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Abstract

In many scenarios of black-box optimization, evaluating the
objective function values of solutions is expensive, while com-
paring a pair of solutions is relatively cheap, which yields
the dueling black-box optimization. The side effect of duel-
ing optimization is that it doubles the dimension of solution
space and exacerbates the dimensionality scalability issue of
black-box optimization, e.g., Bayesian optimization. To ad-
dress this issue, the existing dueling optimization methods
fix one solution when dueling throughout the optimization
process, but it may reduce their efficacy. Fortunately, it has
been observed that, in recommendation systems, the dueling
results are mainly determined by the latent human preferences.
In this paper, we abstract this phenomenon as the preferential
intrinsic dimension and inject it into the dueling Bayesian
optimization, resulting in the preferential embedding duel-
ing Bayesian optimization (PE-DBO). PE-DBO decouples
optimization and pairwise comparison via the preferential em-
bedding matrix. Optimization is performed in the preferential
intrinsic subspace with much lower dimensionality, while pair-
wise comparison is completed in the original dueling solution
space. Theoretically, we disclose that the preference function
can be approximately preserved in the lower-dimensional pref-
erential intrinsic subspace. Experiment results verify that, on
molecule discovery and web page recommendation dueling
optimization tasks, the preferential intrinsic dimension exists
and PE-DBO is superior in scalability compared with that of
the state-of-the-art (SOTA) methods.

Introduction
Black-box optimization (Conn, Scheinberg, and Vicente
2009; Liu et al. 2022), also termed as derivative-free op-
timization, is of significance in machine learning (Snoek,
Larochelle, and Adams 2012), reinforcement learning (Qian
and Yu 2021) and scientific computing (Shields et al. 2021).
It regards the objective function as black-box and optimiza-
tion is performed only with point-wise evaluation. Other
information such as gradient is assumed to be inaccessible.
In many scenarios of black-box optimization, directly eval-
uating the objective function values of solutions is expen-
sive (Jones, Schonlau, and Welch 1998; Snoek, Larochelle,
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and Adams 2012; Shields et al. 2021). Thus, the function eval-
uation budget is strictly limited and sample-efficient methods,
e.g., Bayesian optimization (Shahriari et al. 2016; Song et al.
2022), are leveraged.

In contrast to direct evaluating the objective function value
on a given solution, comparing a pair of solutions and assess-
ing which one is better is relatively cheap. Kahneman and
Tversky (1979) have pointed out that it is easier and cheaper
for humans to give their preference on two items compared
with directly rating two items, e.g., ranking all the dishes
according to one’s taste. This result leads to the K-armed
dueling bandit (Yue et al. 2012; Sui et al. 2018) in discrete do-
mains and the dueling or preferential optimization (González
et al. 2017; Sui et al. 2017) in continuous domains.

Problem. In dueling optimization, the side effect of pair-
wise comparison is that it doubles the dimension of solution
space and exacerbates the dimensionality scalability issue of
black-box optimization methods, e.g., Bayesian optimization.

Related Work. González et al. (2017) propose the prefer-
ential Bayesian optimization (PBO) that makes the two solu-
tions flexible when comparing them. PBO uses the dueling
results to fit a Gaussian process (GP) over the preference func-
tion space. Based on GP, PBO introduces dueling-Thompson
sampling (DTS) that respectively determines the potential
best and uncertain solutions for dueling in the next round.
Then, these two solutions are concatenated to update GP.
Restricted by the dimensionality scalability issue, PBO is
qualified only for the low-dimensional dueling solution space
(≤ 6). Benavoli, Azzimonti, and Piga (2021) improve the op-
timization performance of PBO by using SkewGP model to
fit the preference function but still face the scalability issue.

Sui et al. (2017) and Xu et al. (2020) propose to fix one
solution when dueling throughout the optimization process,
i.e., kernel-self-sparring (KSS) and comp-GP-UCB. In (Sui
et al. 2017), KSS substitutes the preference function in PBO
with the function whose value is the probability of one so-
lution beating the optimal solution. The optimal solution is
obviously fixed. This function is modeled via GP and the
dueling results are used to fit GP. KSS acquires a batch of
potential best solutions for dueling in the next round. Then,
these solutions are used to sequentially update GP. In (Xu
et al. 2020), comp-GP-UCB substitutes the preference func-
tion in PBO with the Borda function which is inspired by
the Borda score (Sui et al. 2018) in the dueling bandit. The
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value of the Borda function is the probability of one solution
beating the mean performance of all solutions. The mean per-
formance of all solutions can be regarded as the performance
of one fixed solution. The Borda function is modeled by GP
and the dueling results are applied to fit GP. Comp-GP-UCB
acquires the potential best solution and a random solution
whose expectation performance is the mean performance of
all solutions for dueling in the next round. Then, this poten-
tial best solution is used to update GP. Although fixing one
solution in dueling optimization can reduce the dimensional-
ity, i.e., from dueling solution space to solution space, it may
reduce their efficacy. Selecting a fixed solution that is proved
to be suitable is difficult in general. If selecting an unsuitable
solution to fix, it becomes hard to tell which solution is better
among the flexible solutions. Furthermore, fixing one solu-
tion may restrict the scope of dueling exploration and thus
the high-quality solution may be excluded.

