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Abstract

To facilitate offline reinforcement learning, uncertainty esti-
mation is commonly used to detect out-of-distribution data.
By inspecting, we show that current explicit uncertainty es-
timators such as Monte Carlo Dropout and model ensemble
are not competent to provide trustworthy uncertainty estima-
tion in offline reinforcement learning. Accordingly, we pro-
pose a non-parametric distance-aware uncertainty estimator
which is sensitive to the change in the input space for offline
reinforcement learning. Based on our new estimator, adap-
tive truncated quantile critics are proposed to underestimate
the out-of-distribution samples. We show that the proposed
distance-aware uncertainty estimator is able to offer better
uncertainty estimation compared to previous methods. Experi-
mental results demonstrate that our proposed DARL method
is competitive to the state-of-the-art methods in offline evalua-
tion tasks.

Introduction
Offline reinforcement learning (Levine et al. 2020) has gained
unprecedented attention recently, which is a remedy for
costly, time-consuming, and unsafe online reinforcement
learning (Dulac-Arnold, Mankowitz, and Hester 2019). How-
ever, applying traditional reinforcement learning methods
directly to offline settings usually faces the challenge that
the trained policy tends to diverge from the offline datasets
due to the optimistic estimation of the target value of unseen
state-action pairs (Munos 2003; Farahmand, Munos, and
Szepesvári 2010; Scherrer et al. 2015; Fujimoto, Meger, and
Precup 2019). This issue is commonly resolved by restricting
the trained policy to in-distribution regions with low uncer-
tainty (Kumar et al. 2019). Therefore, accurate uncertainty
estimation is vital for offline reinforcement learning.

One way to tackle uncertainty estimation is to learn the
data distribution directly and regard samples far from the
distribution as uncertain. In offline reinforcement learning,
variational autoencoder (VAE) (Kingma and Welling 2013)
is commonly used to imitate the behavior policy (Fujimoto,
Meger, and Precup 2019; Kumar et al. 2019). However, VAE
cannot capture mixture distributions such as “medium-replay”
dataset in D4RL benchmark (Fu et al. 2020). Other works
choose to introduce explicit uncertainty estimators, such as
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Figure 1: Visualization of uncertainty estimation for MC
Dropout, model ensemble, VAE, and our method on a low-
dimensional environment. The orange points denote the sam-
ples in the dataset. Yellow indicates low uncertainty, while
blue indicates high uncertainty. X-axis and y-axis denote
state and action, respectively.

Monte Carlo (MC) Dropout (Gal and Ghahramani 2016)
and model ensemble (Lakshminarayanan, Pritzel, and Blun-
dell 2016), into offline reinforcement learning. UWAC (Wu
et al. 2021) applies MC Dropout and down-weights the sam-
ples with high uncertainty. However, the label in reinforce-
ment learning keeps evolving, which differs from supervised
learning and will introduce noise for uncertainty estimation.
MOPO (Yu et al. 2020) defines the uncertainty estimator as
the maximal standard deviation of an ensemble model. Nev-
ertheless, (Liu et al. 2020a; Van Amersfoort et al. 2020) show
that the deep ensemble model is not aware of the distances
between unseen samples and training datasets, even in toy
examples. Fig.1 demonstrates that VAE, MC Dropout, and
model ensemble could not yield accurate uncertainty esti-
mation, which corresponds to the distance between the data
points for a low-dimensional offline reinforcement learning
task. Note the dataset has more than one mode, which is
common for offline reinforcement learning, such as mixed
datasets in D4RL.
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These uncertainty estimators are parametric models which
are targeted for reconstruction or regression objectives rather
than directly tasked for uncertainty estimation, and therefore
might discard important information such as the distances
between different samples. What’s more, parametric methods
encourage in-distribution samples, but these samples might
be out-of-sample (far from the dataset), leading to feature
co-adaptation and poor performance (Kumar et al. 2021). In
this paper, we resort to non-parametric models that preserve
the data’s mutual relations and propose distance-aware uncer-
tainty estimation for offline reinforcement learning (DARL).
The non-parametric method could tackle the multi-mode dis-
tribution. Also, it focuses on the sample-level distance and
penalizes the out-of-sample actions. In particular, we devise a
non-parametric particle-based cross entropy estimator which
taps into k-nearest neighbor search. To make the k-nearest
neighbor search feasible, we project the original data into a
low-dimensional abstract representation space and restrict the
Lipschitz constant of the mapping function to make distances
in the feature space meaningful.

