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Abstract

Deep Metric Learning (DML) is a group of techniques that
aim to measure the similarity between objects through the
neural network. Although the number of DML methods has
rapidly increased in recent years, most previous studies can-
not effectively handle noisy data, which commonly exists in
practical applications and often leads to serious performance
deterioration. To overcome this limitation, in this paper, we
build a connection between noisy samples and hard sam-
ples in the framework of self-paced learning, and propose
a Balanced Self-Paced Metric Learning (BSPML) algorithm
with a denoising multi-similarity formulation, where noisy
samples are treated as extremely hard samples and adaptively
excluded from the model training by sample weighting. Es-
pecially, due to the pairwise relationship and a new balance
regularization term, the sub-problem w.r.t. sample weights
is a nonconvex quadratic function. To efficiently solve this
nonconvex quadratic problem, we propose a doubly stochas-
tic projection coordinate gradient algorithm. Importantly, we
theoretically prove the convergence not only for the doubly
stochastic projection coordinate gradient algorithm, but also
for our BSPML algorithm. Experimental results on several
standard data sets demonstrate that our BSPML algorithm has
better generalization ability and robustness than the state-of-
the-art robust DML approaches.

Introduction
DML aims to learn an embedding space in which similar
samples are pulled closer while dissimilar samples are en-
couraged to stay away from each other (Xing et al. 2002;
Wang, Peng, and Lin 2021; Wang et al. 2022). Compared
with traditional metric learning methods, which may not
capture the nonlinear nature of data, DML utilizes the neu-
ral network to obtain representative and discriminative fea-
ture embeddings. Thus, DML has attracted increasing at-
tention and been applied to various tasks, including visual
tracking (Leal-Taixé, Canton-Ferrer, and Schindler 2016;
Tao, Gavves, and Smeulders 2016), face recognition (Wen
et al. 2016), image retrieval (Wohlhart and Lepetit 2015; He
et al. 2018; Grabner, Roth, and Lepetit 2018), person re-
identification (Hermans, Beyer, and Leibe 2017; Yu et al.
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2018a) and zero-shot learning (Zhang and Saligrama 2016;
Yelamarthi et al. 2018; Bucher, Herbin, and Jurie 2016).

The superior performance of machine learning greatly de-
pends on a large number of labeled data sets (Shi et al.
2021), and the performance of DML is no exception. How-
ever, manually generating clean data set would involve do-
main experts evaluating the quality of collected data and thus
is very expensive and time-consuming (Frénay and Verley-
sen 2013). To address this issue, some researchers utilize
the online key search engine method (Yu et al. 2018b) and
the crowdsourcing method (Li et al. 2017) to gain required
data sets at a low cost, but it is possible to introduce noisy
samples that represent mislabeled ones (Wu et al. 2021; Yao
et al. 2021; Zhai et al. 2020). As far as we know, most ex-
isting DML approaches are sensitive to noisy samples since
they directly utilize sample labels to learn the similarity in-
formation between samples.

Constructing robust DML models against noisy samples
is a challenging task, and some researchers have paid atten-
tion to this problem. Specifically, Wang et al. proposed a
novel objective using the ℓ1-norm distance (Wang, Nie, and
Huang 2014), and Al-Obaidi et al. utilized the rescaled hinge
loss, which was a general form of the common hinge loss,
to formulate the DML problem (Al-Obaidi, Zabihzadeh, and
Hajiabadi 2020). Moreover, Kim et al. proposed the Proxy-
Anchor loss that was robust against noisy labels and out-
liers because of the use of proxies (Kim et al. 2020). Dif-
ferent from the above technical routes, Yuan et al. proposed
a robust distance metric based on the Signal-to-Noise Ratio
(SNR) (Yuan et al. 2019).

Different from mislabeled noisy samples, hard samples
are correctly labeled ones that are difficult to distinguish by
the model (Nguyen et al. 2019; Zhu et al. 2021). In the im-
age data set, hard samples can be anything from cats that
look like dogs to images with slightly blurred resolution. Ev-
idently, noisy samples and hard samples have different roles.
Noisy samples are harmful because they would mislead the
training direction. However, hard samples could force the
model to learn more representative features, and thus prop-
erly training these hard samples could improve the model
generalization ability (Zhu et al. 2021; Chen et al. 2020).
Although noisy samples and hard samples are different, we
would build the connection between them in the perspective
of Self-Paced Learning (SPL) (Kumar, Packer, and Koller
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2010), and further utilize SPL to filter out noisy samples
from the training set.

