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Abstract

Although augmentations (e.g., perturbation of graph edges,
image crops) boost the efficiency of Contrastive Learning
(CL), feature level augmentation is another plausible, comple-
mentary yet not well researched strategy. Thus, we present a
novel spectral feature argumentation for contrastive learning
on graphs (and images). To this end, for each data view, we es-
timate a low-rank approximation per feature map and subtract
that approximation from the map to obtain its complement.
This is achieved by the proposed herein incomplete power
iteration, a non-standard power iteration regime which enjoys
two valuable byproducts (under mere one or two iterations):
(i) it partially balances spectrum of the feature map, and (ii) it
injects the noise into rebalanced singular values of the feature
map (spectral augmentation). For two views, we align these
rebalanced feature maps as such an improved alignment step
can focus more on less dominant singular values of matrices
of both views, whereas the spectral augmentation does not
affect the spectral angle alignment (singular vectors are not
perturbed). We derive the analytical form for: (i) the incom-
plete power iteration to capture its spectrum-balancing effect,
and (ii) the variance of singular values augmented implicitly
by the noise. We also show that the spectral augmentation im-
proves the generalization bound. Experiments on graph/image
datasets show that our spectral feature augmentation outper-
forms baselines, and is complementary with other augmenta-
tion strategies and compatible with various contrastive losses.

Introduction
Semi-supervised and supervised Graph Neural Networks
(GNNs) (Velickovic et al. 2018; Hamilton, Ying, and
Leskovec 2017; Song, Zhang, and King 2022; Zhang et al.
2022b) require full access to class labels. However, unsuper-
vised GNNs (Klicpera, Bojchevski, and Günnemann 2019;
Wu et al. 2019; Zhu and Koniusz 2021; Chen et al. 2023)
and recent Self-Supervised Learning (SSL) models do not
require labels (Song et al. 2021; Pan et al. 2018) to train
embeddings. Among SSL methods, Contrastive Learning
(CL) achieves comparable performance with its supervised
counterparts on many tasks (Chen et al. 2020; Gao, Yao, and
Chen 2021; Zhang and Zhu 2019, 2020). CL has also been
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Figure 1: Our GCL with spectral feature augmentation by the
incomplete power iteration implicitly performs three steps.
Let blue and red ellipses represent spectra of feature maps
Hα and Hβ of two views.

applied recently to the graph domain. A typical Graph Con-
trastive Learning (GCL) method forms multiple graph views
via stochastic augmentation of the input to learn representa-
tions by contrasting so-called positive samples with negative
samples (Zhu et al. 2020; Peng et al. 2020; Zhu, Sun, and
Koniusz 2021; Zhu and Koniusz 2022; Zhang et al. 2022c).
As an indispensable part of GCL, the significance of graph
augmentation has been well studied (Zhu et al. 2021b; Yin
et al. 2022).

Popular random data augmentations are just one strategy to
construct views, and their noise may affect adversely down-
stream tasks (Suresh et al. 2021; Tian et al. 2020). Thus, some
works (Yin et al. 2022; Tian et al. 2020; Suresh et al. 2021)
learn graph augmentations but they require supervision.

The above issue motivates us to propose a simple/efficient
data augmentation model which is complementary with exist-
ing augmentation strategies. We target Feature Augmentation
(FA) as scarcely any FA works exist in the context of CL
and GCL. In the image domain, a simple FA (Upchurch et al.
2017; Bengio et al. 2013) showed that perturbing feature
representations of an image results in a representation of an-
other image where both images share some semantics (Wang
et al. 2019). However, perturbing features randomly ignores
covariance of feature representations, and ignores semantics
correlations. Hence, we opt for injecting random noise into
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the singular values of feature maps as such a spectral feature
augmentation does not alter the orthogonal bases of feature
maps by much, thus helping preserve semantics correlations.

Moreover, as typical GCL aligns two data views (Wang
and Isola 2020), unbalanced singular values of two data views
may affect the quality of alignment. As several leading sin-
gular values (acting as weights on the loss) dominate the
alignment process, GCL favors aligning the leading singular
vectors of two data views while sacrificing remaining orthog-
onal directions with small singular values. In other words,
the unbalanced spectrum leads to a suboptimal orthonormal
bases alignment, which results in a suboptimal GCL model.

To address rebalancing of unbalanced spectrum and aug-
menting leading singular values, we present a novel and
efficient Spectral Feature Augmentation (SFA). To this end,
we propose the so-called incomplete power iteration which,
under just one or two iterations, partially balances singu-
lar values of feature maps and implicitly injects the noise
into these singular values. We evaluate our method on vari-
ous datasets for node level tasks (i.e., node classification and
node clustering). We also show that our method is compatible
with other augmentation strategies and contrastive losses.

