
Dynamic Ensemble of Low-Fidelity Experts: Mitigating NAS “Cold-Start”

Junbo Zhao*1,3, Xuefei Ning*†1, Enshu Liu1, Binxin Ru4, Zixuan Zhou1,
Tianchen Zhao1, Chen Chen2, Jiajin Zhang2, Qingmin Liao3, Yu Wang†1

1Department of Electronic Engineering, Tsinghua University
2Huawei Technologies Co., Ltd

3Tsinghua Shenzhen International Graduate School
4SailYond Technology & Research Institute of Tsinghua University in Shenzhen

†foxdoraame@gmail.com, †yu-wang@tsinghua.edu.cn

Abstract

Predictor-based Neural Architecture Search (NAS) employs
an architecture performance predictor to improve the sam-
ple efficiency. However, predictor-based NAS suffers from
the severe “cold-start” problem, since a large amount of
architecture-performance data is required to get a working
predictor. In this paper, we focus on exploiting information in
cheaper-to-obtain performance estimations (i.e., low-fidelity
information) to mitigate the large data requirements of pre-
dictor training. Despite the intuitiveness of this idea, we ob-
serve that using inappropriate low-fidelity information even
damages the prediction ability and different search spaces
have different preferences for low-fidelity information types.
To solve the problem and better fuse beneficial informa-
tion provided by different types of low-fidelity information,
we propose a novel dynamic ensemble predictor framework
that comprises two steps. In the first step, we train differ-
ent sub-predictors on different types of available low-fidelity
information to extract beneficial knowledge as low-fidelity
experts. In the second step, we learn a gating network to
dynamically output a set of weighting coefficients condi-
tioned on each input neural architecture, which will be used
to combine the predictions of different low-fidelity experts
in a weighted sum. The overall predictor is optimized on a
small set of actual architecture-performance data to fuse the
knowledge from different low-fidelity experts to make the
final prediction. We conduct extensive experiments across
five search spaces with different architecture encoders un-
der various experimental settings. For example, our meth-
ods can improve the Kendall’s Tau correlation coefficient be-
tween actual performance and predicted scores from 0.2549
to 0.7064 with only 25 actual architecture-performance data
on NDS-ResNet. Our method can easily be incorporated into
existing predictor-based NAS frameworks to discover bet-
ter architectures. Our method will be implemented in Mind-
spore (Huawei 2020), and the example code is published at
https://github.com/A-LinCui/DELE.

Introduction
In recent years, architectures automatically designed by neu-
ral architecture search (NAS) (Elsken, Metzen, and Hutter

*These authors contributed equally.
†Corresponding authors.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2019) have achieved state-of-the-art performance on vari-
ous tasks (Zoph and Le 2016; Liu, Simonyan, and Yang
2018; Chen et al. 2019; Wang et al. 2020). Accurate and
efficient architecture performance estimation strategy is one
of the key components of NAS (Elsken, Metzen, and Hutter
2019), which can be broadly divided into parameter-sharing-
based (Pham et al. 2018) and predictor-based methods (Luo
et al. 2018; Ning et al. 2020; White et al. 2021). The for-
mer evaluates with weights shared in an over-parametrized
super network, while the latter learns a predictor to predict
the performance of candidate architectures.

Predictor-based NAS trains an approximate performance
predictor and utilizes it to rank unseen architectures without
actually training them. Therefore, once we have a predictor
that can reliably rank the performance of unseen architec-
tures, the architecture exploration can be significantly ac-
celerated. However, predictor-based NAS suffers from the
severe “cold-start” problem: It usually takes quite a con-
siderable cost to acquire the architecture-performance data
needed for training a working predictor from scratch.

Recognizing the high cost of getting actual architecture-
performance data as the major challenge for predictor-based
NAS, existing efforts seek to learn the predictor in a more
data-efficient way. Researchers have designed specialized
predictor architectures (Ning et al. 2020; Zhang et al. 2019;
Tang et al. 2020; Yan et al. 2021; Ning et al. 2022), training
losses (Luo et al. 2018; Ning et al. 2020; Xu et al. 2021; Tang
et al. 2020; Yan et al. 2020, 2021), to exploit information in
the limited data more efficiently. In contrast, our work fo-
cuses on exploiting more information in other cheaper-
to-obtain performance estimations (i.e., low-fidelity in-
formation) to mitigate the data requirements of predic-
tor training. Actually, it is intuitive that utilizing other low-
fidelity information (e.g., grasp (Wang, Zhang, and Grosse
2020) and plain (Mozer and Smolensky 1988)) for predic-
tor training can help mitigate the cold-start problem. One
can anticipate that training with this information might bring
potential improvements in two aspects. On the one hand, the
ranking information included in some indicators (e.g., one-
shot (Pham et al. 2018), zero-shot (Abdelfattah et al. 2021a;
Lin et al. 2021) estimations) might help the predictor acquire
a better ranking quality. On the other hand, learning to fit
other low-fidelity information could encourage the predictor

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

11316

to extract better architecture representations.
A straightforward way of utilizing low-fidelity informa-

tion is to pretrain the model on a single type of low-fidelity
information and finetune it on a small amount of actual
architecture-performance data. We conduct a preliminary
experiment in Table 1 and make the following observations.

• Low-fidelity information does have the potential
to improve prediction ability with limited actual
architecture-performance data significantly. E.g.,
utilizing grad norm (Abdelfattah et al. 2021b) in-
creases the relative Kendall’s Tau1 for 0.1597 and
0.8286 on NAS-Bench-201 (Dong and Yang 2020) and
NDS-ResNet (Radosavovic et al. 2019), respectively.

• Inappropriate low-fidelity information types even damage
the prediction ability. E.g., utilizing “plain” decreases the
relative Kendall’s Tau for 0.1423, 0.7677 on NAS-Bench-
201 and NAS-Bench-301 (Siems et al. 2020), respectively.

• Different search spaces have different preferences for
low-fidelity information types. E.g., grad norm decreases
Kendall’s Tau on NAS-Bench-301 but benefits the predic-
tion on the other search spaces.

• A high-ranking quality of the low-fidelity information
does not indicate its utilization effectiveness. E.g., syn-
flow (Tanaka et al. 2020) positively correlates with actual
performance but damages prediction on NAS-Bench-301.

That is to say, despite the intuitiveness of this idea, which
types of low-fidelity information are useful for performance
prediction is unclear to practitioners beforehand. In addi-
tion, different types of low-fidelity information could pro-
vide beneficial information from different aspects, but the
naive method described above can only utilize one type of
low-fidelity information. Therefore, it would be better if we
could fuse the knowledge from multiple types of low-fidelity
information organically in an automated way.