Inspired by human cognitive mechanisms, (Kumar,
Packer, and Koller 2010) proposed a novel learning strat-
egy called Self-Paced Learning (SPL), which utilizes the
loss value to describe the difficulty degree of the sample.
Also, SPL starts learning from easy samples and gradu-
ally incorporates more difficult samples (i.e., hard samples).
Particularly, we could consider noisy samples as extremely
hard samples because they usually own larger loss values
than conventional hard samples (please refer to Fig. 1.(a)).
Thus, SPL can assign smaller weights to noisy samples un-
der the guidance of loss values, and then noisy samples
would have little influence on the predicted model. Theoret-
ically, (Meng, Zhao, and Jiang 2017) has proved that such
a re-weighting learning process is equivalent to minimizing
a latent noise-robust loss that would weaken the contribu-
tion of noisy samples. Experimentally, it has been declared
that SPL is an effective method to improve the model robust-
ness against noisy data (Zhang et al. 2020; Yin, Liu, and Sun
2021; Ren et al. 2020; Gu et al. 2021).

In this paper, we propose a Balanced Self-Paced Metric
Learning (BSPML) algorithm with a novel denoising multi-
similarity formulation. Benefiting from the mechanism of
SPL, our BSPML algorithm could exclude noisy samples
and emphasize the importance of clean samples. Because
DML problems focus on a large number of classes, we
have to face the challenge of the unbalanced average sam-
ple weights among classes. To overcome this problem, we
introduce a new balance regularization term to punish the
absolute difference between the average sample weights of
different classes. Following the traditional SPL practice, our
BSPML algorithm utilizes the alternative optimization strat-
egy based on two key sub-problems w.r.t. model parame-
ters and sample weights respectively. To efficiently solve
the nonconvex sub-problem w.r.t. sample weights, we pro-
pose a doubly stochastic projection coordinate gradient al-
gorithm. Theoretically, we prove the convergence of our pro-
posed algorithms under mild assumptions. Experimental re-
sults show the advantages of our BSPML algorithm in gen-
eralization ability and robustness.

Preliminaries
In this section, we give a brief review of self-paced learning
and multi-similarity loss.

Self-Paced Learning
Suppose {(xi, yi)

N
i=1} is a set of N labeled samples, where

yi ∈ [C] is the corresponding label of the sample xi ∈ RM .
SPL utilizes a sample weight vector w ∈ [0, 1]N to indicate
whether or not each training sample should be included in
the current training. The classic SPL model is formed as:

min
θ,w∈[0,1]N

N∑
i=1

wiLpoint(xi, yi, θ)− λ
N∑
i=1

wi, (1)

where θ means the model parameters, Lpoint represents one
point-wise loss, e.g., hinge loss, λ is the age parameter which
controls the learning pace in SPL.

SPL methods utilize the alternative optimization strategy
based on two key sub-problems w.r.t. model parameters θ
and sample weights w respectively. Especially, for the clas-
sic SPL formulation, the closed-form solution of the sub-
problem w.r.t. w can be obtained easily:{

wi = 1, Lpoint(xi, yi, θ) ≤ λ

wi = 0, Lpoint(xi, yi, θ) > λ
. (2)

The above solution implies that if the loss value of a sam-
ple is less than λ, the sample will be assigned the weight of
value 1 and thus be selected to join the training. Otherwise,
the sample will be excluded from the training process by re-
ducing its weight to 0. In this case, with increased λ, hard
samples with larger loss values will join the training. Thus,
the age parameter λ controls the learning pace in SPL.

To better understand the mechanism of SPL and the roles
of hard samples and noisy samples, we provide an example
of the self-paced classification problem in Fig. 1. Accord-
ing to Eq. (2), when we set λ to a small value λ1, only easy
samples are selected to join the training in Fig. 1.(a). As λ
increases to λ2, hard samples with larger loss are also taken
into consideration as shown in Fig. 1.(b). These hard sam-
ples could force the model to learn more representative fea-
tures, and thus properly training these hard samples could
improve the generalization ability. However, when λ in-
creases to λ3, noisy samples with extremely excessive losses
are considered and lead to the degeneration of the general-
ization ability as shown in Fig. 1.(c).