We summarize our contributions as follows:

i. We propose a simple/efficient spectral feature augmenta-
tion for GCL which is independent of different contrastive
losses, i.e., we employ InfoNCE and Barlow Twin.

ii. We introduce the so-called incomplete power iteration
which, under just one or two iterations, partially balances
spectra of two data views and injects the augmentation
noise into their singular values. The rebalanced spectra
help align orthonormal bases of both data views.

iii. As the incomplete power iteration is stochastic in its na-
ture, we derive its analytical form which provably demon-
strates its spectrum rebalancing effect in expectation, and
captures the variance of the spectral augmentation.

iv. For completeness, we devise other spectral augmentation
models, based on the so-called MaxExp and Power Norm.
operators and Grassman feature maps, whose rebalancing
and noise injection profiles differ with our method.

Related Work
Data Augmentation. Augmentations are usually performed
in the input space. In computer vision, image transformations,
i.e., rotation, flipping, color jitters, translation, noise injec-
tion (Shorten and Khoshgoftaar 2019), cutout and random
erasure (DeVries and Taylor 2017) are popular. In neural
language processing, token-level random augmentations, e.g.,
synonym replacement, word swapping, word insertion, and
deletion (Wei and Zou 2019) are used. In transportation, con-
ditional augmentation of road junctions is used (Prabowo
et al. 2019). In the graph domain, attribute masking, edge
permutation, and node dropout are popular (You et al. 2020a).
Sun et al. (Sun, Koniusz, and Wang 2019) use adversarial
graph perturbations. Zhu et al. (Zhu et al. 2021b) use adaptive
graph augmentations based on the node/PageRank central-
ity (Page et al. 1999) to mask edges with varying probability.

Feature Augmentation. Samples can be augmented in the
feature space instead of the input space (Feng et al. 2021).
Wang et al. (Wang et al. 2019) augment the hidden space
features, resulting in auxiliary samples with the same class
identity but different semantics. A so-called channel aug-
mentation perturbs the channels of feature maps (Wang et al.
2019) while GCL approach, COSTA (Zhang et al. 2022c),
augments features via random projections. Some few-shot
learning approaches augment features (Zhang et al. 2022a)
while others estimate the “analogy” transformations between
samples of known classes to apply them on samples of novel
classes (Hariharan and Girshick 2017; Schwartz et al. 2018)
or mix foregrounds and backgrounds (Zhang, Zhang, and
Koniusz 2019). However, “analogy” augmentations are not
applicable to contrastive learning due to the lack of labels.
Graph Contrastive Learning. CL is popular in computer
vision, NLP (He et al. 2020; Chen et al. 2020; Gao, Yao, and
Chen 2021), and graph learning. In the vision domain, views
are formed by augmentations at the pixel level, whereas in the
graph domain, data augmentation may act on node attributes
or the graph edges. GCL often explores node-node, node-
graph, and graph-graph relations for contrastive loss which is
similar to contrastive losses in computer vision. Inspired by
SimCLR (Chen et al. 2020), GRACE (Zhu et al. 2020) cor-
relates graph views by pushing closer representations of the
same node in different views and separating representations
of different nodes, and Barlow Twin (Zbontar et al. 2021)
avoids the so-called dimensional collapse (Jing et al. 2022).

In contrast, we study spectral feature augmentations to per-
turb/rebalance singular values of both views. We outperform
feature augmentations such as COSTA (Zhang et al. 2022c).

Proposed Method
Inspired by recent advances in augmentation-based GCL, our
approach learns node representations by rebalancing spec-
trum of two data views and performing the spectral feature
augmentation via the incomplete power iteration. SFA is
complementary to the existing data augmentation approaches.
Figure 2a illustrates our framework. The Notation section
(supplementary material) explains our notations.

Graph Augmentation (AG). Augmented graph (Ã, X̃) is
generated by AG by directly adding random perturbations
to the original graph (A,X). Different augmented graphs
are constructed given one input (A,X), yielding correlated
views, i.e., (Ãα, X̃α) and (Ãβ , X̃β). In the common GCL
setting (Zhu et al. 2020), the graph structure is augmented by
permuting edges, whereas attributes by masking.
Graph Neural Network Encoders. Our framework admits
various choices of the graph encoder. We opt for simplicity
and adopt the commonly used graph convolution network
(GCN) (Kipf and Welling 2017) as our base graph encoder.
As shown in Fig. 2a, we use a shared graph encoder for each
view, i.e., f : Rn×dx × Rn×n 7−→ Rn×dh . We consider two
graphs generated from AG as two congruent structural views
and define the GCN encoder with 2 layers as:

f(X,A) = GCN2 (GCN1(X,A),A) ,

where GCNl(X,A) = σ
(
D̂− 1

2 ÂD̂− 1
2XΘ

)
.

(1)
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(b) Simulation: spectrum obtained by Alg. 1.

Figure 2: Our GCL model. Two graph views are generated by data augmentation and passed into graph neural network encoders
with shared parameters to learn node representations. The proposed spectral feature augmentation rebalances (partially equalizes)
the spectrum of each feature map, and implicitly injects the noise into rebalanced singular values. Such representations are fed
into the projection head and the contrastive loss. Figure 1 explains the role of our spectral feature augmentation.