In this paper, we propose a novel dynamic ensemble
predictor framework, whose core is a learnable gating net-
work that maps the neural architecture to a set of weighting
coefficients to be used in ensembling predictions of different
low-fidelity experts. The framework comprises two steps. In
the first step, we pretrain different low-fidelity experts on
different types of available low-fidelity information to ex-
tract beneficial knowledge. In the second step, the overall
predictor is finetuned on the actual architecture-performance
data to fuse knowledge from different types of low-fidelity
information to make the final prediction. In this way, we can
not only leverage multiple low-fidelity information in the ar-
chitecture performance prediction but also balance their con-
tributions in an automatic and dynamic fashion, overcoming
the challenge for the practitioners to decide on which low-
fidelity information to use.

To demonstrate the effectiveness of our proposed method,
we conduct extensive experiments across multiple bench-
marks, including NAS-Bench-201, NAS-Bench-301, NDS
ResNet, NDS ResNeXt-A (Radosavovic et al. 2019), and

1Kendall’s Tau is the relative difference of the number of con-
cordant pairs and discordant pairs, reflecting the ranking correla-
tion between predictions and ground-truths.

MobileNetV3 (Cai et al. 2019). And our experiments are
conducted under various experimental settings (e.g., dif-
ferent predictor construction methods, varying data sizes).
We show that our method of exploiting additional low-
fidelity information can significantly and consistently im-
prove the ranking quality of predictors compared to us-
ing the architecture-performance solely, thus improving the
overall NAS efficiency. Our method can be easily incorpo-
rated into existing predictor-based NAS methods to allevi-
ate the cold-start problem and guide the NAS process to dis-
cover better architectures. For example, our dynamic ensem-
ble predictor discovers architectures with 94.37% test ac-
curacy on NAS-Bench-201 (CIFAR-10 (Krizhevsky, Hinton
et al. 2009)), surpassing ReNAS (Xu et al. 2021) (93.99%)
and NEPNAS (Wei et al. 2020) (91.52%) with the same
search budget. More information is available on our web-
site https://sites.google.com/view/nas-nicsefc/home/search-
strategy-improvement/dele.

Related Work
Fast Evaluation Strategies in NAS
Neural architecture search (NAS) (Elsken, Metzen, and Hut-
ter 2019) is a technique to design neural network architec-
tures automatically. The vanilla NAS method (Zoph and Le
2016) is computationally expensive since it needs to train
each candidate architecture from scratch to get its perfor-
mance. Therefore, a series of methods focus on develop-
ing faster architecture evaluation strategies to address the
computational challenge. The two most popular types of
fast evaluation strategies are the one-shot estimators (Bender
et al. 2018; Pham et al. 2018; Guo et al. 2020) and zero-shot
estimators (Mellor et al. 2020; Abdelfattah et al. 2021a).

One-shot performance estimations. One-shot NAS
methods (Bender et al. 2018; Pham et al. 2018; Guo et al.
2020) construct an over-parametrized network (namely
supernet), in which all candidate architectures are contained
and share weights. After being trained to convergence, the
supernet can evaluate the performance of each architecture
by directly using the corresponding weights. Due to its
efficiency, the one-shot performance estimation strategy is
widely studied and used on different search spaces (Cai
et al. 2019; Wu et al. 2019) and for different tasks (Chen
et al. 2019; Wang et al. 2020). However, as reported in
EEPE (Ning et al. 2021), one-shot performance estimations
might have unsatisfying correlation and prominent bias.
Therefore, one-shot performance estimation can fail to
benefit NAS (Pourchot, Ducarouge, and Sigaud 2020).

Zero-shot performance estimations. Recently, several
researches (Mellor et al. 2020; Abdelfattah et al. 2021a; Lin
et al. 2021) propose “zero-shot” estimators, which utilize
randomly initialized weights to estimate architectures’ per-
formance. Since no training process is required, these esti-
mations are extremely fast. Nevertheless, EEPE (Ning et al.
2021) reveals that these zero-shot estimations have promi-
nent biases, no zero-shot estimator can get a satisfying rank-
ing quality in all search spaces, and the best zero-shot esti-
mator is different across search spaces.

11317

Low-fidelity Type Low-fidelity Corr. / Kendall’s Tau Relative Improvement

NAS-Bench-201 NAS-Bench-301 NDS-ResNet NDS-ResNeXt-A MobileNet-V3

grasp +0.3227 / -0.0118 +0.4062 / +0.0189 -0.1142 / -0.9431 -0.2615 / -1.0230 -0.0663 / +0.0091
plain -0.1467 / -0.1423 -0.4670 / -0.7677 +0.3066 / +0.7477 +0.2887 / +0.4064 +0.0116 / -0.0544

synflow +0.5808 / +0.1463 +0.1967 / -0.2653 +0.2307 / +0.7270 +0.6904 / +1.0406 +0.6366 / -0.0024
grad norm +0.4798 / +0.1597 +0.0378 / -0.3340 +0.2372 / +0.8286 +0.3190 / +0.6247 +0.0696 / +0.0238
jacob cov +0.4763 / +0.1780 +0.0958 / -0.1654 -0.0724 / -0.5551 +0.0510 / -0.5681 -0.0053 / -0.1423

Table 1: The “Low-Fidelity Corr.” and relative Kendall’s Tau improvement achieved by utilizing different typical types of
low-fidelity information.Specifically, we construct the predictor with an LSTM encoder and train it with ranking loss. All ar-
chitectures in the training split are used for pretraining, while the first 1% percentages by index with corresponding actual
performance are used for finetuning. “Low-Fidelity Corr.” represents Kendall’s Tau correlation between the low-fidelity infor-
mation and the actual performance.

Predictor-based NAS

Predictor-based NAS (Luo et al. 2018; Ning et al. 2020; Wei
et al. 2020; Tang et al. 2020; Xu et al. 2021; White et al.
2021; Ning et al. 2022) is another type of NAS methods that
relies on an architecture performance predictor. An archi-
tecture performance predictor takes the architecture descrip-
tion as the input and outputs an estimated score. In each it-
eration of predictor-based NAS, the predictor is trained on
actual architecture-performance data and then utilized to ef-
ficiently evaluate and sample new architectures. Then, the
architecture-performance data of the newly sampled archi-
tectures would be used to tune the predictor in the next iter-
ation. The most costly part of the predictor-based NAS flow
is getting the actual architecture-performance data for pre-
dictor training. We refer the readers to the GATES paper
(Ning et al. 2020) for a summary of the general predictor-
based NAS workflow. Recently, Wu etal. (Wu et al. 2021)
derives a formulation for predictor-based NAS and justify
the rationality of this widely-used workflow.

A problem with predictor-based NAS is that we usually
need many actual architecture-performance data to get a
working predictor. The initial exploration in the search space
is poorly guided and usually just conducted by random sam-
pling. We refer to this problem as the “cold-start problem”.