Inspired by LINEBO (Kirschner et al. 2019), Mikkola et al.
(2020) and Tucker et al. (2020) only consider the preference
across 1-dimensional subspace in each iteration. However,
this kind of methods is a little greedy and lacks theoretical
analysis to guarantee its efficacy.

Our Contributions. In this paper, we aim to make the
high-dimensional dueling optimization tractable while retain-
ing the flexibility of two solutions when dueling. To this end,
the paper introduces the preferential intrinsic dimension, and
focuses on the high-dimensional dueling optimization prob-
lems with low preferential intrinsic dimension. In these prob-
lems, the dueling result of two solutions is mainly determined
by a small number of approximately effective variables.

The introduced preferential intrinsic dimension is inspired
by the latent human preference in the recommendation sys-
tems (Wang et al. 2016a; Canal et al. 2019). In preference-
based recommendation systems, which item is preferred by
a user is mainly determined by only a few ingredients that
are called the latent human preference of a user. Wang et al.
(2016a) and Canal et al. (2019) embed all items as well as the
user’s favorite item into a low-dimensional subspace and use
a distance metric to represent the user’s preference on items.

This paper abstracts the aforementioned phenomenon as
the preferential intrinsic dimension and injects it into the
dueling Bayesian optimization, resulting in the preferential
embedding dueling Bayesian optimization (PE-DBO). PE-
DBO decouples optimization and pairwise comparison by
a randomly generated preferential embedding matrix. Via
preference embedding, optimization is performed in the pref-
erential intrinsic subspace with much lower dimensionality
and two solutions are both flexible when dueling therein,
while the pairwise comparison is completed in the origi-
nal dueling solution space. Theoretically, we reveal that the
preference function can be approximately preserved in the
lower-dimensional preferential intrinsic subspace for both
unbounded and bounded domains. Experiment results show
that, on molecule discovery and web page recommendation
dueling optimization tasks, the preferential intrinsic dimen-
sion exists and PE-DBO is superior in scalability compared
with that of the SOTA methods. To the best of our knowl-
edge, PE-DBO is the first method that can address more than
100-dimensional dueling solution space, and notably up to

nearly 300 dimension on the real-world dataset.
The consequent sections respectively give the necessary

preliminaries, introduce the preferential intrinsic dimension
and present the proposed PE-DBO method, show the theoret-
ical and empirical results, and finally conclude the paper.

Preliminaries
Dueling Optimization. Let f : X → R, where X ⊂ RD,
be a black-box function that is expensive to evaluate. The
goal of continuous global optimization is to find out x∗ =
argmaxx∈X f(x) on the solution space with dimension D.
Since directly evaluating the function value is very expensive,
dueling optimization methods aim to evaluate the preference
between pairs of solutions (x,x′), i.e., dueling to optimize
the objective function. Each duel has a feedback (0 or 1)
shows which solution in the duel that the oracle prefers (x
or x′), and this is all data that dueling optimization methods
can acquire. In the rest of this paper, each vector is a column
vector and we use [x;x′] to denote a column vector concate-
nated by two column vectors x and x′. We use [x;x′] ∈ R2D

to represent the duel (x,x′). The space with dimension 2D
is called the dueling solution space because each point in this
space represents a duel.

Preference Function and Copeland Score. In dueling
optimization, the feedback of a duel [x;x′] given by human
oracle is modeled as a stochastic process. The feedback is
sampled from a Bernoulli distribution and the corresponding
probability shows how likely the solution x is preferred to
x′. This probability is assumed to be positively related to the
difference of objective function values, i.e., P (x ≻ x′) ∝
f(x) − f(x′). A straight way to convert the difference of
function value to probability is using the logistic function,
thus the preference function on the dueling solution space is

πf ([x;x
′]) = P (x ≻ x′) =

1

1 + e−[f(x)−f(x′)]
.

The preference function value represents the probability of x
being preferred to x′ in the dueling solution space.