Moreover, Ã = D̂−1/2ÂD̂−1/2 ∈ Rn×n is the degree-
normalized adjacency matrix, D̂ ∈ Rn×n is the degree matrix
of Â = A+IN where IN is the identity matrix, X ∈ Rn×dx

contains the initial node features, Θ ∈ Rdx×dh contains net-
work parameters, and σ(·) is a parametric ReLU (PReLU).
The encoder outputs feature maps Hα and Hβ for two views.
Spectral Feature Augmentation (SFA). Hα and Hβ are fed
to the feature augmenting function AF∗ where random noises
are added to the spectrum via the incomplete power iteration.
We explain the proposed SFA in the Spectral Feature Aug-
mentation for GCL section and detail its properties in Propo-
sitions 1, 2 and 3. SFA results in the spectrally-augmented
feature maps, i.e., H̃α and H̃β . SFA is followed by a shared
projection head θ : Rn×dh 7−→ Rn×dz which is an MLP
with two hidden layers and PReLU non-linearity. It maps H̃α

and H̃β into two node representations Zα,Zβ ∈ Rn×dz (two
congruent views of one graph) on which the contrastive loss
is applied. As described in (Chen et al. 2020), it is beneficial
to define the contrastive loss on Z rather than H.
Contrastive Training. To train the encoders end-to-end and
learn rich node representations that are agnostic to down-
stream tasks, we utilize the InfoNCE loss (Chen et al. 2020):

Lcontrastive(τ) = E
z,z+

[
−z⊤z+/τ

]
︸ ︷︷ ︸

alignment

+ E
z,z+

[
log

(
ez

⊤z+/τ +
∑

z−∈Zαβ\{z, z+}

ez
⊤z−/τ

)]
︸ ︷︷ ︸

uniformity

,
(2)

where z is the representation of the anchor node in one view
(i.e., z ∈ Zα) and z+ denotes the representation of the an-
chor node in another view (i.e., z+ ∈ Zβ), whereas {z−} are
from the set of node representations other than z and z+ (i.e.,
Zαβ≡ Zα ∪ Zβ and z−∈ Zαβ \ {z, z+}). The first part of
Eq. (2) maximizes the alignment of two views (representa-
tions of the same node become similar). The second part of
Eq. (2) minimizes the pairwise similarity via LogSumExp.
Pushing node representations away from each other makes
them uniformly distributed (Wang and Isola 2020).

Algorithm 1: Spectral Feature Augmentation (AF∗ )

Input: feature map H; the number of iterations k;
r(0) ∼ N (0, I)
for i = 1 to k do
r(i) = H⊤Hr(i−1)

end for
H̃ = H− Hr(k)r(k)⊤

∥r(k)∥2
2

Return H̃

Spectral Feature Augmentation for GCL
Our spectral feature augmentation is inspired by the rank-1
update (Yu, Cai, and Li 2020). Let H = f(X,A) be the
graph feature map with the singular decomposition H =
UΣV⊤ where H ∈ Rn×dh , U and V are unitary matrices,
and Σ = diag(σ1, σ2, · · · , σdh

) is the diagonal matrix with
singular values σ1 ≥ σ2 ≥ · · · ≥ σdh

. Starting from a ran-
dom point r(0) ∼ N (0, I) and function r(k) = H⊤Hr(k−1),
we generate a set of augmented feature maps1 H̃ by:

H̃
(
H; r(0)

)
= H−HLowRank = H− Hr(k)r(k)⊤

∥r(k)∥22
. (3)

We often write H̃ rather than H̃
(
H; r(0)

)
, and we often think

of H̃ as a matrix. We summarize the proposed SFA in Alg. 1.

Proposition 1. Let H̃ be the augmented feature ma-
trix obtained via Alg. 1 for the k-th iteration starting
from a random vector r(0) drawn from N (0, I). Then
Er(0)∼N (0,I)(H̃

(
H; r(0)

)
) = UΣ̃V⊤ has rebalanced spec-

trum2 Σ̃ = diag
[
(1 − λ1(k)σ1, (1 − λ2(k))σ2, · · · , (1 −

λdh
(k))σdh

]
where λi(k) = Ey∼N (0;I)

( (yiσ
2k
i )

2∑dh
l=1(ylσ2k

l )
2 ) and

y = V⊤r(0), because 0 ≤ 1− λ1(k) ≤ 1− λ2(k) ≤ · · · ≤
1We apply Eq. (3) on both views Hα and Hβ separately to

obtain spectrally rebalanced/augmented H̃α and H̃β .
2 “Rebalanced” means the output spectrum is flatter than the input.
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Figure 3: Toy illustration of Prop. 2 and 3. Let σ2, · · · , σ5 be 1.5, 0.9, 0.2, 0.01. We investigate the impact of iterations
k ∈ {1, 2, 4, 8}. Fig. 3a shows distribution x(z) given σ1 = 2. Fig. 3b shows the expected value ϕ(σ1, k) = σ1(1− λ1) where
λ1 = Ez∼x1