Multi-Similarity Loss
Let fθ(xi) be an embedding vector of the sample xi where
fθ : RM → Rm means the model with parameters θ. For the
training stability, embedding vectors have been normalized.
Formally, we define the similarity between two samples as
Sxi,xj

= ⟨fθ(xi), fθ(xj)⟩, where ⟨·, ·⟩ denotes dot product.
A high similarity between two samples implies that these
two samples are close to each other in the embedding space.
Besides, in DML, a positive pair means a pair of samples
from the same class and a negative pair represents a pair of
samples from different classes.

Similar to contrastive loss (Bromley et al. 1993) and
triplet loss (Hermans, Beyer, and Leibe 2017), Multi-
Similarity (MS) loss (Wang et al. 2019) is one pair-based
DML loss, which pays attention to the distance information
between pairs of samples. Specifically, the MS objective is
formulated as:

LMS(θ) =

C∑
c=1

1

Nc

Nc∑
a=1

(
ξ+θ (xc

a) + ξ−θ (xc
a)
)
, (3)

where ξ+θ (x
c
a) = 1

α log

[
1 +

∑
p∈[Nc]
p ̸=a

e
−α(Sxc

a,xc
p
−ρ)

]
,

ξ−θ (xc
a) =

1
β log

[
1+

∑
k∈[C]
k ̸=c

∑Nk

n=1 e
β(S

xc
a,xk

n
−ρ)

]
. Here, α, β

and ρ are fixed hyper-parameters, xc
a means the a-th sample

in class c ∈ [C] , N c is the number of samples in class c
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Figure 1: Self-paced classification problem with hard and noisy samples. (λ is the age parameter and λ1 < λ2 < λ3.)

and N =
∑C

c=1 N
c. Moreover, an informative pair mining

method is also proposed. For an anchor sample xc
a, if a neg-

ative pair {xc
a,x

k
n}, k ∈ [C], k ̸= c, n ∈ [Nk] satisfies the

following condition:
Sxc

a,x
k
n
> min

p∈[Nc]
p ̸=a

Sxc
a,x

c
p
− ϵ, (4)

where ϵ is a given margin, the negative pair can be consid-
ered as an informative negative pair. And an informative pos-
itive pair {xc

a,x
c
p}, p ̸= a should satisfy:

Sxc
a,x

c
p
< max

k∈[C],k ̸=c

n∈[Nk]

Sxc
a,x

k
n
+ ϵ. (5)

Proposed Algorithm
In this section, we provide our balanced self-paced metric
learning algorithm followed by its objective function.

Objective Function
Inspired by the classic SPL formulation, we propose the new
denoising multi-similarity formulation:

L(θ,w;λ)

=

C∑
c=1

Nc∑
a=1

wc
a

Nc

(
ζ(c)− wc

a

Nc − 1
ξ+θ (xc

a) +

∑
k∈[C],k ̸=c

C − 1

ζ(k)

Nk
ξ−θ (xc

a)

)

− λ

C∑
c=1

ζ(c)

Nc
+

µ

C − 1

C∑
c=1

C∑
k=c+1

(
ζ(c)

Nc
− ζ(k)

Nk

)2

s.t. wc
a ∈ [0, 1], ∀c ∈ [C], a ∈ [Nc]

(6)
where λ is the age parameter that controls the learning pace
in SPL and ζ(c) =

∑Nc

i=1 w
c
i means the sum of sample

weights in class c. Importantly, the last term in Eq. (6) is our
new balance regularization term. Specifically, DML prob-
lems usually focus on a large number of classes. Thus, we
have to face the challenge of the unbalanced average sample
weights among classes, e.g., all samples in some classes are
assigned the weights of value 1, while all samples in other
classes are assigned the weights of value 0. To overcome
this challenge, we propose our balance regularization term,
which punishes the absolute difference between the average
sample weights of different classes.

Balanced Self-Paced Metric Learning
Following the traditional SPL practice, our BSPML utilizes
the alternative optimization strategy based on two key sub-
problems w.r.t. θ and w as shown in Algorithm 1, where c is
the multiplier of λ and λ∞ is the maximum value of λ. In the
following, we present Algorithms 2 and 3 used for solving
the two key sub-problems w.r.t. θ and w respectively.