Improving Predictor-based NAS. Researchers have been
focused on making the predictor utilize available data more
efficiently. Existing methods can be resolved into two as-
pects: 1) The construction of predictor architectures:
NASBot (Kandasamy et al. 2018) employs Gaussian Process
as the predictor to better model the uncertainty. For topolog-
ical search spaces, graph-based predictors are designed to
encode the architecture in a better way (Ning et al. 2020;
Dudziak et al. 2020; Shi et al. 2020; Ning et al. 2022). Tang
etal. (Tang et al. 2020) propose explicitly modeling the re-
lation between multiple architectures to predict their perfor-
mances. 2) The loss design of predictor training: GATES
(Ning et al. 2020) and ReNAS (Xu et al. 2021) propose to
train the predictor with ranking loss to provide better archi-
tecture comparison. Several other studies (Luo et al. 2018;
Tang et al. 2020; Yan et al. 2020) employ reconstruction loss
as an auxiliary loss term.

Utilizing Cheaper-to-obtain Estimations. Recently, sev-
eral studies have attempted to exploit cheaper-to-obtain per-
formance estimations in predictor-based NAS to improve
search efficiency: 1) ProxyBO (Shen et al. 2021) proposes
to combine the architecture ranking given by the predictor
and zero-shot proxies in the search process; 2) White etal.
(White et al. 2021) find that certain families of performance
estimations can be combined to achieve even better predic-
tive power; 3) AceNAS (Zhang et al. 2021) proposes to pre-
train the predictor with FLOPs, parameter size, and weight-
sharing accuracy in a multi-task manner. However, these
methods either heavily rely on the high-ranking correlation
between the actual performance and the utilized estimations
(Shen et al. 2021) or require carefully utilized estimation se-
lection (White et al. 2021; Zhang et al. 2021). Different from
these attempts, our method has no requirement for correla-
tion between the utilized estimations and actual performance
and can use a broader range of cheaper-to-obtain estimations
without the need for manual hand-picking.

Low-Fidelity Information

Low-fidelity information refers to indicators obtained with
a low computational cost. These indicators capture some
properties of neural architectures and thus can indicate their
performances to some extent. We anticipate that learning to
fit these cheaper-to-obtain data can encourage the predictor
to extract better architecture representations and thus boost
the ranking quality of the predictor. Different types of low-
fidelity information can be roughly classified as follows.

• One-shot information. The performance of architectures
obtained from the one-shot supernet.

• Zero-shot information, such as grad norm, synflow and
synflow bn (Tanaka et al. 2020), snip (Lee, Ajanthan,
and Torr 2018), grasp, fisher (Theis et al. 2018) and ja-
cob cov (Mellor et al. 2020).

• Complexity information. Architecture information from
the complexity perspective, such as the number of
floating-point operations (FLOPs), the parameter size
(params), and the inference latency (latency).

11318

Vanilla Predictor Training Dynamic Ensemble Predictor Framework

Predictor

Predicted
ScoreArch

GT
Train with

Low ranking quality
(0.73 Kendall’s Tau)

In-efficient
exploration

Search Space

“Cold-start”

High ranking quality
(0.82 Kendall’s Tau)

Efficient
Exploration

Mitigating “Cold-start”

Search Space

Limited training
data causes

Ground-truth
performance

GT*

Our solution: utilizing low-fidelity data

Fuse
knowledge Predictor

Train with different
low-fidelity
estimation

Step 1
Predictor

Step 2

LF GT Fine-tune with
ground-truth performance

GT : 96.5%
GT: ground-truth performance

LF
LF: low-fidelity

estimation
(e.g., FLOPs; #Param; GradNorm…)

: 1E9 2.7M […]

Final
Score

Arch

Predicted
Scores

Weight
Coefficients

...

Low-fidelity Experts

Expert 𝑷𝟏

Train with Grasp

Expert 𝑷𝟐

Train with Snip

Expert 𝑷𝑵

Train with Params

Gating Network G

softmax

Fuse knowledge from different low-fidelity experts.

.𝒈𝟐 . 𝒈𝑵.𝒈𝟏 𝒈𝟐

sigmoid

.𝒈𝟐
ᇱ𝒈𝟏

ᇱ . . 𝒈𝑵
ᇱ

.. .𝒑𝟐
𝒍𝒇𝒑𝟏

𝒍𝒇
𝒑𝑵
𝒍𝒇

Figure 1: Illustration of our motivation and our proposed dynamic ensemble predictor framework.

The Proposed Method
In this section, we present the dynamic ensemble perfor-
mance predictor framework. The illustration of our motiva-
tion and the predictor framework are shown in Figure 1.

Dynamic Ensemble Performance Predictor
Dynamic Ensemble Neural Predictor. Suppose we have
N predictors {Pi}Ni=1 (i.e., low-fidelity experts), each of
which takes the architecture α as the input and outputs a
predicted score. We represent the predicted scores for the
architecture α as

plf(α) = [plf1 (α), p
lf
2 (α), · · · , plfN (α)] ∈ RN (1)

where plfi (α) denotes the score predicted by the expert Pi.
We learn a gating network G to ensemble these experts

to fuse beneficial knowledge from different types of low-
fidelity information. The gating network dynamically maps
each neural architecture to a set of weights, which are used
as the weighting coefficients of predictions from different
low-fidelity experts. This enables us to leverage multiple
sources of low-fidelity information without worrying about
which one is more relevant for the current search space. We
utilize the same predictor architecture as the gating network
architecture.

The final predicted score p(α) can be written as

ki(α) = plfi (α) ·
exp(gi(α))∑N
j=1 exp(gj(α))

p(α) =sigmoid(G(α)T plf(α)) = sigmoid(
N∑
i=1

ki(α))

(2)
where gi(α) and ki(α) denote the weighting coefficient and
weighted score for the ith low-fidelity expert, and G(α) ∈
RN denotes the weighted coefficient vector after softmax.
The gating network can learn to tailor different weighting
coefficients for different input architectures.

Training Framework. Our training process for the dy-
namic ensemble neural predictor consists of two steps. In the
first step, we train a predictor on each type of low-fidelity in-
formation to extract expert knowledge, as formalized below:

w∗
i = argmin

wi

Exlf∼Dlf
i
[L(xlf , Pi(wi))] (3)

where xlf ∼ Dlf
i denotes the data sampled from the training

dataset of the ith type of low-fidelity information and wi

denotes the weights of the ith predictor. In the second step,
we construct and finetune the entire predictor on the actual
performance data,

{w∗
i }Ni=1, w

∗
g = argmin

{wi}N
i=1,wg

Extr∼Dtr [L(xtr, P ({wi}Ni=1, wg))]

(4)
where wg denotes the weights of the gating network; xtr ∼
Dtr denotes the data sampled from the training dataset of
actual performances.

Discussion about Simplicity. Our method is easily under-
standable and applicable. Firstly, our method requires no
hyper-parameter tuning nor careful low-fidelity information
selection. Secondly, our method is general to different search
spaces, datasets and encoders, since its two core designs
are general instead of specially designed for specific search
space properties: 1) utilizing low-fidelity information to im-
prove the prediction ability; 2) dynamically assembling low-
fidelity experts to fuse beneficial knowledge from different
low-fidelity information. Our method can be applied as long
as several low-fidelity information (not necessarily having a
good correlation with the actual performance) and an arbi-
trary architecture encoder are available for the search space.