(z) for 0 ≤ σ1 ≤ 3. The deviation is indicated by ϕ±ω1
(σ1, k) = σ1(1− λ1 ± ω1). Finally, Fig. 3c is obtained via

Alg. 1 (the incomplete power iteration). To this end, we generated randomly a feature matrix H and substituted its singular
values by σ1, · · · , σ5. Notice that for k = 1, 1 ≤ σ1 ≤ 3, push-forward ϕ(σ1, 1) and ϕ′(σ1, 1) in Fig. 3b and 3c are around 0.8
(the balancing of spectrum) and the high deviation indicates the singular value undergoes the spectral augmentation. For k ≥ 2,
both balancing and spectral augmentation effects decline. Note theoretical ϕ in Prop. 2 and real ϕ′ from Alg. 1 match.

1− λdh
(k) ≤ 1 for σ1 ≥ σ2 ≥ · · · ≥ σdh

(sorted singular
values from the SVD), and so (1− λi) gets smaller or larger
as σi gets larger or smaller, respectively.

Push-forward Function (Partial balancing of spectrum).
Prop. 1 shows that in expectation, our incomplete power
iteration rebalances spectrum according to the push-forward
function ϕ(σi; k) = σi(1−λi(k)) where λi(k) is an expected

value of λ′
i(y, k) =

(yiσ
2k
i )

2∑dh
l=1(ylσ2k

l )
2 w.r.t. random variable

y∼N (0, I) (see Eq. 15 in suppl. material).
Alg. 1 returns an instance governed by the currently
drawn y. The push-forward function in a feed-forward step
of network realizes ϕ′(σi;y, k) = σi(1 − λ′

i(y, k)). Thus,
below we study the analytical expression for ϕ(σi; k) and its
variance to understand how drawing y∼N (0, I) translates
into the variance posed by the implicit spectral augmentation
of the singular values.

Proposition 2. Analytical Expectation. Let βi = (σ2k
i )2,

then the expected value Ey∼N (0;I)
βiy

2
i

βiy2
i+

∑
l̸=i βly2

l
= λi(k)

can be expressed as E(xi) over random variable xi=
u

u+vi

for u ∼ G( 12 , 2) and vi ∼ G(αi, 2γi) (G is Gamma distr.)

with αi=
1
2

(
∑

l̸=i βl)
2∑

l̸=i β
2
l

and γi=
1
βi

∑
l̸=i β

2
l∑

l̸=i βl
. As PDF x•

i (z)=
γi

(1−(1−z)γi)2
· B

(
γiz

1−(1−z)γi
; 1
2 , αi

)
where B is the Beta dis-

tribution and x•
i (z) enjoys the support z ∈ [0; 1], then

λi = E(z) =
∫ 1

0
z ·x•

i (z) dz = γ
1
2
i

Γ( 3
2 )Γ(

1
2+αi)

Γ( 1
2 )Γ(

3
2+αi)

· 2F1

(
3
2 ,

1
2+

αi,
3
2+αi, 1−γi

)
where 2F1(·) is the so-called Hypergeomet-

ric function.

Proof. See Proof of Proposition 2 (suppl. material).

Proposition 3. Analytical Variance. Following assumptions
of Proposition 2, the variance ω2

i of x•
i (z) can be expressed

as ω2
i = E(z2) − (E(z))2 =

∫ 1

0
z2 · x•

i (z) dz − λ2
i =

0.56419 γ
1
2
Γ( 1

2+αi)

Γ(αi)

(
0.4 · 2F1

(
5
2 , 1−αi,

7
2 , 1

)
· 2F1

(
5
2 ,

3
2 +

αi,
5
2+αi, 1−γi

)
+ 0.28571(γi − 1) · 2F1

(
7
2 , 1−αi,

9
2 , 1

)
·

2F1

(
7
2 ,

3
2+αi,

7
2+αi, 1−γi

))
− λ2

i .

Proof. See Proof of Proposition 3 (suppl. material).

Note on Spectrum Rebalancing. Fig. 3 explains the con-
sequences of Prop. 2 & 3 and connects them with Alg. 1.
Notice following: (i) For k = 1 (iterations), the analytical
form (Fig. 3b) and the simulated incomplete power iteration
(Fig. 3c) both indeed enjoy flatten ϕ and ϕ′ for 1 ≤ σ1 ≤ 3.
(ii) The injected variance is clearly visible in that flattened
range (we know the quantity of injected noise). (iii) The
analytical and simulated variances match.
Choice of Number of Iterations (k). In Fig. 3b, we plot
ϕ(σi; k) using our analytical formulation. The best rebalanc-
ing effect is achieved for k = 1 . For example, the red line
(k = 1) is mostly flat for σi . This indicates the singular
values σi ≥ 1 are mapped to a similar value which promotes
flattening of spectrum. When σi ≥ 2 the green line eventu-
ally reduces to zero. This indicates that only datasets with
spectrum falling into range between 1 and 1.2 will benefit
from flattening. Important is to notice also that spectrum aug-
mentation (variance) in Fig. 3b is highest for k = 1. Thus,
in all experiments (including image classification), we set
k = 1, and the SFA becomes:

H̃=H−HLowRank=H

(
I−H⊤Hr(0)r(0)⊤H⊤H

∥H⊤Hr(0)∥22

)
. (4)

Why Does the Incomplete Power Iteration Work?
Having discussed SFA, below we show how SFA improves
the alignment/generalization by flattening large and boosting
small singular values due to rebalanced spectrum.
Improved Alignment. SFA rebalances the weight penalty
(by rebalancing singular values) on orthonormal bases, thus
improving the alignment of two correlated views. Consider
the alignment part of Eq. (2) and ignore the projection head θ
for brevity. The contrastive loss (temperature τ > 0, n nodes)
on Hα and Hβ maximizes the alignment of two views:

La = E
hα,hβ

(hα⊤hβ/τ) =
1

nτ
Tr(Hα⊤Hβ)

=
1

nτ

dh∑
i=1

(σα
i v

α⊤
i vβ

i )(σ
β
i u

α⊤
i uβ

i ).
(5)
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The above equation indicates that for σα
i ≥ 0 and σβ

i ≥ 0,
the maximum is reached if the right and left singular value
matrices are perfectly aligned, i.e., Uα=Uβ and Vα=Vβ .
Notice the singular values σα

i and σα
i serve as weighs for

the alignment of singular vectors. As the singular value gap
∆σ12 = σ1 − σ2 is usually significant (spectrum of feature
maps usually adheres to the power law ai−κ (i is the index of
sorted singular values, a and κ control the magnitude/shape),
the large singular values tend to dominate the optimization.
Such an issue makes Eq. (5) focus only on aligning the direc-
tion of dominant singular vectors, while neglecting remaining
singular vectors, leading to a poor alignment of the orthonor-
mal bases. In contrast, SFA alleviates this issue. According
to Prop. 1, Eq. (5) with SFA becomes:

L∗
a = E

hα,hβ/τ
E

rα,rβ∼N (0,I)
(h̃α⊤h̃β)

=
1

nτ

dh∑
i=1

(1−λα
i )σ

α
i (v

α⊤
i vβ

i )(1−λβ
i )σ

β
i (u

α⊤
i uβ

i ).
(6)

Eq. (6) shows that SFA limits the impact of leading singu-
lar vectors on the alignment step if SFA can rebalance the
spectra. Indeed, Figure 3b shows the spectrum balancing ef-
fect and one can see that ϕ(σi; k) = σi(1−λi(k)) ≤ σi. The
same may be concluded from 0 ≤ λi ≤ 1 in Prop. 2. See the
Upper bound of ϕ section (supplementary material) for the
estimated upper bound of ϕ. Finally, the Experiments section
also shows empirically that SFA leads to a superior align-
ment.

Improved Alignment Yields Better Generalization Bound.
To show SFA achieves the improved generalization bound
we quote the following theorem (Huang, Yi, and Zhao 2023).

Theorem 1. Given a Nearest Neighbor classifier Gf , the
downstream error rate of Gf is Err (Gf ) ≤ (1−σ)+Rε,

where Rε=Px1,x2∈A(x){∥f (x1)−f (x2)∥≥ε} ≤
√
2−2La

ε ,
σ is the parameter of the so-called (σ, δ)-augmentation (for
each latent class, the proportion of samples located in a ball
with diameter δ is larger than σ, A(·) is the set of augmented
samples, f(·) is the encoder, and {∥ · ∥ ≥ ε} is the set of
samples with ε-close representations among augmented data.

Proof. See Proof of Theorem 1 (supp. material).

Theorem 1 says the key to better generalization of contrastive
learning is better alignment ∥f(x1) − f(x2)∥ of positive
samples. SFA improves alignment by design. SeeWhy Does
the Incomplete Power Iteration Work? See empirical result in
the Experiments section. Good alignment (e.g., Fig. 6) due
to spectrum rebalancing (e.g., Fig. 5) enjoys La ≤ L∗

a (Eq.
(5) and (6)) so one getsR∗

ε≤Rε and the lower generalization
bound Err

(
G∗

f

)
≤ Err

(
Gf

)
. Asterisk ∗ means SFA is used

(L∗
a replaces La).