The preference function only shows the probability of each
duel and cannot reveal which solution is x∗. Fortunately, the
Copeland winner can be extended from the K-armed dueling
bandit problem to the dueling optimization task to determine
which solution is the best across all solutions. Because the
objective function is continuous, the normalized Copeland
score (González et al. 2017) can be defined as

S(x) = Vol(X )−1

∫
X
I{πf ([x;x′])≥0.5} dx′ ,

where Vol(X )−1 =
∫
X 1 dx′ is a normalizing constant such

that S(x) is in the interval [0, 1], and I{·} is the indicator
function, i.e., it equals to 1 if πf ([x,x

′]) ≥ 0.5, and 0 oth-
erwise. This score represents the proportion of duels that x
beats x′ with a probability larger than 0.5. Considering the
target x∗, for every solution πf ([x

∗,x′]) ≥ 0.5 holds and
thus S(x∗) = Vol(X )−1

∫
X 1 dx′ = 1 which is the upper

bound of the normalized Copeland score. Hence, we can get
x∗ by optimizing S(x).

However, the indicator function makes the computation
of the normalized Copeland score more difficult, and a soft
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version (González et al. 2017) that has the empirically same
maximum as the normalized Copeland score is considered.
The soft-Copeland score is defined as

C(x) = Vol(X )−1

∫
X
πf ([x;x

′]) dx′ .

Preferential Bayesian Optimization (PBO). PBO is a
typical dueling optimization method (González et al. 2017).
It uses Gaussian process (GP) to fit the preference function
with dimension 2D, optimizes the acquisition function to
decide the next duel, asks the oracle the preference of this
duel and updates the dataset to fit a GP. It repeats the above
process until the number of iterations is exhausted. The most
important contribution of PBO is its acquisition function DTS.
DTS consists of two acquisition functions with dimension D
that represent exploitation and exploration respectively. The
first solution is chosen with the highest soft-Copeland score
and represents the exploitation, and the second solution is
chosen with the highest variance of GP and represents the
exploration. DTS balances the trade-off between exploitation
and exploration, and guarantees the result of PBO. However,
since it uses GP to fit the preference function which is a func-
tion with dimension 2D, the precision of the GP model and
the computation complexity are both significantly affected
by the dimension. Although the acquisition function is well
defined and easy to optimize on a D dimension space, its
results become worse when D is high. Thus, the bottleneck
of PBO is the dimension of the preference function.

Proposed Method
The above section introduces the PBO method and shows its
bottleneck. To address the issue of scalability of the dueling
black-box optimization, one possible way is to reduce the
dimension of the dueling solution space.

In fact, previous studies find out that, in many scenarios,
although the dimension of the objective function is very high,
there are only a few dimensions that affect the function value
while the remaining dimensions only have a limited effect.
This has been formally defined as the optimal effective di-
mension (i.e., the remaining dimensions have no effect on the
function value) (Wang et al. 2016b) or the optimal ϵ-effective
dimension (i.e., the remaining dimensions only have an up
to ϵ effect) (Qian, Hu, and Yu 2016). The optimal ϵ-effective
dimension has been found in many real-world tasks, such as
recommendation systems (Qin et al. 2010), chemical molec-
ular design (Trabucco et al. 2022) and pre-trained large lan-
guage models for natural language processing (Aghajanyan,
Gupta, and Zettlemoyer 2021).

Since the existence of effective dimension of an objective
function is common in many tasks, trying to use this property
is a straightforward way to address the high-dimensional op-
timization problems. If the objective function has the optimal
ϵ-effective dimension, optimization can be conducted in the
low-dimensional subspace whereas function value evaluation
is still performed in the original high-dimensional space. This
is realized via embedding the subspace into the original space,
and the optimization performance can be guaranteed (Wang
et al. 2016b; Qian, Hu, and Yu 2016).

Algorithm 1: PE-DBO

Input:
Initial dataset DM = {[yi;y

′
i], pi}Mi=1, number of avail-

able duels N , original dimension D, low dimension d
and the boundary of low dimension subspace Y .

Procedure:
1: Generate random matrix A ∈ RD×d and Ap = [A O

O A ].
2: for j = M to M +N − 1 do
3: Fit a GP to Dj and learn πfp,j([y;y

′]) .
4: Sample a function πf̂p

from GP .
5: ynext = argmaxy∈Y

∫
Y πf̂p

([y;y′];Dj) dy
′ .

6: y′
next = argmaxy′∈Y σ(GP|y = ynext,Dj) .

7: Get [xnext;x
′
next] = Ap[ynext;y

′
next] .

8: Run duel [xnext;x
′
next] and obtain pj+1 .

9: Augment Dj+1 = {Dj ∪ ([ynext;y
′
next], pj+1)} .

10: end for
11: Fit a GP to DM+N and find the solution y∗ with highest

soft-Copeland score.
12: return x∗ = Ay∗ .

