 16.64±1.71 55.10±3.84 41.86±2.39 25.90±1.87
DAIMC 82.79±2.55 78.39±1.11 55.89±5.37 71.80±2.84 64.05±1.89 41.03±3.08 82.79±2.25 78.39±1.11 56.03±5.27
OMVC 54.53±3.72 39.46±4.97 31.32±2.06 45.51±1.66 30.45±4.03 22.08±2.35 55.23±3.50 40.97±0.80 33.34±2.40

MVL IV 49.35±4.35 29.90±2.75 25.50±3.18 47.99±1.70 30.34±2.29 24.13±1.81 50.55±4.35 31.65±0.50 28.25±5.77
AWIMVC 55.28±1.83 47.69±0.49 23.05±1.39 55.13±2.18 40.33±1.11 22.36±1.08 57.15±1.36 49.02±1.62 83.22±0.50

UEAF 59.63±2.66 47.55±3.58 24.90±6.22 60.33±5.20 41.94±3.90 22.12±4.58 68.77±3.10 48.95±3.14 25.95±3.99
AGC IMVC 85.73±3.75 83.88±2.28 82.25±1.26 85.64±7.89 82.91±1.43 73.14±2.25 86.75±2.76 84.82±2.10 82.64±1.56
ICSL IMC 88.10±0.17 83.98±0.65 85.35±3.15 88.14±0.48 86.28±2.45 74.88±0.70 88.10±2.89 86.85±2.89 83.45±1.12
IMVTSC 99.10±0.09 99.10±0.25 98.89±0.33 99.16±0.28 98.58±0.32 98.01±0.18 99.30±0.07 99.16±0.55 98.96±0.04

TIMVC IGC 99.90±1.33 99.85±1.13 99.80±0.76 99.73±2.11 99.59±1.82 99.45±2.05 99.90±0.88 99.85±2.73 98.82±1.59

C
O

IL
-2

0

BSV 41.46±6.90 40.42±3.48 35.97±4.55 53.38±5.57 51.22±4.40 43.08±6.90 46.07±4.66 43.68±2.58 38.42±6.90
Concat 31.35±2.43 28.89±8.62 22.64±3.83 45.58±1.47 42.34±7.49 35.20±2.28 33.62±2.17 31.11±3.67 24.38±1.99

GPMVC 38.43±2.89 40.00±8.80 34.72±7.00 49.17±3.37 50.35±3.88 42.72±4.35 40.50±9.90 41.88±4.90 38.12±6.65
MIC 40.15±4.84 42.63±1.99 32.17±5.86 48.95±8.82 51.33±8.23 46.10±4.61 43.28±7.32 40.10±1.79 39.17±2.07

DAIMC 84.15±3.11 83.68±1.99 76.25±2.07 90.06±8.86 89.94±2.06 83.71±2.77 86.33±5.71 86.87±8.62 79.24±9.85
OMVC 49.38±4.35 46.53±3.46 50.19±5.62 61.07±3.13 62.64±1.98 59.51±2.55 54.11±4.32 49.03±2.89 55.40±3.76

MVL IV 50.13±0.92 48.54±1.64 52.43±1.15 63.59±1.54 62.81±0.99 63.28±0.85 53.37±3.83 52.78±1.60 56.53±1.21
AWIMVC 51.02±0.99 46.55±0.71 33.49±1.77 56.90±0.43 50.71±1.90 4.30±1.32 55.21±1.68 41.70±1.61 33.59±1.52

UEAF 53.66±4.61 47.22±6.20 36.04±3.68 59.88±6.09 52.31±5.96 44.46±6.14 54.37±3.88 48.82±4.91 38.89±8.43
AGC IMVC 84.12±1.04 83.54±2.41 76.18±3.96 92.20±1.18 90.13±3.86 83.59±5.55 87.35±2.04 86.94±1.41 79.17±3.77
ICSL IMC 85.66±1.27 83.98±0.63 77.25±1.87 93.00±1.26 90.94±1.28 84.93±1.05 87.96±0.85 87.48±0.95 79.94±1.29
IMVTSC 83.55±0.67 82.18±0.35 81.46±0.15 92.00±0.08 91.09±0.28 90.02±0.20 88.29±0.81 86.35±1.06 85.47±0.12

TIMVC IGC 87.39±1.12 85.44±0.63 84.00±2.21 94.16±2.08 93.66±2.60 93.24±0.85 89.38±1.80 88.89±1.29 88.71±0.87

Table 1: ACC (%), NMI (%), and Purity (%) of Different Methods on the Handwritten, and COIL-20 Incomplete Multi-view
Datasets.

purity were exploited as the evaluation metrics (Wen et al.
2020a).