Experiments
Below we conduct experiments on the node classification,
node clustering, graph classification and image classifica-
tion. For fair comparisons, we use the same experimental

Method WikiCS Comput. Photo Cora CiteSeer PubMed

RAW 71.9±0.0 73.8±0.1 78.5±0.0 64.6±0.2 65.7±0.1 82.2±0.3

DeepW. 74.3±0.1 85.7±0.1 89.4±0.1 74.6±0.2 50.8±0.1 80.1±0.2

DGI 75.3±0.1 83.9±0.4 91.6±0.2 82.1±0.6 69.5±0.5 86.0±0.2

MVGRL 77.5±0,1 87.5±0.1 91.7±0,1 83.1±0.1 73.3±0,1 84.2±0,1

GRACE 78.1±0.4 87.2±0.2 92.1±0.2 83.5±0.2 73.6±0.2 85.5±0.3

GCA 78.3±0,1 87.8±0.3 92.4±0.1 82.8±0.2 72.8±0.1 85.1±0.2

SUGRL 77.7±0.2 88.8±0.2 93.2±0.4 83.4±0.5 73.0±0.4 84.9±0.3

MERIT 77.9±0.4 87.5±0.2 93.1±0.4 84.1±0.6 74.3±0.4 84.1±0.2

BGRL 79.1±0.6 87.3±0.4 91.5±0.4 83.7±0.5 73.0±0,1 84.6±0.3

G-BT 76.8±0.6 86.8±0.3 92.6±0.5 83.6±0.4 72.9±0.1 84.5±0.1

COSTA 79.1±0,1 88.3±0,1 92.5±0.4 84.3±0.2 72.9±0.3 86.0±0.2

SFABT 80.2±0.1 88.1±0.1 92.8±0.1 84.1±0.1 73.7±0.2 85.6±0.1

SFANCE 79.9±0.1 89.2±0.2 93.5±0.1 85.8±0.1 75.3±0.1 86.2±0.1

Table 1: Node classification on graph datasets. Note that
SFAInfoNEC and SFABT can be directly compared to GRACE
and G-BT. (Accuracy is reported.)

Method CIFAR10 CIFAR100 ImageNet-100
SimCLR 90.5 65.5 76.8
SFASimCLR 91.6 66.7 77.7
BalowTw 92.0 69.7 80.0
SFABT 92.5 70.4 80.9
Siamese 90.51 66.04 74.5
SFASiamese 91.23 66.99 75.6
SwAV 89.17 64.88 74.0
SFASwAV 90.12 65.82 74.8

Table 2: Image classification on CIFAR10, CIFAR100 and
ImageNet-100.

setup as the representative Graph SSL (GSSL) methods (i.e.,
GCA (Zhu et al. 2020))
Datasets. We use five popular datasets (Zhu et al. 2020,
2021b; Velickovic et al. 2019), including citation networks
(Cora, CiteSeer) and social networks (Wiki-CS, Amazon-
Computers, Amazon-Photo) (Kipf and Welling 2017; Sinha
et al. 2015; McAuley et al. 2015; Mernyei and Cangea 2020).
For graph classification, we use NCI1, PROTEIN and DD
(Dobson and Doig 2003; Riesen and Bunke 2008). For image
classification we use CIFAR10/100 and ImageNet-100 (Deng
et al. 2009). See the Baseline Setting section for details (sup-
plementary material).
Baselines. We focus on three groups of SSL models. The
first group includes traditional GSSL, i.e., Deepwalk (Per-
ozzi, Al-Rfou, and Skiena 2014), node2vec (Grover and
Leskovec 2016), and GAE (Kipf and Welling 2016). The
second group is contrastive-based GSSL, i.e., Deep Graph
Infomax (DGI) (Velickovic et al. 2019), Multi-View Graph
Representation Learning (MVGRL) (Hassani and Ahmadi
2020), GRACE (Zhu et al. 2020), GCA (Zhu et al. 2021b),
(Jin et al. 2021) SUGRL (Mo et al. 2022). The last group
does not require explicit negative samples, i.e., Graph Barlow
Twins(G-BT) (Bielak, Kajdanowicz, and Chawla 2022) and
BGRL (Thakoor et al. 2021). We also compare SFA with
COSTA (Zhang et al. 2022c) (GCL with feat. augmentation).
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Method NCI1 PROTEIN DD
GraphCL 77.8±0.4 74.3±0.4 77.8±0.4
LP-Info 75.8±1.2 74.6±0.2 72.5±1.9
JOAO 78.0±0.4 74.5±0.4 77.5±0.5
SimGRACE 77.4±1.0 73.9±0.1 77.3±1.1
SFANCE 78.7±0.4 75.4±0.4 78.6±0.4

Table 3: Graph classification.(SFANEC can be directly com-
pared with GraphCL.)

AG AF AF∗ Am-Comput. Cora CiteSeer
× × × 85.01 80.04 71.35
✓ × × 87.25 82.23 74.56
× × ✓ 86.74 84.19 73.15
✓ × ✓ 88.74 85.90 75.05
✓ ✓ × 87.55 83.35 74.45
✓ ✓ ✓ 88.69 84.50 74.70

Table 4: Ablation study on different augmentation strategies:
AG, AF and AF∗ .