For dueling optimization, this paper shows that the effec-
tive dimension can be extended to the dueling case. Actu-
ally, in the preference-based recommendation systems, which
item is preferred by a user is mainly determined by only a
few ingredients. Wang et al. (2016a) and Canal et al. (2019)
embed all items as well as the user’s favorite item into a low-
dimensional subspace and use a distance metric to represent
the user’s preference on items. This inspires us that there may
exist a subspace with a lower dimension than the dueling
solution space (we call this subspace as preferential intrinsic
subspace), where the dueling result is almost the same as the
corresponding dueling result in the dueling solution space.
We formally introduce it as Definition 1.

Definition 1 (Preferential Intrinsic Dimension). A preference
function πf : R2D → R is said to have preferential intrinsic
dimension dp, with dp ≤ 2D, if

1. there exists a preferential intrinsic subspace T = Xϵ×Xϵ,
Xϵ ⊂ RD, s.t., for all [x;x′] ∈ R2D and for any ϵ > 0,
we have |πf ([x;x

′])− πf ([xϵ;x
′
ϵ])| ≤ ϵ, where xϵ and

x′
ϵ ∈ Xϵ are orthogonal projection of x and x′ onto Xϵ;

2. for all preferential intrinsic subspaces Tϵ of πf , dp is
the smallest dimension of T , i.e., dp = minT ∈Tϵ dim(T )
where dim(T ) denote the dimension of T .

T ⊥ denotes the orthogonal complement of T . [x;x′] can
be decomposed into two part that is [x;x′] = [xϵ;x

′
ϵ] +

[x⊥;x
′
⊥], where [xϵ;x

′
ϵ] ∈ T and [x⊥;x

′
⊥] ∈ T ⊥.

Definition 1 implies that there exist some important dimen-
sions in the dueling solution space that significantly affect
the preference function and other dimensions only have little
effects on the preference probability (no more than ϵ).

If the preference function has the preferential intrinsic di-
mension dp, how to embed the preferential intrinsic subspace
into the dueling solution space is a crucial step. x and x′ in
a duel are the same since they are both in the same solution
space and are the variables for the same objective function.
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Hence, each of the two solutions should have the same em-
bedding operation. To realize this, the preferential embed-
ding matrix Ap can be represented as the union of a random
matrix, i.e., Ap = [A O

O A ] where A ∈ RD×d is a random ma-
trix with independent entries sampled from N (0, d−1) and
dp ≤ 2d ≤ 2D. With preference function πf and preferential
embedding matrix Ap, we can construct a preference func-
tion πfp([y;y

′]) = πf (Ap[y;y
′]) with only 2d dimension.

Fitting πfp with GP is nearly the same as fitting πf .
Injecting the preferential embedding matrix in the PBO

method can get the PE-DBO method. The flow of PE-DBO
is to fit a GP in the low dimension subspace, optimize the
acquisition function to choose the next duel [ynext;y

′
next], em-

bed it into dueling solution space by the preferential em-
bedding matrix, get the feedback of the corresponding duels
[xnext;x

′
next], augment the dataset and begin the next loop

until the termination. The full procedure of PE-DBO is de-
picted in Algorithm 1. The acquisition function used is the
same as PBO which selects the solutions with highest soft-
Copeland score and highest variance of GP respectively,
where σ(GP|y = ynext,Dj) means the variance of GP with
dataset Dj and y = ynext. PE-DBO fits a GP on a low dimen-
sion subspace with dimension 2d which is lower than 2D,
and 2d is only affected by the preferential intrinsic dimension
of the preference function. Thus, as long as the preferential
intrinsic dimension is low, PE-DBO only needs to fit a GP
on the low dimension subspace and it does not affect by 2D
dramatically like PBO. Notably, preference embedding can
improve the scalability of the PBO framework since we prove
that πfp is a good approximation of πf in this paper. Thus,
we only combine our method with the original version of
PBO. One can also use the method in Benavoli, Azzimonti,
and Piga (2021) and get the same improvement.

Theoretical Analysis
This section presents some theoretical analyses on the pro-
posed PE-DBO. Due to page limitation, please cf. Appendix
A-C from https://github.com/Zhangywh/PE-DBO to get more
details. Identifying whether the preference functions have the
preferential intrinsic dimension is the first step to determine
the feasibility of PE-DBO. However, it may be hard to iden-
tify in real-world tasks. The optimal ϵ-effective dimension
of a function has been proposed and investigated (Qian, Hu,
and Yu 2016), and finding the optimal ϵ-effective dimension
of a function is relatively easy. We recall the definition of it.
Definition 2 (Optimal ϵ-Effective Dimension). For any ϵ > 0,
a function f : RD → R is said to have an ϵ-effective subspace
Vϵ, if there exists a linear subspace Vϵ ⊆ RD, s.t. for all
x ∈ RD, we have |f(x) − f(xϵ)| ≤ ϵ, where xϵ ∈ Vϵ is
the orthogonal projection of x onto Vϵ. Let Vϵ denote the
collection of all the ϵ-effective subspaces of f , and dim(V)
denote the dimension of V . We define the optimal ϵ-effective
dimension of f as de = minVϵ∈Vϵ

dim(Vϵ).