Based on this distance-aware uncertainty estimator, we
further devise adaptive truncated quantile critics. Concretely,
building upon a distributional critic (Dabney et al. 2018),
we truncate the right tail of the Q-network by dropping sev-
eral topmost atoms. The number of dropped atoms for a
state-action pair correlates positively with the sample’s un-
certainty. In this way, our method tends to underestimate the
uncertain samples. Our empirical evaluation shows that the
proposed method is a better uncertainty estimator in offline
reinforcement learning than previous methods. We also eval-
uate our proposed method on offline reinforcement learning
benchmarks. The experimental results demonstrate that our
proposed method outperforms the state-of-the-art methods
on most tasks.

The contributions of this paper are as follows:
• We propose a non-parametric distance-aware uncertainty

estimator and obtain excellent uncertainty in offline rein-
forcement learning.

• We devise adaptive truncated quantile critics based on the
uncertainty estimator.

• We obtain competitive performance on offline reinforce-
ment learning benchmarks.

Related Work
We will review previous uncertainty estimation works and
uncertainty-based offline reinforcement learning methods in
the following.

Uncertainty estimation. There is a large amount of re-
search on estimating uncertainty in machine learning (Neal
2012; Blundell et al. 2015). Bayesian models (Mackay 1992)
characterize the uncertainty estimation by posterior infer-
ence, such as MC Dropout which is scalable and simple to
implement (Gal and Ghahramani 2016). Non-Bayesian deep
ensemble (Lakshminarayanan, Pritzel, and Blundell 2016)
maintains multiple neural networks initialized randomly and
outperforms Bayesian models in practice (Ovadia et al. 2019).
One drawback of MC Dropout and the deep ensemble model
is that the hidden representation of the feature space does

not reflect meaningful distances in the data space (Liu et al.
2020a; Van Amersfoort et al. 2020). Inspired from (Liu et al.
2020a), our method maps the high-dimensional input into a
low-dimensional distance-preserving feature space. We de-
vise a non-parametric cross entropy estimator for uncertainty
estimation rather than rely on stochastic variational Gaussian
process(SVGP) (Hensman, Matthews, and Ghahramani 2015)
which only learns a bound of the true uncertainty.

Uncertainty-based offline reinforcement learning. Some
works handle the uncertainty implicitly. Numerous re-
searchers directly learn the data distribution and consider
the samples far from the distribution as uncertain. (Liu
et al. 2020b) directly estimates the density of the policy and
reduces the update frequency of uncertain samples. How-
ever, this method requires an accurate estimation of the
likelihood of the behavior policy, which is challenging in
multi-dimensional scenarios (Van Oord, Kalchbrenner, and
Kavukcuoglu 2016). BCQ (Fujimoto, Meger, and Precup
2019) and BEAR (Kumar et al. 2019) draw on VAE to im-
itate the behavior policy and train the policy to stay in the
in-distribution region. Nevertheless, VAE suffers from its
inability to capture mixture distributions. Another bunch of
works do not resort to additional models to estimate the data
distribution. CQL (Kumar et al. 2020) reduces the Q-value of
samples with high uncertainty. Nevertheless, it is challenging
to enumerate all uncertain samples. To underestimate the Q-
values of the samples with high uncertainty, EDAC (An et al.
2021) maintains a large number of Q-networks and utilizes
the ensemble’s minimum to train the critics. However, the
performance comes at the cost of a large ensemble.

Other methods rely on explicit uncertainty estimators.
UWAC (Wu et al. 2021) introduces MC Dropout into offline
reinforcement learning. However, UWAC’s label is the unsta-
ble Q-value which is susceptible to the overestimation prob-
lem and incurs noise in uncertainty estimation. MOPO (Yu
et al. 2020) trains an ensemble of the dynamics model and
proposes an uncertainty-related penalty based on the model
ensemble for imaginary samples. Nevertheless, the model
ensemble will account for aleatory uncertainty for stochastic
environments, which is unnecessary for offline reinforcement
learning. Compared with these methods, our proposed un-
certainty estimator is not affected by the noisy label and
preserves the mutual relations among the data.

Background
We consider the standard reinforcement learning setting,
which is always formalized with a Markov decision pro-
cess (S,A, P,R, γ), with the state space S, the action space
A, the transition function P , the reward function R, and
the discount factor γ (Sutton and Barto 2018). In reinforce-
ment learning, an agent starts from a state s and executes
an action a at each time step. By interacting with the envi-
ronment, the agent observes a next state s′ and receives a
reward r. The aim of reinforcement learning is to learn a
policy π(a|s) to receive accumulative rewards as much as
possible: maxπ E[

∑∞
t=0 γ

trt]. In the rest of the paper, we
also use π(s) to denote the policy.

Distributional reinforcement learning. Distributional
reinforcement learning (Bellemare, Dabney, and Munos
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2017) aims to learn the distribution of cumulative reward:
Zπ(s, a) :=

∑∞
t=0 γ

trt, where s0 = s, a0 = a, and
at ∼ π(·|st).