Evaluation Protocol. We adopt the evaluation from (Velick-
ovic et al. 2019; Zhu et al. 2020, 2021b). Each model is
trained in an unsupervised manner on the whole graph with
node features. Then, we pass the raw features into the trained
encoder to obtain embeddings and train an ℓ2-regularized
logistic regression classifier. Graph Datasets are randomly
divided into 10%, 10%, 80% for training, validation, and
testing. We report the accuracy with mean/standard deviation
over 20 random data splits.
Implementation Details. We use Xavier initialization for the
GNN parameters and train the model with Adam optimizer.
For node/graph classification, we use 2 GCN layers. The lo-
gistic regression classifier is trained with 5, 000 (guaranteed
converge). We also use early stopping with a patience of 20
to avoid overfitting. We set the size of the hidden dimen-
sion of nodes to from 128 to 512. In clustering, we train a
k-means clustering model. For the chosen hyper-parameters
see Section D.2. We implement the major baselines using
PyGCL (Zhu et al. 2021a). The detailed settings of augmenta-
tion and contrastive objectives are in Table 12 of Section D.3
Node Classification3. We employ node classification as a
downstream task to showcase SFA. The default contrastive
objective is InfoNCE or the BT loss. Table 1 shows that SFA
consistently achieves the best results on all datasets. Notice
that the graph-augmented GSSL methods, including GSSL
with SFA, significantly outperform the traditional methods,
illustrating the importance of data augmentation in GSSL.
Moreover, we find that the performance of GCL methods (i.e.,
GRACE, GCA, DGI, MVGRL) improves by a large margin
when integrating with SFA (e.g., major baseline, GRACE,
yields 3% and 4% gain on Cora and Citeseer), which shows
that SFA is complementary to graph augmentations. SFA also
works with the BT loss and improves its performance.
Graph Classification. By adopting the graph-level GNN en-

3Implementation and evaluation are based on PyGCL (Zhu et al.
2021a): https://github.com/PyGCL/PyGCL.

Ogb-arxiv Validation Test
MLP 57.6±0.2 55.5±0.3
Node2vec 71.2±0.3 70.0±0.3
MVGLR 69.3±0.3 68.2±0.2
DGI 71.2±0.1 70.3±0.1
SUGRL 70.2±0.1 69.3±0.2
MERIT 67.2±0.1 65.3±0.2
GRACE 71.4±0.5 70.8±0.1
G-BT 71.1±0.3 70.0±0.2
COSTA 71.6±0.4 71.0±0.4
SFANCE 72.3±0.1 71.6±0.4

Table 5: Node classification.

Cora CiteSeer WikiCS
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

w/o SFA
with SFA(k=1)
with SFA(k=2)
with SFA(k=4)
with SFA(k=8)

Figure 4: Running time per epoch in seconds.

coder, SFA can be used for the graph-level pre-training. Thus,
we compare SFA with graph augmentation-based models
(i.e., GarphCL (You et al. 2020b), JOAO (You et al. 2021))
and augmentation-free models (i.e., SimGrace (Xia et al.
2022), LP-Info (You et al. 2022)). Table 3 shows that SFA
outperforms all baselines on the three datasets.
Image Classification4. As SFA perturbs the spectrum of fea-
ture maps, it is also applicable to the image domain. Table 2
presents the top-1 accuracy on CIFAR10/100 and ImageNet-
100. See also the Implementation Details (supp. material).
Runtimes. Fig. 4 show SFA incurs a negligible runtime over-
head (few matrix-matrix(vector) multiplications).
Improved Alignment. We show that SFA improves the align-
ment of two views during training. Let Hα and Hβ (H̃α and
H̃β) denote the feature maps of two views without (with)
applying SFA. The alignment is computed by ∥Hα −Hβ∥2F
(or ∥H̃α − H̃β∥2F ). Fig. 6 shows that SFA achieves better
alignment. See also the Additional Empirical Results section.
Empirical Evolution of Spectrum. Fig. 5 (Cora) shows how
the singular values of features maps H (without SFA) and H̃
(with SFA) evolve. As training progresses, the gap between
consecutive singular values gradually decreases due to SFA.
The leading components of spectrum (where the signal is)
become more balanced: empirical results match Prop. 1 & 2.
Ablations on Augmentations. Below, we compare graph
augmentation AG, channel feature augmentation AF (ran-
dom noise added to embeddings directly) and the spectral fea-
ture augmentation AF∗ . Table 4 shows that using AG or AF∗

alone improves performance. For example, AG yields 2.2%,
2.2% and 3.2% gain on Am-Computer, Cora, and CiteSeer.
AF∗ yields 1.7%, 4.1% and 1.8% gain on Am-Computer,

4Implementation/evaluation are based on Solo-learn (da Costa
et al. 2022): https://github.com/vturrisi/solo-learn.
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Figure 7: Spectrum augmentation variants (dashed lines: injected
noise var.) Power Norm. & Power Norm.∗ resemble (b) and (a).