Experimental Results and Analysis
In the comparative experiments, the proposed TIMVC IGC
was conducted in comparison with a variety of state-of-the-
art and classical IMVC methods, including BSV (Zhao, Liu,
and Fu 2016), Concat (Zhao, Liu, and Fu 2016), GPMVC
(Rai et al. 2016), MIC (Shao, He, and Yu 2015b), DAIMC
(Hu and Chen 2019), OMVC (Shao et al. 2016), MVL IV
(Xu, Tao, and Xu 2015), AWIMVC (Deng et al. 2020),
UEAF (Wen et al. 2019), AGC IMVC (Wen et al. 2020a),
ICSL IMC (Zhao et al. 2021), and tensor-based IMVTSC
(Wen et al. 2021). Table 1 and Table 2 report the experimen-
tal results on the Handwritten, COLI-20, Caltech101, and
BUAA databases. It can be obviously observed that:

(1) The proposed TIMVC IGC obtains the best clustering
performances on different incomplete multi-view databases.
For example, our method attains significant improvement of
17.40%, 12.44%, and 13.98% w.r.t. ACC, NMI, and Purity
on the BUAA dataset with a missing view rate of 30% in
comparison with the tensor-based IMVTSC, which obtains
the second best performances.

(2) The TIMVC IGC, ICSL IMC, and AGC IMVC can
outperform the other IMVC-based methods in most cases.
Since these three methods try to gain the complete graphs
of different views by performing missing view completion,
the missing information hidden in the missing instances can

be exploited. Specifically, due to the fact that the proposed
TIMVC IGC can explore higher-order correlations between
different views, it achieves a better performance than the
other methods.

(a)

(b)

Figure 2: Clustering accuracies versus different combina-
tions of parameters on the (a) COIL-20 and (b) Caltech101
databases, respectively.
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Data Methods ACC (%) NMI (%) Purity (%)
0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

C
al

te
ch

10
1

BSV 43.89±1.37 39.06±1.26 38.31±1.68 39.66±2.23 31.63±1.51 26.81±1.38 84.08±1.23 75.25±0.71 68.97±0.49
Concat 41.25±1.67 40.55±1.89 38.06±0.88 43.48±0.92 37.99±2.17 30.28±0.66 84.91±0.50 82.54±1.12 77.56±0.98

GPMVC 38.43±2.89 40.00±8.80 34.72±7.00 49.17±3.37 50.35±3.88 42.72±4.35 40.50±9.90 41.88±4.90 38.12±6.65
MIC 44.07±4.97 38.01±2.12 35.80±2.34 33.71±2.66 27.35±1.69 20.44±0.98 78.12±1.76 73.31±0.72 68.26±1.40

DAIMC 48.29±6.76 47.46±3.42 44.89±4.88 44.61±3.88 38.45±2.88 36.28±2.34 83.32±1.31 76.83±3.23 75.50±1.17
OMVC 49.38±4.35 46.53±3.46 50.19±5.62 61.07±3.13 62.64±1.98 59.51±2.55 54.11±4.32 49.03±2.89 55.40±3.76

MVL IV 50.13±0.92 48.54±1.64 52.43±1.15 63.59±1.54 62.81±0.99 63.28±0.85 53.37±3.83 52.78±1.60 56.53±1.21
AWIMVC 51.02±0.99 46.55±0.71 33.49±1.77 56.90±0.43 50.71±1.90 44.30±1.32 55.21±1.68 41.70±1.61 33.59±1.52