QR-DQN (Dabney et al. 2018) approximates the dis-
tribution Zπ(s, a) with 1

NA

∑NA

i=1 δ
(
θi(s, a)

)
, which is

a mixture of atoms-Dirac delta functions at locations
θ1(s, a), ..., θNA(s, a), where θ(·, ·) is a parametric model
and NA is the number of quantiles. The parameter for θ(·, ·)
is updated by minimizing the 1-Wasserstein distance between
Zπ(s, a) and the temporal target: min W1(Zπ(s, a), r +
γZπ(s

′, a′)), where a′ ∼ π(·|s′) and W1(·, ·) is the 1-
Wasserstein distance between two distributions.

Offline reinforcement learning. In offline reinforcement
learning, a dataset D is provided. We denote the behavior
policy which produces the dataset as πβ . The state-action dis-

tribution for a policy π is defined as µ(s, a) =
∑∞

t=0 γtµt(s,a)∑∞
t=0 γt ,

where µt(s, a) is the density of (s, a) at timestep t. The state-
action distribution for the dataset is denoted by µβ , accord-
ingly.

Offline reinforcement learning suffers from the out-of-
distribution challenge. The standard reinforcement learn-
ing algorithms might derive a policy that generates out-of-
distribution actions in the offline setting. They have no chance
to adjust the real Q-values of these actions correctly.

TD3BC (Fujimoto and Gu 2021) builds on top of TD3 (Fu-
jimoto, Hoof, and Meger 2018). It mainly focuses on plug-
ging a behavior cloning regularization term to the policy
training in TD3. The policy loss is

π = argmax
π

E(s,a)∼D
[
vQ(s, π(s))− (π(s)− a)2

]
, (1)

where the hyperparameter v is used to make a balance be-
tween reinforcement learning and imitation learning objec-
tives. To make these two terms in the same range, v is defined
as v = 2.5

1
N

∑
(si,ai)

|Q(si,ai)|
, where N is the size of a mini-

batch.
Particle-based entropy estimator. Particle-based entropy

estimator is an unbiased and non-parametric estimator of
entropy (Singh et al. 2003). For a random variable X with
dimension l, n datapoints {xi}ni=1 are sampled from its dis-
tribution. The approximated entropy is defined as H(X) ∝∑n

i log c
k
i , where cki is the volume of a hypersphere with the

center xi. The radius is the distance between xi and its k-th
nearest neighbor xk

i . The entropy estimator can be rewrit-
ten as H(X) ∝

∑n
i log ||xi − xk

i ||l. Note that the k-nearest
search is computationally inefficient when provided with a
large dataset.

Method
Our method comprises two parts: distance-aware uncertainty
estimator and adaptive truncated quantile critic. The distance-
aware uncertainty estimator is the prerequisite for the latter
part. We will introduce these two components in detail in the
following and describe the implementation details afterwards.

Distance-Aware Uncertainty Estimator
We characterize the uncertainty for the trained pol-
icy as its cross entropy against the behavior policy:

H(µ, µβ) = −
∑

s,a µ(s, a) log µβ(s, a). The H(µ, µβ)

is a better uncertainty estimator than H(µβ , µ) =
−
∑

s,a µβ(s, a) log µ(s, a) for the reason that the latter one
provides no uncertainty when µ(s, a) > 0 and µβ(s, a) =
0 for some (s, a). On the contrary, the former one offers high
uncertainty when µ deviates from the support of µβ . To sim-
plify the notation, x and y represent the state-action pairs
sampled from µβ(s, a) and µ(s, a), respectively.

However, it is challenging to estimate H(µ, µβ) due to
the unavailable density µβ . We derive a particle-based cross-
entropy estimator based on the non-parametric entropy esti-
mator (Singh et al. 2003): Ĥ(µ, µβ) = − 1

n

∑n
i=1 log µ̂β(yi),

where yi ∼ µ, n is the number of samples drawn from µ, and
µ̂β(yi) is an estimator of µβ(yi). Given a dataset {xj}mj=1

drawn form µβ with the size m, the µ̂β(yi) can be written
as µ̂β(yi) = kΓ(l/2+1)

mπl/2Rl
i,k,m

, where l is the dimension of the

random variable and Ri,k,m is the Euclidean distance of yi to

its closest k-th neighbor in {xj}mj=1. Note that
πl/2Rl

i,k,m

Γ(l/2+1) is
the volume of the sphere of the radius Ri,k,m. We can obtain
the estimator of cross entropy H(µ, µβ) by considering the
distance between each particle sampled from µ and its k-th
closest neighbor sampled from µβ :

Ĥ(µ, µβ) = − 1

n

n∑
i=1

log
kΓ(l/2 + 1)

mπl/2Rl
i,k,m

∝ 1

n

n∑
i=1

logRl
i,k,m.