Mini-Batch Gradient Algorithm for Weighted Multi-
Similarity Loss When we fix w to optimize θ, our ob-
jective function degenerates into a weighted multi-similarity
formulation that can be optimized by the common practice
in DML.
Stochastic sampling: We first stochastically sample P
classes and then stochastically sample K samples per class.
Informative pair mining: We select informative pairs from
these PK samples according to Eqs. (4) and (5). In fact,
when we use the original MS formulation, we inevitably uti-
lize noisy pairs that would produce noisy gradients as Fig.
2.(a) shows. However, in our BSPML algorithm, we exclude
noisy samples by reducing these weights under the guid-
ance of the loss value and thus obtain an embedding space
with satisfactory performance, where there exists enough
distance between samples from different classes as shown
in Fig. 2.(d).
Weighted informative batch loss: For an anchor sample xi,
we define P̂xi as the index set of informative positive pairs
and N̂xi

as the index set of informative negative pairs. Then,
the weighted informative batch loss is formed as:

LWBL(θ)

=
1

PK

PK∑
i=1

wi

{ ∑
p∈P̂xi

wp

|P̂xi |α
log

[
1 +

∑
p∈P̂xi

e−α(Sxi,xp−ρ)

]

+

∑
n∈N̂xi

wn

|N̂xi |β
log

[
1 +

∑
n∈N̂xi

eβ(Sxi,xn−ρ)

]}
.

(7)

Finally, we summarize the above procedures in Algorithm
2, where the gradient-based method means the optimization
method utilizing the gradient information such as stochastic
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Algorithm 1: Balanced Self-Paced Metric Learning

Input: Maximum iteration T , initial age parameter λ0, mul-
tiplier c and maximum age parameter λ∞.

Output: The optimal θ.
1: Initialize w0 = 1N .
2: for t = 1, · · · , T do
3: Fix w to optimize θ through Algorithm 2.
4: Fix θ to optimize w through Algorithm 3.
5: λt = min(cλt−1, λ∞).
6: end for

Algorithm 2: Mini-Batch Gradient Algorithm for Weighted
Multi-Similarity Loss

Input: Maximum iteration T , initial model parameter ma-
trix θ0, class batch size P and sample batch size K.

Output: The optimal θ.
1: for t = 1, · · · , T do
2: Sample P classes stochastically and then sample K

samples per class stochastically.
3: Select informative pair index sets P̂ and N̂ according

to Eqs. (4) and (5).
4: Update θ using gradient-based method with the loss

LWBL, i.e., Eq. (7).
5: end for

Algorithm 3: Doubly Stochastic Projection Coordinate Gra-
dient Method
Input: Maximum iteration T , initial sample weight vector

w0, learning rate γ, class batch size P and weight batch
size K.

Output: The optimal w.
1: for t = 1, · · · , T do
2: Sample one weight wc

a, c ∈ [C], a ∈ [N c] stochasti-
cally.

3: Sample K weights different from wc
a in class c

stochastically, sample P classes different from class
c and K weights per class stochastically.

4: Calculate the stochastic gradient G(wc
a).

5: Update wt = P[0,1]N (wt−1 − γtG(wc
a)e

c
a).

6: end for

gradient descent (SGD) (Ketkar 2017) and adaptive moment
estimation (Adam) (Kingma and Ba 2014).

Doubly Stochastic Projection Coordinate Gradient
Method When we fix θ to optimize w, the sub-problem
w.r.t. w is a more complex quadratic problem compared with
the one in existing SPL problems, e.g., Eq. (1). To solve
this complex sub-problem efficiently, we propose a doubly
stochastic projection coordinate gradient method.
Stochastic sampling: Specifically, we first sample an anchor
weight wc

a, c ∈ [C], a ∈ [N c] stochastically. Then, for the
anchor weight wc

a, we select K weights different from wc
a in

class c, and select P classes different from c and select K
weights per class.
Stochastic gradients: Under the circumstance, we show the

Figure 2: The difference between the two-class DML tasks
with and without the noisy sample. (A pair of pointers of the
same color in one sub-figure represents a pair of gradients.)

stochastic gradient G(wc
a) regarding to a particular coordi-

nate wc
a as follows:

G(wc
a) =

1

Nc

(
Gp(w

c
a) +Gn(w

c
a) +Gb(w

c
a)− λ

)
,

Gp(w
c
a) =

1

K

K∑
p=1

wc
p

(
ξ+θ (xc

p) + ξ+θ (xc
a)
)
,

Gn(w
c
a) =

1

P

P∑
k=1

1

K

K∑
n=1

wk
n

(
ξ−θ (xk

n) + ξ−θ (xc
a)
)
,

Gb(w
c
a) = 2µ

∑Nc

i=1 w
c
i

Nc
− 1

C − 1

∑
k∈[C]
k ̸=c

∑Nk

i=1 w
k
i

Nk

 .

(8)

The gradient G in Eq. (8) is composed of four terms. Both
Gp and Gn are related to the similarity between samples,
and they imply that if one sample owns the high similar-
ity to samples from different classes and the low similarity
to samples from the same class, our algorithm would ex-
clude this sample from the training by gradually reducing
its weight. Moreover, the Gb is generated by our proposed
balance regularization term. As we expected, a sample will
be assigned a larger weight if the average sample weight∑Nc

i=1 wc
i

Nc of its class is low, or the average sample weight
1

C−1

∑
k∈[C],k ̸=c

∑Nk

i=1 wk
i

Nk of all other classes is high. Fi-
nally, the last term of Eq. (8) is the age parameter λ, which
controls the learning pace in SPL. With increased λ, our al-
gorithm tends to assign samples larger weights.

The doubly stochastic projection coordinate gradient
method is summarized in Algorithm 3, where γ means the
learning rate, PS is the projection operation to the set S and
eca is one unit vector where the coordinate with the same
index as wc

a holds the value of 1.
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Theoretical Analysis
In this section, we prove the convergence of Algorithms 3
and 1. All the proof details are available in Appendix.
Convergence of Algorithm 3: For Algorithm 3, let wj(t)

mean the coordinate selected in t-iteration and B(t) mean
the mini-batch sampled in t-iteration. Then, we define

∇j(t)L(wt; θ, λ) =
∂L(wt; θ, λ)

∂wj(t)
.

Next, we introduce the necessary assumption and the defini-
tion of the projected gradient.
Assumption 1. For any t ∈ N, we have

EB(t)

[
|G(wj(t))−∇j(t)L(wt; θ, λ)|2

]
≤ (σt)2, (9)

where σt > 0 is some constant.
Definition 1 (Projected gradient (Ghadimi, Lan, and Zhang
2016)). Let S be a closed convex set with dimension N and
the projected gradient is defined as:

GS(w,g, γ) =
1

γ
(w−PS(w−γg)), (10)

where w ∈ S, g ∈ RN and γ ∈ R.
Assumption 1 is a common assumption in stochastic op-

timization (Gu, Huo, and Huang 2019), which bounds the
error between the stochastic gradient and the full gradient.
Besides, based on Definition 1, we have that

G[0,1]N (wt, G(wj(t)) ej(t), γ
t) =

wt −wt+1

γt
:= D̂t (11)

means the projected gradient generated in t-iteration, where
ei is one unit vector with i-th coordinate holding the value of
1. Based on these, we provide the convergence of Algorithm
3 in Theorem 1.
Theorem 1. When Assumption 1 holds and we use Algo-
rithm 3 to optimize w, Lmax > 0 is the maximum lipschitz
constant of sub-problems w.r.t. single coordinate wi, i ∈
[N ], stepsizes {γt}∞t=1 satisfy 0 < γt+1 ≤ γt < 2

Lmax
and

∞∑
t=1

γt = +∞,
∞∑
t=1

γt(σt)2 < ∞, (12)

then there exists an index sub-sequence K such that

lim
t→∞
t∈K

E||D̂t||2 = 0. (13)

Remark 1. The above theorem shows that Algorithm 3 ap-
proaches to a stationary point of the sub-problem w.r.t. sam-
ple weights. It indicates that our algorithm can assign ap-
propriate sample weights to guide the model training.
Convergence of Algorithm 1: Before providing the conver-
gence of our BSPML algorithm, i.e., Algorithm 1, we intro-
duce the following assumption:
Assumption 2. If we call the gradient-based algorithm to
minimize F (X) with an initial solution X0, we have that
F (X0) ≥ F (Xt) when the iteration number t is large
enough.