UEAF 50.82±4.05 42.71±0.84 36.32±4.22 39.44±2.07 31.07±1.99 24.02±1.37 81.49±1.78 78.26±2.12 76.29±1.93
AGC IMVC 59.63±4.11 57.31±2.13 55.10±2.66 59.68±2.55 59.47±1.28 59.37±2.36 84.14±2.24 61.59±2.01 60.22±2.57
ICSL IMC 61.33±1.17 60.56±0.83 59.49±1.37 60.98±0.66 59.66±1.28 57.93±1.25 82.12±2.15 62.22±0.75 58.17±1.79
IMVTSC 64.18±0.49 63.19±2.41 54.17±2.04 55.97±0.71 53.84±2.72 51.37±1.40 89.09±0.52 88.69±1.06 88.19±1.82

TIMVC IGC 69.27±1.22 67.78±0.69 67.10±1.48 65.26±2.53 64.80±2.11 63.96±1.04 94.03±0.72 93.76±1.74 91.11±1.73

B
U

A
A

BSV 33.64±6.15 30.02±10.03 26.59±2.71 56.22±3.45 54.29±8.62 46.47±6.14 32.17±5.50 31.62±6.69 28.22±9.78
Concat 28.43±9.77 26.07±4.02 23.56±8.61 63.61±6.13 60.59±2.07 55.95±7.15 29.88±5.41 27.71±7.40 24.74±8.58

GPMVC 34.57±8.52 32.29±5.03 27.19±4.74 57.18±9.95 55.34±7.21 47.24±4.97 35.40±5.74 33.63±2.70 28.52±3.48
MIC 35.63±5.31 34.77±4.97 29.16±3.13 59.65±2.07 55.42±6.07 46.20±3.66 37.10±4.56 36.33±3.10 29.16±3.94

DAIMC 29.11±1.08 27.41±3.10 25.63±5.31 56.85±3.68 54.39±2.17 57.64±8.62 30.01±5.81 28.74±6.20 26.81±6.69
OMVC 43.57±7.48 30.61±6.03 28.77±2.23 63.59±2.07 62.17±3.89 54.91±4.39 46.48±5.33 40.10±5.05 37.11±7.18

MLV IV 44.07±3.72 36.81±1.16 31.11±0.27 72.00±1.35 66.83±2.53 62.63±0.14 45.48±0.95 38.16±1.01 32.74±0.41
AWIMVC 47.11±1.50 41.02±1.67 33.27±0.68 72.55±1.66 62.09±1.05 61.22±0.93 48.47±0.89 43.68±0.48 36.49±0.74

UEAF 35.93±4.30 30.59±3.97 26.74±9.66 66.64±5.27 60.46±7.94 59.14±3.38 37.56±5.20 32.22±4.41 28.07±3.97
AGC IMVC 37.26±4.68 26.74±0.67 25.48±2.70 61.51±5.05 53.87±0.61 57.51±5.25 38.96±1.66 28.01±1.37 26.67±3.72
ICSL IMC 49.19±1.48 43.41±1.34 36.22±0.58 74.89±0.74 70.21±0.59 63.82±0.14 50.67±1.32 44.59±2.67 38.08±0.35
IMVTSC 75.21±1.27 55.46±1.25 38.33±2.47 78.54±2.20 73.90±1.62 60.55±2.25 68.20±1.38 58.36±1.81 36.52±2.55

TIMVC IGC 79.41±1.40 65.11±2.08 41.37±0.95 91.08±0.81 83.09±1.22 65.02±1.40 81.78±2.11 66.52±1.79 42.56±1.61

Table 2: ACC (%), NMI (%), and Purity (%) of Different Methods on the Caltech101, and BUAA Incomplete Multi-view
Datasets.

Parameter Sensitivity Analysis
Three parameters, i.e., λ1, λ2, and λ3 need to be adjusted
in Algorithm 1. Aiming to select the suitable combination
of parameters for each database, a set of experiments were
implemented. Fig. 2 depicts the parameter sensitivities of the
proposed method on different datasets. It is obvious that our
method is insensitive to λ1 in the range of [10−5, 102]. In
addition, it can be seen that the highest clustering accuracy
can be guaranteed for all databases with λ2 ∈ [102, 105] and
λ3 = 103.

Convergency Analysis
To prove the convergency property of the proposed method,
a group of experiments were implemented to analyze the
convergency of TIMVC IGC. Fig. 3 shows the clustering
accuracies and the objective function values (OFV) v.s. the
number of iterations on different databases with a missing
view rate of 30%. From Fig. 3, it can be obviously observed
that the clustering accuracies increase to a stable value af-
ter several iterations, where the objective function values
monotonically decrease to a denomination after a few of
steps. Thus, the convergence property of our method can be
proven.