(2)
Based on the uncertainty for the distribution µ, we can

also derive the uncertainty estimator for a given test sample
ŷ by considering the µ distribution as taking the form of the
delta distribution: : q(x) = ∞ when x = x̂, otherwise 0. The
uncertainty of the test sample is defined as :

U(ŷ) = log ||ŷ − xk
j ||lX , (3)

where xk
j is the test sample’s k-th nearest neighbor in

{xj}mj=1 and || · ||X is the norm in X .
We show that the proposed uncertainty estimator is closely

related to the theoretical study on provable efficiency in of-
fline RL where ξ-uncertainty quantifier is important in the
analysis (Xie et al. 2021).

Definition 1. (ξ-Uncertainty Quantifier (Jin, Yang, and Wang
2021)). For a series of penalty {Γt}Tt=1 (Γt : S ×A → R), if
it holds that P (|BQt+1(s, a)− B̂Qt+1(s, a)| ≤ Γt(s, a)) ≥
1− ξ for all (s, a) ∈ S×A, where B is the Bellman operator
and B̂ is the empirical Bellman operator, then we say the
penalty {Γt}Tt=1 is a ξ-uncertainty quantifier.

The generally used LCB-penalty is a ξ-uncertainty quanti-
fier. Based on the proposed uncertainty estimator, we have
the following theorem.

Theorem 2. For a linear MDP where the feature function for
a given (s, a) is ϕ(·, ·) : S×A → Rl, the k-nearest neighbor
uncertainty U(s, a) = βt log ||ϕ(s, a) − ϕ(sj , aj)

k||l is an
estimation to a provably efficient LCB-penalty, which takes

the form Γ(s, a) = βt

[
ϕ (s, a)

⊤
Λ−1ϕ (s, a)

]1/2
, where

11212



Λ =
∑m

j=1 ϕ (sj , aj)ϕ (sj , aj)
⊤ and βt is an appropriately

selected parameter.
Theorem 2 shows that penalizing the state-action value

function based on the k-nearest neighbor uncertainty esti-
mation yields an efficient offline RL algorithm for linear
MDPs. We denote the optimal policy and the policy induced
by the penalized state-action value function as π∗ and π̄,
respectively. We can obtain the gap between the expected
cumulative rewards under the two policies.
Corollary 3. Under the Theorem 2’s condition, it holds that
Jπ∗ − J π̄ ≤

∑T
t=1 γ

tEπ∗ [Γt(st, at)], where Jπ∗
and J π̄

are expected cumulative rewards under policy π∗ and π̄,
respectively.

Corollary 3 shows the optimality gap brought by the
pessimistic value iteration. Note that it is information-
theoretically optimal for linear MDPs.

High Dimensional Uncertainty Estimation
For high-dimensional observation and action space, k-nearest
search is computationally heavy when the number of samples
is over one million. KD-tree is a data structure which could
reduce the computational complexity to log(m). However,
k-nearest search based on KD-tree is not scalable in deep
reinforcement learning for the reason that the searching in
the original data space is more time-consuming than gradient
backpropagation. Therefore, we utilize a deep neural network
to process the original state-action pairs into low-dimensional
feature space to accelerate the search.

Rather than utilizing the hidden representation of the Q-
network or a learned dynamics model, we choose a random-
ized neural network as a feature extractor. The reason is that
the hidden representations for these tasks are changing during
the training process, which makes the searching infeasible
for an established KD-tree. In addition, the hidden representa-
tion is always high-dimensional, which makes the searching
computationally expensive in practice. What’s more, specific
objectives might discard important information in the dataset,
such as the relations among data points.

To make the randomized neural network preserve such
relations in the original space and avoid feature col-
lapse (Van Amersfoort et al. 2020), we expect the hidden
mapping h(x) to be sensitive to the changes in the input.
To this end, we must ensure that the distance in the hidden
space ||h(x) − h(x′)||H corresponds to the distance in the
input space ||x − x′||X . We build the distance-preserving
randomized neural network upon the idea of bounding the
Lipschitz constant of each layer. Similar to (Liu et al. 2020a),
for a D-layer network h, we build each layer hd as a resid-
ual block hd(x) = x + gd(x), and bound the nonlinear
mapping gd’s Lipschitz constant to be less than α by spec-
tral normalization (Miyato et al. 2018). To be specific, for
gd(x) = relu(Wdx+ bd), we estimate the spectral norm of
Wd as σ(Wd) according to the power iteration method and
normalize Wd by Wd = u ∗Wd/σ(Wd) when u < σ(Wd),
where u is a hyperparameter which controls the upper bound
on ||Wd||2. In this way, the Lipschitz constant of h is bounded
in [(1−α)D−1, (1 + α)D−1]. The proof can be found in Liu
et al. (2020a).