It is expected that one can identify the preferential intrinsic
dimension through whether the objective function has the op-
timal ϵ-effective dimension. To this end, we prove Lemma 1
that provides a sufficient condition to judge the existence of
the preferential intrinsic dimension.

Lemma 1 (Sufficient Condition). If an objective function
f has the optimal ϵ-effective dimension de, then the corre-
sponding preference function πf has the preferential intrinsic
dimension dp ≤ 2de.

By Lemma 1, if an objective function has the optimal ϵ-
effective dimension, then the corresponding preference func-
tion also has the preferential intrinsic dimension. Therefore,
one only needs to focus on whether the objective function
has the optimal ϵ-effective dimension de and the upper bound
of the preferential intrinsic dimension is 2de.

Then we need to confirm the feasibility of using πfp in-
stead of the preference function πf . Previously, random
embedding is only known to be effective on the function
value based methods (Wang et al. 2016b; Qian, Hu, and Yu
2016), and this work effectively extends it to the preference
based ones. The extension is divided into two categories: un-
bounded and bounded domains. We first present the following
theorem for the unbounded domains.

Theorem 1 (Effectiveness on Unbounded Domains). Sup-
pose the preference function πf : R2D → [0, 1] has prefer-
ential intrinsic dimension dp ≤ 2de. Then, with probability
1, for any [x;x′] ∈ R2D, there exists a [y;y′] ∈ R2d, s.t.
|πf ([x;x

′])− πfp([y;y
′])| ≤ 2ϵ.

When the domain of the objective function is unbounded,
i.e., the domain is RD. Theorem 1 shows that for any duel
[x;x′] ∈ R2D, there exists a duel [y;y′] ∈ R2d, s.t., the
difference between πf and πfp is no more than 2ϵ. This
confirms we can use πfp to substitute the πf with a small
loss of accuracy. Since the values of the preference function
at each point in the low dimension subspace and the dueling
solution space are nearly the same, the soft-Copeland score
C(y∗) is close to C(x∗), i.e., the optimal solution in the low
dimension subspace is very closed to x∗ after embedding.
Therefore, optimize πfp in the low dimension subspace which
has the same effect as optimizing πf .

Practical problems are often bounded by domain X ⊂ RD,
and for the bounded domain case, we need to consider
two questions. How to deal with the situation when the
embedded duel is out of the domain of πf and how to
set the boundary of low dimension subspace to guaran-
tee the validity of fitting πfp . The first question is sim-
ple, one can use a projection operator based on the dis-
tance to find the nearest duel inside the domain to substitute
the illegal duel. That is, suppose the domain of objective
function is X , when Ap[y;y

′] /∈ X × X , we use a duel
[xX ;x′

X ] = argmin[x;x′]∈X×X ∥[x;x′] − Ap[y;y
′]∥2 in-

side the domain to substitute the duel out of X × X . The
second problem can be explained by the following theorem.

Theorem 2 (Effectiveness on Bounded Domains). Suppose
the preference function πf has preferential intrinsic dimen-
sion dp, the domain of f is X ⊂ RD and X is centered
around 0. Let x∗ = argmaxx∈X f(x) be an optimizer of
f with the X and x∗

ϵ ∈ X ∩ Xϵ be the optimizer of f in-
side Xϵ. For any x′ ∈ X , x′

ϵ ∈ X ∩ Xϵ, there exists a duel
[y∗;y′] ∈ R2d, s.t. |πfp([y

∗;y′]) − πf ([x
∗
ϵ ;x

′
ϵ])| ≤ 2ϵ and

∥[y∗;y′]∥2 ≤
√

ddp

2ϵ2 ∥[x
∗
ϵ ;x

′
ϵ]∥2 w.p. at least 1− ϵ.
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Theorem 2 shows the substitute is also effective on the
bounded domain and the theoretical boundary of the low
dimension subspace. Therefore, if X = [−1, 1]D, with prob-
ability (w.p.) at least 1− ϵ, as long as the boundary of the low
dimension subspace contains a ball with radius (dd2p/2ϵ

2)−
1
2

and centered at the origin, the substitute πf with πfp is
effective. But in the experiment, for tasks whose optimal
is near around 0, setting the domain of πfp by [−1, 1]2d

can get well result. This is easy to understand. We have
sampled a preferential embedding matrix Ap. For a duel
[y;y′] = [1; . . . ; 1] at the boundary of the low dimension
subspace, by multiply the random matrix Ap, we can get
an vector [x;x′] = [x1; . . . ;x2D], for any xi, it obeys the
N (0, 1). Thus, this setting is big enough to cover the domain
of πf , i.e., X × X = [−1, 1]2D.