Overall Search Flow
Our predictor-based flow goes as follows. In the first phase,
we mitigate the cold-start issue by utilizing low-fidelity esti-
mation. Specifically, we randomly sample N0 architectures

11319

Search Space Encoder Manner Proportions of training samples

1% 5% 10% 50% 100%

NAS-Bench-201
GATES Vanilla 0.7332(0.0110) 0.8582(0.0059) 0.8865(0.0045) 0.9180(0.0029) 0.9249(0.0019)

Ours 0.8244(0.0081) 0.8948(0.0021) 0.9075(0.0015) 0.9216(0.0019) 0.9250(0.0020)

LSTM Vanilla 0.5692(0.0087) 0.6410(0.0018) 0.7258(0.0053) 0.8765(0.0010) 0.9000(0.0008)

Ours 0.7835(0.0062) 0.8538(0.0029) 0.8683(0.0015) 0.8992(0.0010) 0.9084(0.0010)

NAS-Bench-301
GATES Vanilla 0.4160(0.0450) 0.6752(0.0088) 0.7354(0.0044) 0.7693(0.0041) 0.7883(0.0011)

Ours 0.5529(0.0135) 0.6830(0.0038) 0.7433(0.0018) 0.7752(0.0026) 0.7842(0.0022)

LSTM Vanilla 0.4757(0.0150) 0.6116(0.0099) 0.6923(0.0044) 0.7516(0.0017) 0.7667(0.0007)

Ours 0.4805(0.0083) 0.6405(0.0035) 0.7075(0.0022) 0.7544(0.0028) 0.7751(0.0011)

NDS-ResNet LSTM Vanilla 0.2549(0.0087) 0.4564(0.0108) 0.5770(0.0094) 0.7758(0.0078) 0.8244(0.0110)

Ours 0.7064(0.0109) 0.7548(0.0080) 0.7652(0.0037) 0.8271(0.0054) 0.8383(0.0049)

NDS-ResNeXt-A LSTM Vanilla 0.3568(0.0327) 0.6243(0.0220) 0.6671(0.0307) 0.8224(0.0091) 0.8701(0.0051)

Ours 0.7753(0.0010) 0.8276(0.0024) 0.8398(0.0044) 0.8453(0.0040) 0.8777(0.0042)

MobileNet-V3 LSTM Vanilla 0.7373(0.0041) 0.7852(0.0028) 0.7832(0.0040) 0.7944(0.0028) 0.8023(0.0014)

Ours 0.7698(0.0018) 0.8034(0.0027) 0.8042(0.0019) 0.8084(0.0017) 0.8135(0.0020)

Table 2: The Kendall’s Tau (average over five runs) of using different encoders on NAS-Bench-201, NAS-Bench-301, NDS-
ResNet, NDS-ResNeXt-A and MobileNet-V3. And the standard deviation is in the subscript. The detailed dataset split is
elaborated in the appendix. “Vanilla” represents directly training predictor with ground-truth accuracies without low-fidelity
information utilization.

from the search spaces for ground-truth performance and M
for low-fidelity information evaluation, respectively. Next,
these data are used to train an initial predictor with the dy-
namic ensemble method.

In the second phase, we run a predictor-based search
for Tp stages. In each stage, a Tpe-step tournament-based
evolutionary search (Real et al. 2019) (population size π,
tournament µ) with scores evaluated by the predictor are
run for Np times. We query for rewards of the Np sam-
pled architectures and then finetune the predictor on all
known architecture-performance data for K epochs. In total,
we query the actual performance of architectures in search
space for N0 + Tp × Np times. The test accuracy of the
architecture with the highest reward among all sampled ar-
chitectures is reported.

Note that our method is a predictor pretraining method
that can be easily incorporated into most predictor-based
NAS frameworks to alleviate the cold-start problem. It
is compatible with different types of predictor architec-
tures (Luo et al. 2018; Ning et al. 2020; Yan et al. 2021)
or search frameworks (Luo et al. 2018; Ning et al. 2020; Shi
et al. 2020).

Experiments and Results
In this section, we conduct experiments across different
search spaces and under various experimental settings to
evaluate the dynamic ensemble performance predictor.

Evaluation of Prediction Ability
To begin with, we evaluate the prediction ability improve-
ment brought by the proposed dynamic ensemble perfor-
mance predictor on several public benchmarks with different

training ratios and architecture encoders. These experiments
mainly compare the ranking qualities of predictors.

Search Space. We conduct experiments on the five search
spaces for a thorough evaluation: NAS-Bench-201, NAS-
Bench-301, NDS-ResNet / ResNeXt-A and MobileNet-V3.

We divide architectures into a training and validation split
for each space. We train the predictors on the former and test
their prediction ability on the latter. All architectures in the
training split with different types of low-fidelity information
are used in the first training step. The detailed search space
description, data split, types and acquisition of the utilized
low-fidelity information are elaborated in the appendix.

Predictor Construction. In the basic predictor prediction
flow, an encoder first encodes the architecture into an em-
bedding vector. Then the vector is fed into an MLP to
get the prediction score. We use LSTM (Luo et al. 2018)
and GATES (Ning et al. 2020) as the encoder. We only
use LSTM for the non-topological search spaces, includ-
ing NDS-ResNet / ResNeXt-A and MobileNet-V3, since
GATES is specially designed for topological architectures.

Training Settings. Following the previous studies (Ning
et al. 2020; Xu et al. 2021), we train predictors with the
hinge pair-wise ranking loss with margin m = 0.1. We first
train different low-fidelity experts for 200 epochs and then
finetune the dynamic ensemble performance predictor on the
actual performance data for 200 epochs. For comparison, we
directly train the vanilla predictor on the actual performance
data for 200 epochs. An Adam optimizer with learning rate
1e-3 is applied for optimization. The batch sizes used for
NAS-Bench-201, NAS-Bench-301, NDS and MobileNetV3
search spaces are 512, 128, 128 and 512, respectively.

11320

5 10 15 20 25 30 35 40 45
Query Number

0.920

0.925

0.930

0.935

0.940

Be
st

 T
es

t A
cc

. (
N

AS
-B

en
ch

-2
01

)

ours
vannila predictor
random sample
evolutionary

(a)

50 100 150 200 250 300
Query Number

0.940

0.942

0.944

0.946

0.948

Be
st

 T
es

t A
cc

. (
N

AS
-B

en
ch

-3
01

)

ours
vannila predictor
random sample
evolutionary

(b)

Figure 2: Comparison with other search strategies on NAS-Bench-201 (Figure 2a) and NAS-Bench-301 (Figure 2b). We report
the test accuracy of the architecture with the highest reward among all sampled architectures.