We now put it all together to introduce our distance-
aware uncertainty estimator. For samples {yi}ni=1 gener-
ated from the distribution µ, we project the samples us-
ing the aforementioned distance-preserving randomized neu-
ral network h(·) to get features {h(yi)}ni=1. The uncer-
tainty for µ given dataset {xj}mj=1 sampled from πβ is∑n

i=1
1
n log ||h(yi) − h(xj)

k||lHH , where h(xj)
k is the k-th

nearest neighbor for h(yi) in the feature space and lH is the
dimension of the feature space.

Adaptive Truncated Quantile Critics

Based on the proposed uncertainty estimator, it is natural
to penalize the target value by the uncertainty: B̂Q(s, a) −
U(s′, a′). From a distributional viewpoint, we propose adap-
tive truncated quantile critics which underestimates the sam-
ples with high uncertainty to handle the out-of-distribution
issue.

The adaptive truncated quantile critics is built upon
the distributional algorithm TQC(Truncated Quantile Crit-
ics) (Kuznetsov et al. 2020) that alleviates overestimation
in policy evaluation. TQC maintains an ensemble of distri-
butional critics and mixes all the atoms to form a mixture
distribution. Then it drops several largest atoms and aver-
ages remaining atoms to obtain a truncated mixture return
distribution.

For the offline setting, the issue of overestimation will ex-
acerbate because of the out-of-distribution target (Fujimoto,
Meger, and Precup 2019). Samples with different uncertainty
should be underestimated at different levels. We utilize the
distance-aware uncertainty estimator to build adaptive trun-
cated quantile critics.

We train NC distributional critics Z1, ..., ZNC
. For each

distributional critic, we learn NA quantiles. The target
value of state-action pair (s′, a′) for critic Zc is defined
by Zc(s, a) := 1

NA

∑NA

i=1 δ
(
θic(s

′, a′)
)
. We aggregate the

atoms of all the critics to form a set {θic(s′, a′)|i =
1, ..., NA, c = 1, ..., NC}.

Then we sort the elements in the set in ascending order, and
the sorted set is {θ̂i}NA×NC

i=1 . We drop f(U(s′, a′)) largest
atoms to form an adaptive truncated target. The function
f(.) positively relates to the uncertainty. When the uncer-
tainty of (s′, a′) is high, we drop a large portion of atoms
to underestimate its expected return. The target distribu-
tion is defined as Y (s′, a′) :=

∑N ′

i=1
1
N ′ δ(θ̂i(s

′, a′)), where
N ′ = NA ×NC − f(U(s′, a′)) is the number of remained
atoms. The loss function for the critics is

L =
1

N ′NA

NA∑
j=1

N ′∑
i=1

ρτi(r + γθ̂i(s
′, a′)− θj(s, a)), (4)

where ρτ (z) = z(τ − I(z < 0)), ∀z ∈ R at τ -quantile.
Compared to TQC, which drops identical atoms for all

the state-action pairs, our method sets the truncation level
according to the target’s uncertainty, which is more flexible
and more applicable in offline settings.
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Algorithm 1: DARL
Input: offline dataset D, update iterations tmax, k for k-
nearest search, the size of the dataset m
Parameter: randomized neural network h, policy network π,
an ensemble of critics Z1, ..., ZNC

Output: learned policy network π

1: Initialize the policy network, distributional critics and
the randomized neural network

2: Project the whole dataset to h to get the features
{h(si, ai)}mi=1

3: Build a KD-tree for all the features
4: for t = 1, 2, . . . , tmax do
5: Sample a mini-batch of samples (s, a, r, s′) from D
6: Calculate the uncertainty for the target U(s′, π(s′))
7: Formulate the truncated target
8: Update the distributional critics according to Eq.4
9: Update the policy network according to Eq.1

10: end for

Implementation Details
For the distance-aware uncertainty estimator, we use a two-
layer randomized neural network to project a state-action pair
into the feature space. The output dimension is set to be less
than 10 to accelerate the k-nearest search. For a given dataset,
we build a KD-tree on the whole dataset other than conduct
k-nearest search in a minibatch (Liu and Abbeel 2021) to
ensure accurate uncertainty estimation. The practical time
consumption of building and searching for KD-tree in the
feature space is slight compared to the training process. The
specific cost is described in the experiment.

For the training of the critics, we maintain a set of distribu-
tional critics and learn multiple quantiles for each critic. The
quantile drop function f(U(s′, a′)) is a truncated linear func-
tion: f(U(s′, a′)) = clip(η ∗ U(s′, a′)), Cmin, Cmax), where
η is a hyperparameter. Cmin and Cmax are the minimum and
maximum number of clipped quantiles, respectively.