Experiments
PE-DBO is implemented by BoTorch (Balandat et al. 2020).
The code is available at https://github.com/Zhangywh/PE-
DBO. To study the effectiveness of preference embedding
rather than the improvements on GP model, we use the de-
fault setting of GP model in BoTorch. CMA-ES (Hansen,
Müller, and Koumoutsakos 2003) is adopted as the optimizer
of the acquisition function. PE-DBO is deployed on both syn-
thetic testing functions and real-world tasks. There are three
preferential optimization algorithms for us to compare, i.e.,
PBO (González et al. 2017), KSS (Sui et al. 2017) and a pure
compare version of comp-GP-UCB (Xu et al. 2020) which
removes the second optimization part that uses the function
value. The experiments aim to answer four questions.

1. Effectiveness: Can PE-DBO handle the high-dimensional
dueling optimization tasks?

2. Scalability boundary: What is the maximum tractable
dimension of PE-DBO?

3. Existence and superiority: Does the preferential intrinsic
dimension exist, and can PE-DBO beat other methods on
the real-world datasets?

4. The benefit of dueling optimization: When the total bud-
get is fixed, whether preference-based methods can beat
function value based methods?

The four questions are answered in order in the next sections.
Since question 3 deals with the existence of the preferen-
tial intrinsic dimension and the superiority of PE-DBO, it
corresponds to two parts in the following sections.

For the tasks that the optimal value of the objective func-
tion is known, the simple regret is used to evaluate the perfor-
mance of each method. The simple regret is the gap between
the optimal value and the best function value found by the
algorithm. A smaller simple regret indicates the algorithm
has found a better solution. For the tasks that the optimal
function value is unknown, the best function value found by
the algorithm is used as the evaluation criteria.

On Synthetic Testing Functions
For a testing function f : Rdf → R (the domain has been re-
scaling to [−1, 1]df ) used to maximize, the synthetic testing
function Fc : RD → R can be constructed as Fc(x) =

f(x[1:df ] − c)−K−1
∑D

i=d+1(xi − c)2, where x ∈ RD is
the input of Fc and x[1:df ] is the first df dimensions of x.
c = [c; . . . ; c] ∈ Rd is a constant vector in order to avoid
the optimal solution located at the origin which is in all
linear subspaces. K is a constant to control the effects of
the dimensions except the first df ones. It’s obvious that Fc

has optimal ϵ-effective dimension de = df and ϵ ≤ K−1.
The effective dimensions here are the first df dimensions and
randomly choosing these effective dimensions is similar.

Effectiveness. Four synthetic testing functions with D =
200 and de = 10 are constructed by Ackley, Dixon-Price,
Levy and Sphere functions. 1 In the synthetic testing function
experiments, I = 500 points are used to estimate the integra-
tion of the soft-Copeland score, M = 30 duels are used to
initialize the GP model and N = 50 duels are used for opti-
mizing. The dimension of the low dimension subspace is 24,
i.e., 2d = 24 and the boundary is [−1, 1]24. All experiments
are repeated 20 times and the results are shown in Figure 1.

The horizontal axis shows the number of duels that are
used for optimization and the vertical axis is the simple regret.
Across all functions, PE-DBO gets the best result. The prefer-
ential intrinsic dimension of each synthetic testing function is
dp = 20, hence setting 2d ≥ dp can reduce the effect of high
dimension. The result in Figure 1 confirms that PE-DBO can
deal with tasks with a very high input dimension but with
a lower preferential intrinsic dimension. The performance
of comp-GP-UCB is the same as KSS because we removed
the second optimization part of comp-GP-UCB that use the
function value. Furthermore, the objective functions of the
two methods are nearly the same (is the probability of beat-
ing the average solution or the optimal solution), hence this
result. PBO method often gets the worst performance. That’s
because the dimension of the preference function of PBO
is 2D while that for comp-GP-UCB and KSS is D hence
PBO dramatically affected by the dimension of the dueling
solution space. PE-DBO gets a better result in the first itera-
tion than other baselines. Since lower dimensionality means
better coverage with fewer points, 30 duels can lead to lower
simple regret in the embedded space and make the following
optimization perform well. PE-DBO has the fastest coverage
rate than other methods because PE-DBO retains the flexibil-
ity of two solutions. The final results show PE-DBO handles
the high-dimensional dueling optimization tasks well which
confirms the validity of our motivation.

Scalability. To study the scalability of PE-DBO, we
change the dimension of the synthetic testing functions D
and analyze the results on different D. The experiments de-
ploy on Levy and Ackley. All settings are the same as the
experiments in the above section except D for the synthetic
testing functions. We choose D = {50, 100, 150, 200, 500}
and the experiment results are in Figure 2.