Method CIFAR-10 (%) CIFAR-100 (%) ImageNet-16-120 (%)
valid test valid test valid test

RSPS (Li and Talwalkar 2019) 84.16(1.69) 87.66(1.69) 59.00(4.60) 58.33(4.34) 31.56(3.28) 31.14(3.88)

DARTS-V2 (Liu, Simonyan, and Yang 2018) 39.77(0.00) 54.30(0.00) 15.03(0.00) 15.61(0.00) 16.43(0.00) 16.32(0.00)

GDAS (Dong and Yang 2019b) 90.00(0.21) 93.51(0.13) 71.15(0.27) 70.61(0.26) 41.70(1.26) 41.84(0.90)

SETN (Dong and Yang 2019a) 82.25(5.17) 86.19(4.63) 56.86(7.59) 56.87(7.77) 32.54(3.63) 31.90(4.07)

ENAS-V2 (Pham et al. 2018) 39.77(0.00) 54.30(0.00) 15.03(0.00) 15.61(0.00) 16.43(0.00) 16.32(0.00)

Random Sample 90.03(0.36) 93.70(0.36) 70.93(1.09) 71.04(1.07) 44.45(1.10) 44.57(1.25)

NPENAS (Wei et al. 2020) 91.08(0.11) 91.52(0.16) - - - -
REA (Real et al. 2019) 91.19(0.31) 93.92(0.30) 71.81(1.12) 71.84(0.99) 45.15(0.89) 45.54(1.03)

NASBOT (White et al. 2020) - 93.64(0.23) - 71.38(0.82) - 45.88(0.37)

REINFORCE (Williams 1992) 91.09(0.37) 93.85(0.37) 71.61(1.12) 71.71(1.09) 45.05(1.02) 45.24(1.18)

BOHB (Falkner, Klein, and Hutter 2018) 90.82(0.53) 93.61(0.52) 70.74(1.29) 70.85(1.28) 44.26(1.36) 44.42(1.49)

ReNAS (Xu et al. 2021) 90.90(0.31) 93.99(0.25) 71.96(0.99) 72.12(0.79) 45.85(0.47) 45.97(0.49)

Ours 91.59(0.02) 94.37(0.00) 73.49(0.00) 73.50(0.00) 46.41(0.06) 46.39(0.01)

Optimal 91.61 94.37 73.49 73.51 46.77 47.31

ResNet 90.83 93.97 70.42 70.86 44.53 43.63

Table 3: Search results on NAS-Bench-201. The standard deviation is in the subscript.

Results. Following previous studies (Ning et al. 2021),
we adopt Kendall’s Tau (KD) as the evaluation criteria. As
the results shown in Table 2, our proposed method out-
performs vanilla predictor training consistently on different
search spaces, architecture encoders, and training ratios. Es-
pecially, our method brings a larger improvement when the
training ratio is smaller. For example, on NDS-ResNet and
NDS-ResNeXt-A, our method achieves 0.7064 and 0.7753
Kendall’s Tau with 1% training samples, respectively, much
better than the vanilla predictor (0.2549, 0.3568).

Mitigating the Cold-Start Issue
We conduct architecture search on several search spaces to
demonstrate that our method can effectively mitigate the
cold-start issue and boost the performance of NAS.

Search on NAS-Bench-201. We conduct experiments on
NAS-Bench-201 under three settings with architectures en-
coded by GATES. We use the validation accuracy on the
CIFAR-10 dataset as the reward to guide the search.

Comparison with Different Search Strategies. We com-
pare our method with random sample, tournament-based
evolutionary (π = 20, µ = 5), and predictor-based flow
without utilizing low-fidelity information. Each method is
run ten times. We set N0 = 20, M = 7813, Tp = 5,
Tpe = 50, Np = 5, π = 20, µ = 5 and K = 100 for
our method. In total, we query the benchmark 45 times and
report the test accuracy of the best architecture selected by
the predictor. As the results shown in Figure 2a, the best
architectures discovered by our method have higher test ac-
curacies using the same query times.

Comparison with AceNAS and ProxyBO. We compare
our method with ProxyBO (Shen et al. 2021) and Ace-
NAS (Zhang et al. 2021) to verify that our method is a better
way to utilize cheaper-to-obtain estimations. All search set-
tings are kept the same as in other experiments, except for
Np = 20 and Tp = 9. In total, we query the benchmark
200 times and report the accuracy of the best architecture
selected by the predictor. The search budget is the same as

11321

Method Test Error (%) Param† FLOPs†
CIFAR-10 CIFAR-100 ImageNet (Top1/Top5) (M) (M)

NASNet-A (Zoph et al. 2018) 2.65 17.81 26.0 / 8.4 3.3 564
PNAS (Liu et al. 2018) 3.41±0.09 17.63 25.8 / 8.1 3.2 588

EN2AS (Zhang et al. 2020a) 2.61±0.06 16.45 26.7 / 8.9 3.1 506
NSAS (Zhang et al. 2020b) 2.59±0.06 17.56 25.5 / 8.2 3.1 506

DARTS (Liu, Simonyan, and Yang 2018) 2.76±0.09 17.54 26.9 / 8.7 3.4 574
GDAS (Dong and Yang 2019b) 2.93 18.38 26.0 / 8.5 3.4 545

SNAS (Xie et al. 2018) 2.85±0.02 20.09 27.3 / 9,2 2.8 474
PC-DARTS (Xu et al. 2019) 2.57±0.03 17.11 25.1 / 7.8 3.6 586

NAO (Luo et al. 2018) 2.48 15.67‡ 25.7 / 8.2 10.6 584
GATES (Ning et al. 2020) 2.58 - - 4.1 -

BANANAS (White, Neiswanger, and Savani 2019) 2.57 - - 4.0 -
NPENAS-BO (Wei et al. 2020) 2.64 ± 0.08 - - - -
NAS-BOWL (Ru et al. 2021) 2.61 ± 0.08 - - 3.7 -

Ours 2.30 16.07 24.4 / 7.4 4.1 645
†: “Param” is the model size of CIFAR-10 model, while “FLOPs” is calculated based on the ImageNet models.
‡: This architecture is much larger than ours.

Table 4: Test error comparison with other NAS methods on CIFAR-10, CIFAR-100, and ImageNet.

Search Space Vanilla Ours Random Sample Optimal

NDS-ResNet 0.9437(0.0000) 0.9488(0.0001) 0.9420(0.0021) 0.9516
NDS-ResNeXt-A 0.9454(0.0005) 0.9456(0.0000) 0.9368(0.0038) 0.9483

MobileNet-V3 0.7718(0.0000) 0.7721(0.0002) 0.7633(0.0034) 0.7749

Table 5: Discovered Architecture accuracies. We report the average values and the standard deviation is in the subscript.

that of ProxyBO but less than AceNAS (500 queries). We
run our method ten times with different seeds. Our method
gets an 8.39% validation error on CIFAR-10 and 26.50%
test error on CIFAR-100, respectively, better than ProxyBO
(8.56%, 26.53%) and AceNAS (26.62% on CIFAR-100).