For the training of the actor, we adopt the training proce-
dure of TD3BC, which helps the regularization when the data
distribution is narrow. The algorithm is described in Alg. 1

Experiment
In this section, we conduct several experiments to justify the
validity of our proposed method. We aim to answer three
questions: (1) Is our proposed distance-aware uncertainty es-
timator better than previous uncertainty estimators? (2) Does
our method perform better on standard offline benchmarks
than previous methods? (3) How does the adaptive truncated
critics contribute to our method?

Uncertainty Estimation
We show the behavior of the proposed uncertainty estima-
tor in a low dimensional RL environment, out-of-detection
benchmarks-KDDCUP and Thyroid datasets, and D4RL
benchmark.

Low Dimensional RL Environment. To visualize the
uncertainty estimation clearly, we devise an environment
where the dimension of the continuous state space is 1 with

the range [−100, 100]. The action space is one-dimensional
with the range [−1.2, 1.2]. The action denotes the agent’s
movement at each time step. If the agent moves right, it
gets a reward of +1. Otherwise, it gets −1. The maximum
episode length is set to 100. We create a well-performed pol-
icy π1(a|s) = 1+0.1∗N (0, 1), where N (0, 1) is a Gaussian
distribution. It receives positive rewards with a high probabil-
ity. A relatively bad policy π2(a|s) = −1 + 0.1 ∗ N (0, 1),
which always receives negative rewards is also created. At
each time step, we sample an action randomly from these
two polices and collect 20, 000 samples to formulate a fixed
dataset.

We compare our methods to MC Dropout, model ensemble,
and VAE. The details of implementation of these methods are
described in Appendix. The results are shown in Fig. 1. The
x-axis denotes the state, and the y-axis denotes the action.
We normalize the dataset’s state with mean 0 and standard
deviation 1. The result shows that MC Dropout could not
distinguish between in-distribution and out-of-distribution
regions. It tends to produce a similar uncertainty estimation
for most state-action pairs. The reason might be that the MC
Dropout’s label is the Q-value function, which is unstable
during the training process. The model ensemble is able to
recognize the out-of-distribution states. Nevertheless, it pre-
dicts the out-of-distribution actions incorrectly. The VAE
could produce a reasonable uncertainty prediction for the re-
gion where the action is larger than 1.1 or smaller than −1.1.
However, VAE could not estimate the uncertainty correctly
for the out-of-distribution region where the action range is
[−0.9, 0.9]. The reason might be that the latent variable dis-
tribution is unimodal and could not capture multi-modal mix-
ture datasets. Compared to these methods, our method shows
low uncertainty near the dataset and high uncertainty in the
region far from the dataset. As we can see, our method is a
better uncertainty estimator.

We also compare with standard deep ensemble’s uncer-
tainty which is commonly used in computer vision (Laksh-
minarayanan, Pritzel, and Blundell 2016), and DUE which
also uses spectral normalization to estimate uncertainty (van
Amersfoort et al. 2021). The result is shown in Fig. A1 in
Appendix. DUE outputs a Gaussian distribution which can-
not capture multi-mode distribution. The standard ensemble
cannot distinguish the OOD region.
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Figure 2: Uncertainty estimation results for MC Dropout,
model ensemble, VAE, and our method.
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KDDCUP Precision Recall F1

OC-SVM 0.7457 0.8523 0.7954
DCN 0.7696 0.7829 0.7762
DSEBM 0.8619 0.6446 0.7399
DAGMM 0.9297 0.9442 0.9369
MemAE 0.9627 0.9655 0.9641
GOAD - - 0.9840
Our Method 0.9787 0.9965 0.9875

Table 1: Results on KDDCUP dataset

Thyroid Precision Recall F1

OC-SVM 0.3639 0.4239 0.3887
DCN 0.3319 0.3196 0.3251
DSEBM 0.1319 0.1319 0.1319
DAGMM 0.4766 0.4834 0.4782
GOAD - - 0.745
Our Method 0.6132 0.8935 0.7273

Table 2: Results on Thyroid dataset

Out-of-detection benchmarks. we compare with OC-
SVM (Chen, Zhou, and Huang 2001), DCN (Yang et al.
2017), DSEBM (Zhai et al. 2016), DAGMM (Zong et al.
2018), MemAE (Gong et al. 2019), and GOAD (Bergman
and Hoshen 2020) on commonly used out-of-detection bench-
marks KDDCUP and Thyroid datasets. When our method
performs on the dataset, the datapoints which have larger
uncertainty than a predefined threshold will be marked as
anomalies. We take the anomaly class as positive, and define
precision, recall, and F1 score accordingly. Table 1 and Table
2 report the average precision, recall, and F1 score to com-
pare anomaly detection performance. The results show that
the proposed estimator is comparable to state-of-the-art OOD
detection methods.