From Figure 2, the performances of different methods de-
crease when D increases. Since the search space of each
method expands when D increases, which needs more effort
to explore the solution space but the effort is limited. The
result shows that the performance of PBO is significantly
affected by the dimension D which confirms our motivation.

1http://www.sfu.ca/∼ssurjano/optimization.html
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(a) Ackley (b) Dixon (c) Levy (d) Sphere

Figure 1: The convergence performance on the synthetic testing functions. KSS stands for kernel-self-sparring and COMP-UCB
stands for comp-GP-UCB. All experiments have 50 iterations and repeat 20 times. We draw the mean and the deviation of simple
regret. The horizontal axis is the number of duels and it begins from 31 since we use 30 duels to initialize each algorithm.

The methods that fix one solution are not dramatically af-
fected by D but still get worse result when D increases. Since
the preference intrinsic dimension is not changed across dif-
ferent D, the result of PE-DBO is the best and virtually un-
affected by D. Thus, we can speculate that the convergence
rate of PE-DBO is only depending on d but PBO depends on
D, which is a significant improvement.

On Real-world Tasks
The Existence of Preferential Intrinsic Dimension on
Real-world Datasets. We verify PE-DBO on two real-world
datasets. The first dataset is the Microsoft learning to rank
(MSLR) dataset (Qin et al. 2010) and we use the MSLR-
WEB10K version which has more than 10,000 queries. Each
data has 136 different features to describe a website page.
For each website page, there is a relevance judgment which
is an integer value from 0 to 4 that indicates whether this
page is irrelevant or perfectly relevant. The second dataset
is ChEMBL dataset in design-bench (Trabucco et al. 2022),
and design-bench is a benchmark for black-box model-based
optimization problems. ChEMBL is to find a molecule with
the highest MCHC value. Each molecule is encoded by 31
features by using the SMILES (Weininger 1988) method.

We use a neural network (NN) to fit MSLR dataset as the
objective function, and judge the preference via the output of
the NN since directly using it as an exact oracle is difficult.
The NN has 3 hidden layers with 128, 64 and 32 units re-
spectively and the Sigmoid function is used as the activation
function. Random forest oracle provided by design-bench is

(a) Levy (b) Ackley

Figure 2: The scalability on the synthetic testing functions
with different D. All settings are the same as Figure 1.

used as the objective function for ChEMBL dataset. We need
to test whether those datasets fit the setting, i.e., having pref-
erential intrinsic dimension. From Lemma 1 we only need to
test the ϵ-effective dimension of the objective function. Sup-
pose the domain of the objective function f is X ⊂ RD and
∆f denotes the maximal variation of f over X . By restricting
f on a subspace with dimension k, i.e., X k ⊂ X , we can
assess the effect of X k on f by E = ∆f/∆

k
f , where ∆k

f is
the maximal variation of f over X k.

The result of MSLR dataset is shown in Figure 3(a). Ac-
cording to Figure 3(a), a subspace with dimension 50 can
cover the total function value change and other dimensions
are useless, i.e., the MSLR dataset has ϵ-effective dimension
no more than 50. Thus, we set 2d = 100 for the following ex-
periment. By the same analysis with MSLR dataset, we found
that the ϵ-effective dimension of ChEMBL dataset is no more
than 25, hence we set 2d = 50 for PE-DBO. We also find
that in the ChEMBL dataset, certain features are completely
invariant for different data. Therefore, since our objective
function is a re-scale version of the oracle, the correspond-
ing features become fixed values passed to oracle after the
transformation, so it has no effect on the function value, and
therefore ChEMBL does has the ϵ-effective dimensionality.

Superiority. In the experiment on MSLR dataset, we set
the boundary of low dimension subspace as [−

√
d,
√
d]2d

(other different boundaries have also been tested and please
cf. Appendix E for more details). Because according to our
analysis of the MSLR-WEB10K dataset, most pages with a
relevance judgment of 4 tend to have a maximum or mini-
mum value on each feature, i.e., the maximum value of the
objective function is near the boundary of the domain. We got
a bad performance when we set the boundary as [−1, 1]2d,
that because this boundary of low dimension subspace af-
ter embedding did not cover the boundary of the domain
of the objective function. But setting a much bigger bound-
ary possibly causes more effort on a useless domain, thus
the setting of boundary is a trade-off, and how to automat-
ically set the boundary is a promising direction to discuss.
Since the optimal point is not at the boundary of the domain
in ChEMBL dataset, the boundary of the low dimension
subspace of ChEMBL dataset is [−1, 1]2d. All experiments
are repeated 20 times with N = 80 to optimize, M = 25,
I = 600 for MSLR and M = 15, I = 300 for ChEMBL.
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(a) ϵ-Effective Dimension for
MSLR Dataset