Comparison with Other NAS Methods. For a fair com-
parison with other NAS methods, following (Xu et al.
2021), we finetune the predictor in the second step with 90
randomly sampled architectures and their corresponding re-
wards. Then we traverse the search space with the predic-
tor and report the best validation and test accuracies among
the top-10 architectures selected by the predictor. We run
the experiment 10 times and report the average and standard
values2. As shown in Table 3, our method achieves better
performance than the other methods on all three datasets.
Remarkably, by utilizing one-shot estimation in predictor-
based NAS, our method significantly outperforms the origi-
nal one-shot method ENAS (Pham et al. 2018).

Search on NAS-Bench-301. With GATES as the encoder,
we set N0 = 60, M = 5896, Tp = 10, Tpe = 100,
Np = 20, π = 20, µ = 10 and K = 100 for our method.
In total, we query the benchmark 300 times. We compare
our methods with random sample, tournament-based evolu-
tionary (π = 20, µ = 10), and the same predictor-based

2Following ReNAS (Xu et al. 2021), we report the predictor
training time as the search cost.

flow but without the utilization of low-fidelity information.
Each method is run ten times with different seeds. The re-
sult is shown in Figure 2b. Our method achieves better test
accuracies than predictor-based flow without the utilization
of low-fidelity information and outperforms random sample
and evolutionary methods by a large margin.

Search on DARTS. We further employ our method in
the DARTS (Liu, Simonyan, and Yang 2018) search space.
For fast experiments, we conduct architecture search on the
NAS-Bench-301 benchmark, which is similar to the DARTS
space. The search settings are the same as those on NAS-
Bench-301. In total, we query the benchmark 300 times.
After the search process, the best-discovered architecture is
augmented following the DARTS setting and trained from
scratch to get the final test accuracy. Detailed discovered ar-
chitecture training settings are elaborated in the appendix.
The comparison of the test errors is shown in Table 4. Our
method achieves a test error of 2.30% on CIFAR-10, better
than the previous one-shot NAS methods, such as DARTS
(3.00%) and GDAS (2.93%). When transferred to CIFAR-
100 and ImageNet, the discovered architecture achieves a
test error of 16.07% and 24.4%, respectively, also outper-
forming the other architectures.

Search on MobileNet-V3 and NDS. After the first train-
ing step, we finetune the entire predictor on 1% architec-
tures in the training split. On MobileNet-V3, we traverse
100000 randomly sampled architectures with the predictor.

11322

Search Space Manner Proportions of training samples

1% 5% 10%

NAS-Bench-201
Simple 0.6936(0.0038) 0.7763(0.0058) 0.8218(0.0015)

Uniform 0.7442(0.0031) 0.8296(0.0019) 0.8549(0.0004)

Ours 0.7835(0.0062) 0.8538(0.0029) 0.8683(0.0015)

NDS ResNet
Simple 0.5789(0.0145) 0.7247(0.0088) 0.7349(0.0125)

Uniform 0.6794(0.0174) 0.7302(0.0055) 0.7452(0.0052)

Ours 0.7064(0.0109) 0.7548(0.0080) 0.7652(0.0037)

NDS ResNeXt-A
Simple 0.7326(0.0122) 0.7942(0.0073) 0.8009(0.0042)

Uniform 0.7694(0.0062) 0.8253(0.0033) 0.8348(0.0040)

Ours 0.7753(0.0010) 0.8276(0.0024) 0.8398(0.0044)

Table 6: The Kendall’s Tau (average over five runs) of using the LSTM encoder on NAS-Bench-201 and NDS-ResNet /
ResNeXt-A. The standard deviation is in the subscript. “Uniform” represents learning a uniform set of weight coefficients
for all the architectures. “Simple” represents simply averaging outputs of different low-fidelity experts.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Weighted Score Standard Deviation

relu_logdet

grad_norm

grasp

jacob_cov

plain

relu

synflow

one_shot

params

Figure 3: Standard deviation of weighted scores of different
low-fidelity experts on NDS-ResNet.

On NDS-ResNet / ResNeXt-A, we traverse all the architec-
tures in the search space. The best test accuracy among the
top-10 architectures selected by the predictor is reported.
As shown in Table 5, compared with other strategies, our
method consistently discovers superior architectures.

Efficiency Comparison with Other Methods. Except for
the one-shot score, most types of low-fidelity information
can be obtained at an extremely low cost. For example, eval-
uation of the parameter size for all architectures in NAS-
Bench-201 can be accomplished within a minute. Although
utilizing the one-shot information involves supernet train-
ing and submodel testing, our method is still more efficient
than baselines. For example, the cost of training the super-
net and testing 7813 candidate architectures on NAS-Bench-
201 is comparable to training about 15 architectures for 200
epochs. In our experiment, when querying 45 architectures
to get their ground-truth performance in NAS-Bench-201,
the equivalent total cost is about training 45+15=60 archi-
tectures. And the accuracy of our discovered architecture
(94.09%) surpasses the architecture accuracy (93.99%) dis-
covered by ReNAS after 90 queries by a large margin.

Empirical Analysis

Dynamic Ensemble Analysis. Since we model predictor
learning as a ranking problem, the absolute value of the
weighted score by an expert does not reflect its importance
directly. This is because the output range of experts varies. If
there is a low-fidelity expert that has the highest weighting
coefficient, whose weighted scores for all architectures are
the same. Then, this expert does not contribute new infor-
mation to the architecture ranking. In other words, only the
difference between weighted scores of architectures by an
expert contributes to the architecture ranking. So, instead,
we calculate the standard deviation of the weighted scores
ki as the criterion. Figure 3 shows the results of different
low-fidelity experts on NDS-ResNet. The experts on the pa-
rameter size and one-shot score have a much larger stan-
dard deviation than other types, indicating that the predic-
tor highly relies on them for prediction. On the other hand,
in the appendix, we empirically verify that these two low-
fidelity information types are the most beneficial ones on
NDS-ResNet. That is to say, the relative importance of low-
fidelity experts in our predictor aligns well with the extent
of benefits brought by low-fidelity information when only
one type of information is used. This backs the rationality of
using our method to automatically and adequately combine
different low-fidelity information.

Comparison with Uniform Weight Learning. An alter-
native to the dynamic ensemble is to learn a uniform set of
coefficients for all the architecture in the search space. How-
ever, considering different types of low-fidelity information
have different prediction abilities for different regions of
the search space, the weighting coefficients for architectures
would better be different. To verify this intuition, we con-
duct experiments on NAS-Bench-201 and NDS ResNet /
ResNeXt-A with the LSTM encoder for comparison. In ad-
dition, we also make comparison with a simple ensemble
method that just averages outputs of different low-fidelity
experts. As shown in Table 6, the dynamic ensemble method
consistently outperforms the uniform and simple ensemble
method, demonstrating the effectiveness of our method.