Spectrum Aug. Am-Comput. Cora CiteSeer
SFA (ours) 88.83 85.90 75.3
MaxExp(F) 87.13 84.19 72.85
MaxExp(F) (w/o noise) 86.83 83.52 72.35

Power Norm.∗ 86.7 82.9 70.4
Power Norm. 86.6 82.7 70.2
Power Norm. (w/o noise) 86.3 82.5 69.9
Grassman 86.23 82.57 70.15
Grassman (w/o noise) 85.83 81.17 69.85
Grassman (rand. SVD) 85.33 81.01 69.95
Matrix Precond. 82.52 78.14 67.73

Table 6: Results of various spectral augmentations.

Cora, and CiteSeer. Importantly, when both AG and AF∗ are
applied, the gain is 3.7%, 6.0% and 4.8% on Am-Computer,
Cora, and CiteSeer over “no augmentations”. Thus, SFA is
complementary to existing graph augmentations. We also
notice that AF∗ with AG outperforms AF with AG by 1.1%,
2.4% and 1.7%, which highlights the benefit of SFA.
Effect of Number of Iterations (k). In Eq. (3), we set k ∈
{0, 1, 2, 4, 8} for our model with the InfoNCE loss on Cora,
Citeseer and Am-Computer. The case of k = 0 means that
no power iteration is used, i.e., the solution simplifies to the
feature augmentation by subtracting from H perturbation
Hr(0)r(0)

⊤
/∥r(0)∥22 with random r(0). Table 8 shows that

without power iteration, the performance of the model drops.
The best gain in Table 8 is achieved for 1 ≤ k ≤ 2. This
is consistent with Prop. 2, Fig. 3b and 3c, which show that
the spectrum balancing effect (approximately flat region of
ϕ) and significant spectrum augmentation (indicated by the
large deviation in Fig. 3b) are achieved only when the power
iteration is incomplete (low k, i.e., 1 ≤ k ≤ 2).
Robustness to Noisy Features. Below we check on Cora and
CiteSeer if GCL with SFA is robust to noisy node features
in node classification setting. We draw noise ∆x ∼ N (0, I)

ϵ 10−4 10−3 10−2 10−1

Cora w/o SFA 80.55 70.67 62.85 59.23
with SFA 83.14 76.56 69.59 62.55

CiteSeer w/o SFA 67.48 62.32 52.69 42.81
with SFA 72.12 70.36 60.40 46.44

Table 7: Results on noisy features.

Power Iteration Am-Computer Cora CiteSeer
k = 0 87.25 83.04 71.35
k = 1 88.83 85.90 73.56
k = 2 88.72 85.59 75.32
k = 4 88.64 85.29 74.82
k = 8 88.27 85.23 74.91

Table 8: Results on different k of SFA.

and inject it into the original node features as x+ϵ∆x, where
ϵ≥ 0 controls the noise intensity. Table 7 shows that SFA
is robust to the noisy features. SFA partially balances the
spectrum (Fig 3b and 2b ) of leading singular components
where the signal lies, while non-leading components where
the noise resides are left mostly unchanged by SFA.
Other Variants of Spectral Augmentation. Below, we ex-
periment with other ways of performing spectral augmenta-
tion. Figure 7 shows three different push-forward functions:
our SFA, MaxExp(F) (Koniusz and Zhang 2020) and Grass-
man feature maps (Harandi et al. 2015). As MaxExp(F) and
Grassman do not inject any spectral noise, we equip them
with explicit noise injectors. To determine what is the best
form of such an operator, we vary (i) where the noise is in-
jected, (ii) profile of balancing curve. As the push-forward
profiles of SFA and MaxExp(F) are similar (Figure 7), we
implicitly inject the noise into MaxExp(F) along the non-
leading singular values (c.f . leading singular values of SFA).
We detail the formulation of these methods in supp. material5.

Table 6 shows that SFA outperforms MaxExp(F), Power
Norm., Power Norm.∗ and Grassman. As SFA augments parts
of spectrum where signal resides (leading singular values)
which is better than augmenting non-leading singular values
(some noise may reside there) as in MaxExp(F). As Grassman
binarizes spectrum, it may reject some useful signal at the
boundary between leading and non-leading singular values.
Finally, Matrix Preconditioning model reduces the spectral
gap, thus rebalances the spectrum (also non-leading part).

Conclusions
We have shown that GCL is not restricted to only link per-
turbations or feature augmentation. By introducing a simple
and efficient spectral feature augmentation layer we achieve
significant performance gains. Our incomplete power itera-
tion is very fast. Our theoretical analysis has demonstrated
that SFA rebalances the useful part of spectrum, and also
augments the useful part of spectrum by implicitly injecting
the noise into singular values of both data views. SFA leads
to a better alignment with a lower generalization bound.

5Our supplementary mat. is at: https://arxiv.org/abs/2212.01026.
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