D4RL dataset. We also test our method’s validity in
uncertainty estimation on “hopper-expert-v2” and “hopper-
medium-replay” datasets in D4RL. The implementation of
our uncertainty estimator, MC Dropout, the model ensem-
ble is similar to the former low-dimensional setting. For
each (s, a) in the dataset, we create out-of-distribution sam-
ples by adding a noise to the action â = a + bi ∗ N (0, 1).
We create 4 out-of-distribution datasets by setting bi in
{0.01, 0.1, 0.3, 1}.

These methods have distinct definitions for uncertainty
estimation and are not comparable numerically. We regard
the median uncertainty as 1 for the dataset with bi = 0.01
for each method and rescale the median uncertainty for other
datasets accordingly. The experimental results of all methods
are summarized in Fig. 2. (The results of the original scale of
all methods are shown in Appendix Table A7. As the results
show, MC Dropout produces approximately similar uncer-
tainty predictions for in-distribution and out-of-distribution
samples. The model ensemble also cannot detect out-of-
distribution samples in the offline dataset when the noise
scale is small. Since the behavior policy for “hopper-expert”
has only one mode, VAE can recognize out-of-distribution
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Figure 3: Percentage difference of the performance of an
ablation of our proposed method, compared to N-DARL. N-
DARL w/ adaptive critics refers to the N-DARL with the
adaptive truncated quantile critics.

samples. However, VAE would struggle when trained on
mixed datasets. Compared to these methods, our proposed
method has better uncertainty estimation and can spot out-of-
distribution samples when the noise scale is only 0.1.

Performance on Offline Mujoco Datasets
To evaluate the validity of DARL in high-dimensional set-
tings, we perform experiments using the Mujoco control
suites in D4RL’s “-v2” benchmarks (Fu et al. 2020). The
experimental results of the previous methods and DARL are
summarized in Table 3. Since TD3BC (Fujimoto and Gu
2021) experiments on “-v0” dataset, we rerun TD3BC on
“-v2” environments for fair comparisons.

As shown in Table 3, DARL outperforms or achieves
competitive performance compared to the state-of-the-art
methods on most tasks. Especially, our proposed method
exceeds the previous methods on “random” and “medium-
replay” datasets. The experiments demonstrate that uncer-
tainty estimation is vital for offline learning. For DARL, the
time complexity of building a KD-tree for a dataset is less
than one minute. The time cost for k-nearest search for a
mini-batch is less than the gradient calculation and backprop-
agation. We also test the runtime of our proposed algorithm.
The runtime of f CQL is 31.5 epoch per second while DARL
is 28.8 epoch per second, which is comparable to CQL.

Performance on Adroit Hand Task
Adroit hand manipulation tasks are more complicated than
Mujoco control tasks. These tasks aim to control a 24-DoF
robotic hand to execute specific options. The Adroit tasks
consist of hammering a nail, opening a door, twirling a pen,
or picking up and moving a ball. We experiment on two types
of datasets for each environment: “human” and “cloned”.
The results of the methods are summarized in Table 4. Our
method is competitive to previous methods. Especially, for
pen-human task, our method outperforms the previous meth-
ods by a large margin.

Ablation Study
We perform an ablation study over the components in our
method. Fig. 3 shows the result of the effectiveness of the
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Task Name BEAR BRAC UWAC TD3BC CQL IQL DARL

HC-r 12.6 ± 1.0 24.3 ± 0.7 2.3 ± 0.0 11.7 ± 1.3 31.3 ± 3.5 - 32.4 ± 2.2
Hc-m 42.8 ± 0.1 51.9 ± 0.3 43.7 ± 0.4 48.8 ± 0.2 46.9 ± 0.4 47.4 ± 0.2 69.8 ± 3.8
HC-e 92.6 ± 0.6 39.0 ± 13.8 94.7 ± 1.1 93.4 ± 4.2 97.3 ± 1.1 - 98.9 ± 4.0

HC-me 45.7 ± 4.2 52.3 ± 0.1 47.0 ± 6.0 87.3 ± 1.8 95.0 ± 1.4 86.7 ± 5.3 95.7 ± 3.6
HC-mr 39.4 ± 0.8 48.6 ± 0.4 38.9 ± 1.1 44.8 ± 0.3 45.3 ± 0.3 44.2 ± 1.2 59.6 ± 3.3
Hop-r 3.6 ± 3.6 8.1 ± 0.6 2.6 ± 0.3 8.3 ± 0.4 5.3 ± 0.6 - 32.3 ± 2.9