11323

Conclusion
This paper proposes to leverage low-fidelity information to
mitigate the “cold-start” problem of predictor-based NAS.
Despite the intuitiveness of this idea, we observe that uti-
lizing inappropriate low-fidelity information might damage
the prediction ability and different search spaces have differ-
ent preferences for the utilized low-fidelity information type.
To circumvent the need to manually decide on which low-
fidelity information to use for each architecture and search
space, we propose a dynamic ensemble predictor framework
to fuse beneficial information from different low-fidelity ex-
perts automatically. Experiments across five search spaces
with different architecture encoders under various experi-
mental settings demonstrate the effectiveness of our meth-
ods. Our method can be easily incorporated with existing
predictor-based NAS methods to boost search performances.

Acknowledgments
This work was supported by National Natural Science
Foundation of China (No. U19B2019, 61832007), Huawei
Noah’s Ark, Beijing National Research Center for Informa-
tion Science and Technology (BNRist), Tsinghua EE Xil-
inx AI Research Fund, and Beijing Innovation Center for
Future Chips. We thank the anonymous reviewers for their
constructive suggestions.

References
Abdelfattah, M. S.; Mehrotra, A.; Dudziak, Ł.; and Lane,
N. D. 2021a. Zero-Cost Proxies for Lightweight NAS. In
International Conference on Learning Representations.
Abdelfattah, M. S.; Mehrotra, A.; Dudziak, Ł.; and Lane,
N. D. 2021b. Zero-cost proxies for lightweight NAS. arXiv
preprint arXiv:2101.08134.
Bender, G.; Kindermans, P.-J.; Zoph, B.; Vasudevan, V.; and
Le, Q. 2018. Understanding and simplifying one-shot ar-
chitecture search. In International Conference on Machine
Learning, 550–559. PMLR.
Cai, H.; Gan, C.; Wang, T.; Zhang, Z.; and Han, S. 2019.
Once-for-all: Train one network and specialize it for efficient
deployment. arXiv preprint arXiv:1908.09791.
Chen, Y.; Yang, T.; Zhang, X.; Meng, G.; Xiao, X.; and Sun,
J. 2019. DetNAS: Backbone search for object detection. In
Advances in Neural Information Processing Systems, 6638–
6648.
Dong, X.; and Yang, Y. 2019a. One-Shot Neural Architec-
ture Search via Self-Evaluated Template Network. arXiv
preprint arXiv:1910.05733.
Dong, X.; and Yang, Y. 2019b. Searching for A Robust
Neural Architecture in Four GPU Hours. arXiv preprint
arXiv:1910.04465.
Dong, X.; and Yang, Y. 2020. NAS-Bench-201: Extending
the Scope of Reproducible Neural Architecture Search. In
International Conference on Learning Representations.
Dudziak, Ł.; Chau, T.; Abdelfattah, M. S.; Lee, R.; Kim, H.;
and Lane, N. D. 2020. Brp-nas: Prediction-based nas using
gcns. arXiv preprint arXiv:2007.08668.

Elsken, T.; Metzen, J. H.; and Hutter, F. 2019. Neural archi-
tecture search: A survey. The Journal of Machine Learning
Research, 20(1): 1997–2017.
Falkner, S.; Klein, A.; and Hutter, F. 2018. BOHB: Robust
and Efficient Hyperparameter Optimization at Scale. arXiv
preprint arXiv:1807.01774.
Guo, Z.; Zhang, X.; Mu, H.; Heng, W.; Liu, Z.; Wei, Y.;
and Sun, J. 2020. Single path one-shot neural architecture
search with uniform sampling. In European Conference on
Computer Vision, 544–560. Springer.
Huawei. 2020. Mindspore. https://www.mindspore.cn/. Ac-
cessed: 2023-04-02.
Kandasamy, K.; Neiswanger, W.; Schneider, J.; Póczos, B.;
and Xing, E. P. 2018. Neural architecture search with
Bayesian optimisation and optimal transport. In Advances
in neural information processing systems, 2020–2029.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images. Handbook of Systemic
Autoimmune Diseases, 1(4).
Lee, N.; Ajanthan, T.; and Torr, P. H. S. 2018. SNIP:
Single-shot Network Pruning based on Connection Sensi-
tivity. arXiv preprint arXiv:1810.02340.
Li, L.; and Talwalkar, A. 2019. Random Search and Re-
producibility for Neural Architecture Search. arXiv preprint
arXiv:1902.07638.
Lin, M.; Wang, P.; Sun, Z.; Chen, H.; Sun, X.; Qian, Q.;
Li, H.; and Jin, R. 2021. Zen-NAS: A Zero-Shot NAS for
High-Performance Deep Image Recognition. In IEEE Inter-
national Conference on Computer Vision, 347–356.
Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.-
J.; Fei-Fei, L.; Yuille, A.; Huang, J.; and Murphy, K. 2018.
Progressive neural architecture search. In European Confer-
ence on Computer Vision, 19–34.
Liu, H.; Simonyan, K.; and Yang, Y. 2018. Darts: Differen-
tiable architecture search. arXiv preprint arXiv:1806.09055.
Luo, R.; Tian, F.; Qin, T.; Chen, E.; and Liu, T.-Y. 2018.
Neural architecture optimization. In Advances in neural in-
formation processing systems, 7827–7838.
Mellor, J.; Turner, J.; Storkey, A.; and Crowley, E. J. 2020.
Neural Architecture Search without Training. arXiv preprint
arXiv:2006.04647.
Mozer, M.; and Smolensky, P. 1988. Skeletonization: a tech-
nique for trimming the fat from a network via relevance as-
sessment. In Advances in Neural Information Processing
Systems.
Ning, X.; Tang, C.; Li, W.; Zhou, Z.; Liang, S.; Yang, H.;
and Wang, Y. 2021. Evaluating Efficient Performance Esti-
mators of Neural Architectures. In Advances in Neural In-
formation Processing Systems.
Ning, X.; Zheng, Y.; Zhao, T.; Wang, Y.; and Yang, H. 2020.
A generic graph-based neural architecture encoding scheme
for predictor-based nas. In European Conference on Com-
puter Vision, 189–204. Springer.
Ning, X.; Zhou, Z.; Zhao, J.; Zhao, T.; Deng, Y.; Tang, C.;
Liang, S.; Yang, H.; and Wang, Y. 2022. TA-GATES: An