(b) MSLR (c) ChEMBL (d) Fixed Budget

Figure 3: Results on real-world tasks. (a) is to verify the existence of ϵ-effective dimension on the MSLR dataset. The horizontal
axis is the dimension of the tested subspace and the vertical axis is the value of E . (b) and (c) show the convergence results on
MSLR and ChEMBL respectively. The vertical axis is the objective function value and the horizontal axis is the number of duels
that the algorithm used. 25 duels and 15 duels are used to initialize the algorithm on MSLR and ChEMBL respectively. Thus, the
horizontal axis begins from 26 and 16. (d) is the result with fixed budget on MSLR. In this task, evaluating the function value is
twice as expensive as comparing pairs of solutions. The vertical axis is the function value and the horizontal axis is the cost that
the algorithm has used. The preference-based methods use 25 duels to initialize GP, and the function value based methods can
use 12.5 solutions (round up to 13) to initialize. Thus, the horizontal axis begins from 26.

Figure 3(b) and Figure 3(c) show that PE-DBO has the
best result. From Figure 3(b), PE-DBO has the fastest con-
vergence rate and the best result, since PE-DBO optimizes
πfp which is a good approximation of πf by using the pref-
erential embedding matrix. The low dimension subspace is
much smaller than the dueling solution space, and thus PE-
DBO can get the global landscape of the objective function
and leads to finding the global optima as fast as possible.
Figure 3(c) shows the result on MSLR dataset. The result
of PBO is worse since D = 31 is still too high for PBO to
optimize. From experiments in Appendix D, when the di-
mension of synthetic testing function is 10, PBO can beat
the methods that fix one solution. This result shows that PE-
DBO improves the scalability of PBO. On real-world tasks
that have ϵ-effective dimension, the preference embedding
method makes optimization work better by optimizing πfp .

The Cost of Dueling Optimization. To verify the strength
of the preference-based methods, we aim to show that pair-
wise comparison is cheaper but has a comparable efficacy to
evaluating the function. This experiment fixes the total budget
for two kinds of methods and compares their result. The set-
ting is that the cost of evaluating the function value is twice
expensive as that of making a pairwise comparison. Other set-
tings are acceptable as long as function evaluation is more ex-
pensive than comparison. The function value based methods
are the Bayesian optimization with upper confidence bound
acquisition function (BO) (Srinivas et al. 2010) and Bayesian
optimization with random embedding (RE-BO) (Wang et al.
2016b), the preference-based methods are PBO and PE-DBO.
All methods are verified on the MSLR dataset and repeated
20 times. The preference-based methods use 25 duels to ini-
tialize, hence the function value based methods can use 12.5
solutions (round up to 13) to initialize.

The results are shown in Figure 3(d). From the result we
can find that, after the initialize process, function value based
methods start with a higher function value than preference-
based methods. This may result from the optimization space
of function value based methods is smaller than preference-

based methods and function value allows the algorithm to
fully explore the global landscape hence function value based
methods can find a better solution than preference-based
methods. Since directly evaluating the function is much more
expensive, the optimization process is slower than preference-
based methods and is caught up at the end of this experiment.
PBO method has a comparable result with BO, which means
that with a limited budget, pairwise comparison result has
the same efficacy as function value. After the embedding
processes for PBO and BO, PE-DBO exhibiting a better
result than RE-BO confirms the effectiveness of our method
and implies the strength of preference-based methods that
can use cheaper evaluation. Thus, preference-based methods
are more effective on expensive tasks. We analyze the effect
of hyper-parameters in Appendix E, and the result shows that
PE-DBO is hyper-parameter insensitivity in some situations.

Conclusion
This paper aims to make the high-dimensional dueling opti-
mization tractable while retaining the flexibility of two so-
lutions when dueling. We define the preferential intrinsic
dimension and inject it into the dueling Bayesian optimiza-
tion, resulting in PE-DBO. PE-DBO decouples optimization
and pairwise comparison via the preferential embedding ma-
trix, and it suffices to perform optimization within a much
lower-dimensional subspace. We theoretically disclose that
the preference function can be approximately preserved in
the lower-dimensional preferential intrinsic subspace. Exper-
iment results verify that molecule discovery and web page
recommendation dueling optimization tasks have the prefer-
ential intrinsic dimension, and PE-DBO is superior in scala-
bility compared with that of the SOTA methods. The paper
implies that the scalability of PE-DBO only depends on the
dimension of the low dimension subspace. Therefore, PE-
DBO can be deployed on real-world dueling tasks with higher
dimension. The future work includes adaptively choosing the
boundary of the low dimension subspace and equipping the
dueling optimization with other derivative-free algorithms.
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