Conclusions
In this paper, a novel and efficient IMVC framework, called
TIMVC IGC, for incomplete multi-view clustering is pro-
posed. To adaptively complete the structure for each view,

(a) (b)

Figure 3: Objective function value and clustering accuracy
of the proposed method versus the number of iterations on
the (a) Handwritten, and (b) COIL-20 databases, respec-
tively.

TIMVC IGC jointly considers the missing view inferring
and the consistency semantic representation for all views. To
this end, a missing view inferring term and a between-view
consistency constraint are introduced to infer the missing in-
stances and construct the complete graph for each view. Be-
sides this, TIMVC IGC simultaneously learns the low-rank
structures of different views and explores the high-order cor-
relations between different graphs in a latent manifold sub-
space using a low-rank tensor constraint. Therefore, the in-
trinsic structures can be obtained to guarantee the seman-
tic consistency of different views. Experimental results il-
lustrates that TIMVC IGC can well recover the missing in-
stances and significantly improve the performance.

11333



Acknowledgments
This work was partially supported by the University of
Macau (Grant no. MYRG2019-00006-FST), the National
Natural Science Foundation of China (Grant nos. 62106052,
62176066, and 62006059), the China Postdoctoral Science
Foundation (Grant 2022M710827), and the Science and
Technology Development Fund (FDCT) of Macau (Grant
no. 0038/2021/APD).

References
Abhadiomhen, S. E.; Wang, Z.; Shen, X.; and Fan, J. 2021.
Multiview common subspace clustering via coupled low
rank representation. ACM Transactions on Intelligent Sys-
tems and Technology (TIST), 12(4): 1–25.
Candès, E. J.; Li, X.; Ma, Y.; and Wright, J. 2011. Robust
principal component analysis? Journal of the ACM (JACM),
58(3): 1–37.
Chao, G.; Sun, S.; and Bi, J. 2021. A survey on multiview
clustering. IEEE transactions on artificial intelligence, 2(2):
146–168.
Chen, Y.; Xiao, X.; Peng, C.; Lu, G.; and Zhou, Y. 2021.
Low-rank tensor graph learning for multi-view subspace
clustering. IEEE Transactions on Circuits and Systems for
Video Technology, 32(1): 92–104.
Cheng, M.; Jing, L.; and Ng, M. K. 2018. Tensor-based low-
dimensional representation learning for multi-view cluster-
ing. IEEE Transactions on Image Processing, 28(5): 2399–
2414.
Cui, H.; Zhu, L.; Li, J.; Yang, Y.; and Nie, L. 2020. Scalable
Deep Hashing for Large-Scale Social Image Retrieval. IEEE
Transactions on Image Processing, 29: 1271–1284.
Deng, W.; Liu, L.; Li, J.; and Lin, Y. 2020. Auto-weighted
incomplete multi-view clustering. IEEE Access, 8: 138752–
138762.
Fei-Fei, L.; Fergus, R.; and Perona, P. 2004. Learning gen-
erative visual models from few training examples: An incre-
mental bayesian approach tested on 101 object categories. In
2004 conference on computer vision and pattern recognition
workshop, 178–178. IEEE.
Gao, H.; Nie, F.; Li, X.; and Huang, H. 2015. Multi-view
subspace clustering. In Proceedings of the IEEE interna-
tional conference on computer vision, 4238–4246.
Gao, H.; Peng, Y.; and Jian, S. 2016. Incomplete multi-view
clustering. In International Conference on Intelligent Infor-
mation Processing, 245–255. Springer.
Hu, M.; and Chen, S. 2019. Doubly aligned incomplete
multi-view clustering. arXiv preprint arXiv:1903.02785.
Hu, S.; Lou, Z.; and Ye, Y. 2021. View-Wise Versus Cluster-
Wise Weight: Which Is Better for Multi-View Clustering?
IEEE Transactions on Image Processing, 31: 58–71.
Hu, S.; Shi, Z.; and Ye, Y. 2020. DMIB: Dual-correlated
multivariate information bottleneck for multiview cluster-
ing. IEEE Transactions on Cybernetics.
Huang, S.; Zhang, H.; and Pižurica, A. 2021. Hybrid-
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