It is easy to verify that Assumption 2 is a basic require-
ment for a gradient-based optimizer no matter whether the
optimization objective is convex or not. At this time, we give
the convergence of our BSPML as follows.

Theorem 2. If Assumption 2 holds, the objective function
sequence {L(θt,wt;λt)}Tt=1 generated by the BSPML al-
gorithm converges with the following property:

lim
t→∞

||L(θt,wt;λt)− L(θt−1,wt−1;λt−1)|| = 0.

Remark 2. The above theorem shows that when the iter-
ation number is large enough, our objective function can
converge to a fixed value by using our BSPML algorithm.

Experiments
In this section, we present experimental results to demon-
strate the superiority of our BSPML algorithm.

Experimental Setup
Data Sets: We conduct experiments on four standard data
sets: CUB200, Cars-196, In-Shop and Stanford Online Prod-
ucts (SOP). For all data sets, we use half of the classes for
training and the rest for testing. In addition, to test the ro-
bustness of all methods, we construct artificial noisy data
sets. Specifically, we stochastically select samples from each
class in the training set and change their labels to other
classes. Since there are only a few samples in most classes
of the SOP data set, making it noisy would seriously break
the nature of this data set. Thus, we did not conduct experi-
ments on the noisy SOP data set.
Compared Algorithms: We compare our algorithm with
classic DML algorithms, i.e., contrastive loss (Hadsell,
Chopra, and LeCun 2006) and tripletsmooth loss (Hermans,
Beyer, and Leibe 2017), state-of-the-art DML algorithms,
i.e., margin loss (Wu et al. 2017), FastAP loss (Cakir et al.
2019) and MS loss (Wang et al. 2019), and robust DML al-
gorithms, i.e., RDML loss (Al-Obaidi, Zabihzadeh, and Ha-
jiabadi 2020), Proxy-Anchor loss (Kim et al. 2020) and SNR
loss (Yuan et al. 2019).
Design of Experiments: All algorithms are implemented
based on the open PyTorch package (Musgrave, Belongie,
and Lim 2020) using the same network structure with the
embedding size 512. All the network parameters are opti-
mized by SGD with the learning rate 5e-6 and the batch
size 64. Specifically, one batch is constructed by first sam-
pling P = 16 classes, and then sampling K = 4 images
for each class. For contrastive loss and SNR loss, the pos-
itive margin is set to 1 and the negative margin is set to 0.
As original paper shows, we set α = 0.2, β(0) = 1.2 and
β(class) = β(img) = 0 for margin loss. For FastAP loss,
the number of soft histogram bins is set to 10 recommended
by the authors. η is selected from {0.5, 1, 2, 3, 4} for RDML
loss. For Proxy-Anchor loss, α = 32, δ = 0.1 and all prox-
ies are initialized using a normal distribution. For MS loss
and our BSPML, ϵ is set to 0.1 and α = 2, ρ = 1, β = 50.

Considering hyper-parameters µ and λ, we design exper-
iments to analyze their roles. Note that we introduce the
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CUB Cars
R@1 R@2 R@4 R@8 R@16 R@32 NMI R@1 R@2 R@4 R@8 R@16 R@32 NMI

Contrastive 49.6 62.1 73.3 82.7 89.8 94.6 57.7 56.4 68.1 77.2 85.7 91.3 95.6 51.8
Tripletsmooth 42.0 54.5 66.4 77.6 86.5 92.7 52.3 37.4 49.9 62.3 73.7 83.6 90.7 47.9

Margin 38.0 49.9 62.7 74.6 84.8 91.4 51.4 42.8 54.6 66.5 77.7 86.7 93.1 49.4
FastAP 42.9 55.0 67.3 78.0 86.8 92.9 52.7 33.6 46.7 59.5 71.6 82.3 90.6 49.4

MS 49.2 61.5 73.5 83.1 89.5 94.6 58.2 58.1 70.2 80.0 87.5 92.6 96.1 54.4
RDML 43.5 56.8 69.1 80.1 88.5 93.9 53.1 37.7 51.5 64.7 76.1 85.5 92.3 49.1