11324

Encoding Scheme for Neural Network Architectures. In Ad-
vances in Neural Information Processing Systems.
Pham, H.; Guan, M.; Zoph, B.; Le, Q.; and Dean, J. 2018.
Efficient neural architecture search via parameters sharing.
In International Conference on Machine Learning, 4095–
4104. PMLR.
Pourchot, A.; Ducarouge, A.; and Sigaud, O. 2020. To
share or not to share: A comprehensive appraisal of weight-
sharing. arXiv preprint arXiv:2002.04289.
Radosavovic, I.; Johnson, J.; Xie, S.; Lo, W.-Y.; and Dollár,
P. 2019. On network design spaces for visual recognition. In
IEEE International Conference on Computer Vision, 1882–
1890.
Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2019. Reg-
ularized evolution for image classifier architecture search.
In AAAI Conference on Artificial Intelligence, volume 33,
4780–4789.
Ru, B.; Wan, X.; Dong, X.; and Osborne, M. 2021. Inter-
pretable Neural Architecture Search via Bayesian Optimisa-
tion with Weisfeiler-Lehman Kernels. In International Con-
ference on Learning Representations.
Shen, Y.; Li, Y.; Zheng, J.; Zhang, W.; Yao, P.; Li, J.; Yang,
S.; Liu, J.; and Cui, B. 2021. ProxyBO: Accelerating Neural
Architecture Search via Bayesian Optimization with Zero-
cost Proxies. arXiv preprint arXiv:2110.10423.
Shi, H.; Pi, R.; Xu, H.; Li, Z.; Kwok, J.; and Zhang, T. 2020.
Bridging the gap between sample-based and one-shot neural
architecture search with bonas. Advances in Neural Infor-
mation Processing Systems, 33.
Siems, J.; Zimmer, L.; Zela, A.; Lukasik, J.; Keuper, M.; and
Hutter, F. 2020. NAS-Bench-301 and the case for surrogate
benchmarks for neural architecture search. arXiv preprint
arXiv:2008.09777.
Tanaka, H.; Kunin, D.; Yamins, D. L.; and Ganguli, S. 2020.
Pruning neural networks without any data by iteratively con-
serving synaptic flow. arXiv preprint arXiv:2006.05467.
Tang, Y.; Wang, Y.; Xu, Y.; Chen, H.; Shi, B.; Xu, C.; Xu,
C.; Tian, Q.; and Xu, C. 2020. A semi-supervised assessor
of neural architectures. In IEEE Conference on Computer
Vision and Pattern Recognition, 1810–1819.
Theis, L.; Korshunova, I.; Tejani, A.; and Huszár, F. 2018.
Faster gaze prediction with dense networks and Fisher prun-
ing. arXiv preprint arXiv:1801.05787.
Wang, C.; Zhang, G.; and Grosse, R. 2020. Picking Winning
Tickets Before Training by Preserving Gradient Flow. arXiv
preprint arXiv:2002.07376.
Wang, N.; Gao, Y.; Chen, H.; Wang, P.; Tian, Z.; Shen, C.;
and Zhang, Y. 2020. NAS-FCOS: Fast neural architecture
search for object detection. In IEEE Conference on Com-
puter Vision and Pattern Recognition, 11943–11951.
Wei, C.; Niu, C.; Tang, Y.; Wang, Y.; Hu, H.; and Liang, J.
2020. Npenas: Neural predictor guided evolution for neural
architecture search. arXiv preprint arXiv:2003.12857.
White, C.; Neiswanger, W.; Nolen, S.; and Savani, Y. 2020.
A Study on Encodings for Neural Architecture Search. arXiv
preprint arXiv:2007.04965.

White, C.; Neiswanger, W.; and Savani, Y. 2019. Bananas:
Bayesian optimization with neural architectures for neural
architecture search. arXiv preprint arXiv:1910.11858, 1(2).
White, C.; Zela, A.; Ru, R.; Liu, Y.; and Hutter, F. 2021.
How powerful are performance predictors in neural archi-
tecture search? Advances in Neural Information Processing
Systems, 34: 28454–28469.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. Ma-
chine Learning, 8(3-4): 229–256.
Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.; Tian,
Y.; Vajda, P.; Jia, Y.; and Keutzer, K. 2019. Fbnet: Hardware-
aware efficient convnet design via differentiable neural ar-
chitecture search. In IEEE Conference on Computer Vision
and Pattern Recognition, 10734–10742.
Wu, J.; Dai, X.; Chen, D.; Chen, Y.; Liu, M.; Yu, Y.; Wang,
Z.; Liu, Z.; Chen, M.; and Yuan, L. 2021. Stronger nas with
weaker predictors. Advances in Neural Information Process-
ing Systems, 34: 28904–28918.
Xie, S.; Zheng, H.; Liu, C.; and Lin, L. 2018. SNAS:
Stochastic Neural Architecture Search. arXiv preprint
arXiv:1812.09926.
Xu, Y.; Wang, Y.; Han, K.; Tang, Y.; Jui, S.; Xu, C.; and Xu,
C. 2021. ReNAS: Relativistic evaluation of neural architec-
ture search. In IEEE Conference on Computer Vision and
Pattern Recognition, 4411–4420.
Xu, Y.; Xie, L.; Zhang, X.; Chen, X.; Qi, G.-J.; Tian, Q.; and
Xiong, H. 2019. PC-DARTS: Partial channel connections
for memory-efficient architecture search. arXiv preprint
arXiv:1907.05737.
Yan, S.; Song, K.; Liu, F.; and Zhang, M. 2021. Cate:
Computation-aware neural architecture encoding with trans-
formers. In International Conference on Machine Learning,
11670–11681. PMLR.
Yan, S.; Zheng, Y.; Ao, W.; Zeng, X.; and Zhang, M. 2020.
Does unsupervised architecture representation learning help
neural architecture search? Advances in Neural Information
Processing Systems, 33: 12486–12498.
Zhang, M.; Jiang, S.; Cui, Z.; Garnett, R.; and Chen, Y.
2019. D-vae: A variational autoencoder for directed acyclic
graphs. Advances in Neural Information Processing Sys-
tems, 32.
Zhang, M.; Li, H.; Pan, S.; Chang, X.; Ge, Z.; and Su, S. W.
2020a. Differentiable Neural Architecture Search in Equiv-
alent Space with Exploration Enhancement. In Advances in
Neural Information Processing Systems.
Zhang, M.; Li, H.; Pan, S.; Chang, X.; and Su, S. 2020b.
Overcoming multi-model forgetting in one-shot NAS with
diversity maximization. In IEEE Conference on Computer
Vision and Pattern Recognition, 7809–7818.
Zhang, Y.; Yan, C.; Zhang, Q.; Zhang, L. L.; Yang, Y.; Gao,
X.; and Yang, Y. 2021. Acenas: Learning to rank ace neu-
ral architectures with weak supervision of weight sharing.
arXiv preprint arXiv:2108.03001.
Zoph, B.; and Le, Q. V. 2016. Neural architec-
ture search with reinforcement learning. arXiv preprint
arXiv:1611.01578.

11325

Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V.
2018. Learning transferable architectures for scalable im-
age recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, 8697–8710.

11326