Hop-m 55.3 ± 3.2 77.8 ± 6.1 52.6 ± 4.0 58.5 ± 0.7 61.9 ± 6.4 66.2 ± 5.7 63.7 ± 2.6
Hop-e 39.4 ± 20.5 78.1 ± 52.3 111.0 ± 0.8 110.1 ± 0.1 106.5 ± 9.1 - 108 ± 1.3

Hop-me 66.2 ± 8.5 81.3 ± 8.0 54.8 ± 3.2 99.5 ± 5.1 96.9 ± 15.1 91.5 ± 14.3 110.6 ± 0.7
Hop-mr 57.7 ± 16.5 62.7 ± 30.4 31.1 ± 14.8 60.3 ± 13.7 86.3 ± 7.3 94.7 ± 8.6 96.7 ± 6.9

W-r 4.3 ± 1.2 1.3 ± 1.4 1.5 ± 0.3 0.8 ± 0.5 5.4 ± 1.7 - 21.7 ± 2.7
W-m 59.8 ± 40.0 59.7 ± 39.9 66.0 ± 9.0 84.2 ± 0.2 79.5 ± 3.2 78.3 ± 8.7 84.5 ± 0.2
W-e 110.1 ± 0.6 55.2 ± 62.2 108.4 ± 0.5 110.9 ±0.2 109.3 ± 0.1 - 111.2 ± 0.4

W-me 107.0 ± 2.9 9.3 ± 18.9 85.7 ± 14.0 110.4 ± 0.2 109.1 ± 0.2 109.6 ± 1.0 110 ± 0.6
W-mr 12.2 ± 4.7 40.1 ± 47.9 27.1 ± 9.6 73.7 ± 7.4 76.8 ± 10.0 73.8 ± 7.1 99.4 ± 4.1

Table 3: Results of BEAR, BRAC, UWAC, TD3BC, CQL, IQL(Kostrikov, Nair, and Levine 2022), and DARL on the offline
Mujoco tasks. The results are averaged over six seeds. HC = HalfCheetah, Hop = Hopper, W = Walker, r = random, m = medium,
mr = medium-replay, me = medium-expert, e = expert.

Task Name BC BEAR CQL DARL

pen-human 25.8 -1.0 55.8 70.4 ± 8.2
hammer-human 3.1 0.3 2.1 3.2 ± 1.1
door-human 2.8 -0.3 9.1 2.3 ± 0.3
relocate-human 0.0 -0.3 0.35 0.2 ± 0.0

pen-cloned 38.3 26.5 40.3 41.6 ± 4.7
hammer-cloned 0.7 0.3 5.7 0.4 ± 0.1
door-cloned 0.0 -0.1 3.5 3.5 ± 0.7
relocate-cloned 0.1 -0.3 -0.1 0.0 ± 0.0

Table 4: Normalized scores of all methods on Adroit domains,
averaged across six seeds.

proposed adaptive truncated quantile critics compared to a
naive version of DARL without the adaptive component. We
call the naive version “N-DARL”. Note that N-DARL’s policy
loss is similar to TD3BC and only replaces the Q-function
with a distributional ensemble. Since N-DARL has already
achieved expert-level performance on “medium-expert” and
“expert” tasks, it is hard for our two variants to perform better
on these tasks. For other tasks, the result shows that adaptive
truncated quantile critics is an essential component to achieve
strong performance.

Adaptive truncated quantile critics. We now study the
relation of our method with the hyperparameter η which
controls the sensitiveness of the target value function to the
out-of-distribution samples. In Fig. 4 , we test different values
for hyperparameter η in {1, 10, 100, 1000} on “halfcheetah-
medium” and “hopper-medium-replay”. Note that η = 1000
approximately corresponds to truncating a large amount
atoms for all in-distribution and out-of-distribution samples
while η = 1 approximately corresponds to not underestimat-
ing all samples. The result shows that when η is large, the
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Figure 4: Varying the scale of η. Mean and standard deviation
are plotted over five seeds.

value function of in-distribution samples will be underesti-
mated, and the performance deteriorates. When η is small,
out-of-distribution samples will be overestimated and will
hurt the performance. Therefore, appropriate truncation is
important for proper underestimation.

We also test the impact of value k on our method. The
result is shown in Table A6 in Appendix.

Conclusion
In this paper, we propose a distance-aware uncertainty estima-
tor for offline reinforcement learning. We introduce adaptive
truncated quantile critics to underestimate the samples with
high uncertainty. We show that the proposed distance-aware
uncertainty estimator can offer better uncertainty estimation
than previous methods. Experimental results demonstrate
that our proposed DARL method outperforms the state-of-
the-art methods in offline reinforcement learning evaluation
tasks. For future work, we will try to find better uncertainty
estimators to apply to offline settings.
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