Proxy-Anchor 48.9 61.6 72.9 82.7 89.4 94.6 57.9 58.5 70.4 80.2 87.4 92.7 96.5 54.6
SNR 47.8 61.5 72.9 82.6 89.3 94.3 56.4 56.0 67.9 78.1 86.1 91.9 95.5 51.2

BSPML 50.6 62.8 74.1 83.5 89.7 94.9 58.9 59.6 71.4 80.3 87.6 92.9 96.4 55.4
In-shop SOP

R@1 R@2 R@4 R@8 R@16 R@32 NMI R@1 R@8 R@16 R@32 R@64 R@128 NMI
Contrastive 73.1 80.9 86.8 90.8 93.4 95.5 82.9 65.0 79.5 83.1 86.2 88.7 91.1 88.3
Tripletsmooth 67.6 77.0 84.7 89.8 93.5 96.0 83.2 61.6 77.4 81.6 85.3 88.4 91.1 87.8

Margin 55.7 66.5 75.9 83.2 88.9 93.0 80.1 51.4 69.9 75.3 80.4 84.8 88.7 86.2
FastAP 64.6 74.2 82.3 88.1 92.1 94.7 82.3 58.6 76.0 80.5 84.6 88.0 91.0 87.5

MS 73.4 80.7 86.4 90.6 93.4 95.3 84.7 65.8 79.4 83.0 86.2 89.2 91.7 88.6
RDML 69.6 78.7 85.4 90.3 93.5 95.7 83.0 62.8 78.0 82.1 85.6 88.7 90.7 88.1

Proxy-Anchor 74.2 81.2 86.9 91.0 93.7 95.5 85.0 66.3 80.2 83.3 86.2 88.7 90.9 88.7
SNR 72.7 80.6 87.1 91.3 94.1 96.2 83.6 65.3 79.0 82.3 85.5 88.3 90.6 88.3

BSPML 75.0 82.1 87.8 91.6 94.2 96.0 85.9 66.3 80.9 84.4 87.5 90.1 92.5 89.1

Table 1: Retrieval and clustering performance (%) on original data sets.

NR Contrastive Tripletsmooth Margin FastAP MS RDML Proxy-Anchor SNR BSPML

CUB
10% 48.26±0.21 39.69±0.17 37.72±0.18 41.57±0.13 48.46±0.16 41.59±0.15 48.31±0.12 45.95±0.19 50.08± 0.18
20% 47.79±0.19 36.25±0.17 35.06±0.20 38.80±0.15 47.68±0.16 39.63±0.16 47.62±0.14 45.16±0.17 49.38± 0.20
30% 46.25±0.24 33.92±0.20 34.36±0.18 37.10±0.15 46.25±0.14 37.57±0.16 46.66±0.15 44.43±0.21 48.74± 0.19

Car
10% 55.24±0.26 36.58±0.18 40.24±0.18 32.33±0.12 57.11±0.15 37.09±0.16 57.84±0.15 55.04±0.17 58.78± 0.18
20% 54.55±0.24 35.76±0.17 38.49±0.21 31.68±0.10 56.37±0.17 36.32±0.15 57.18±0.15 53.49±0.18 58.24± 0.16
30% 52.94±0.22 34.81±0.19 37.67±0.17 31.04±0.10 55.14±0.18 35.55±0.15 56.06±0.16 51.51±0.20 57.38± 0.19

In-shop
10% 69.59±0.29 59.69±0.21 50.33±0.20 56.28±0.18 70.33±0.25 62.50±0.22 70.51±0.17 67.24±0.25 71.44± 0.23
20% 63.34±0.27 53.20±0.18 45.74±0.21 52.03±0.13 65.68±0.20 57.73±0.20 66.38±0.17 60.36±0.23 67.91± 0.25
30% 56.76±0.22 48.35±0.17 43.16±0.15 49.37±0.13 58.85±0.24 53.97±0.21 60.25±0.15 53.62±0.23 62.04± 0.23

Table 2: Recall@1 results (%) with the corresponding standard deviation on noisy data sets with different Noise Ratios (NR).

Mean of Average Weights of classes (MAW) and the Stan-
dard Deviation of Average Weights of classes (SDAW):

MAW =
1

C

C∑
c=1

∑Nc

i=1 w
c
i

Nc
,

SDAW =

(
1

C

C∑
c=1

(∑Nc

i=1 w
c
i

Nc
− MAW

)2) 1
2

.

(14)

MAW represents the average weight of all samples and
SDAW implies the balance degree between the average sam-
ple weights of classes. The smaller the value of SDAW, the
more balanced the average sample weights of classes. More-
over, to verify the feasibility of each part of our BSPML,
we carry out ablation experiments with varying embedding
sizes {64, 128, 256, 512} on noisy data sets.

For the retrieval task, all algorithms are evaluated by the
standard metric Recall@K. To calculate Recall@K, each
testing sample first retrieves K nearest neighbors from the
test set and receives a score 1 if a sample of the same class
is retrieved among the K nearest neighbors. Considering the
clustering performance, we utilize the normalized mutual in-
formation (NMI) score: NMI(Ω, C) = 2I(Ω,C)

H(Ω)+H(C) , where Ω

denotes the real clustering result and C denotes the set of
clusters obtained by K-means. Here, I(·) represents the mu-
tual information and H(·) represents the entropy.

Results and Discussion
Table 1 presents Recall@K and NMI performance on four
standard data sets. Benefiting from the SPL strategy, our
BSPML avoids getting stuck into one bad local optimal solu-
tion and thus achieves better generalization ability than MS
loss that is the non-SPL version of our BSPML. Meanwhile,
compared with other state-of-the-art DML algorithms, our
BSPML also obtains better performance.

Table 2 shows Recall@1 performance on three noisy data
sets with different noise ratios (from 10% to 30%). These
results show that our BSPML obviously achieves better per-
formance than non-robust DML algorithms. Compared with
robust DML algorithms, our BSPML also has sufficient ad-
vantages. Specifically, while SNR loss seems to be helpful
against the noisy feature, it has limited robustness against the
noisy label that is a much trickier challenge. Proxy-Anchor
loss and RDML loss attempt to reduce the influence of noisy
samples, but they are still sensitive to large noise ratios. Our
BSPML is able to exclude noisy samples from the training

11188



(a) CUB (b) Car (c) In-shop

Figure 3: MAW results with different values of µ and λ on data sets with 20% noisy samples.

(a) CUB (b) Car (c) In-shop

Figure 4: SDAW results with different values of µ and λ on data sets with 20% noisy samples.

(a) CUB (b) Car (c) In-shop

Figure 5: Recall@1 results (%) with different embedding sizes on data sets with 20% noisy samples.

process directly and thus has better robustness.
Fig. 3 and Fig. 4 show the effect of λ and µ on the

sample weight. Note that MAW (14) represents the average
weight of all samples and SDAW (14) implies the balance
degree between the average sample weights of classes. Fig.
3 clearly reveals that with the increase of λ, our BSPML
tends to assign samples larger weights and thus allows hard
samples with larger losses to join the training. Obviously,
this phenomenon is consistent with the classic SPL strategy.
Moreover, as shown in Fig. 4, the average sample weights of
classes are balanced as much as possible when µ is set to a
large value. This phenomenon shows the critical role of our
balance regularization term.

Fig. 5 shows the Recall@1 performance of ablation exper-
iments with varying embedding sizes {64, 128, 256, 512} on
the data sets with 20% noisy samples, where the SPMS is
generated by introducing SPL strategy into MS loss without
the balance regularization term. Compared with the origi-
nal MS loss, the performance of SPMS is improved regard-

less of the embedding size. However, SPMS still faces the
challenge of the unbalanced average sample weights among
classes. Benefiting from the balance regularization term, our
BSPML achieves the best performance.

Conclusion

In this paper, we build a connection between noisy sam-
ples and hard samples in the framework of self-paced learn-
ing and propose a Balanced Self-Paced Metric Learning
(BSPML) algorithm with a novel denoising multi-similarity
formulation to deal with noisy data in DML effectively.
Specifically, our BSPML algorithm treats noisy samples as
extremely hard samples and adaptively excludes them from
the model training by sample weighting. Experimental re-
sults demonstrate that our BSPML algorithm has better ro-
bustness than the state-of-the-art robust DML approaches.

11189



Acknowledgments
Bin Gu was partially supported by the National Natural Sci-
ence Foundation of China (No:61573191).

References
Al-Obaidi, S. A. R.; Zabihzadeh, D.; and Hajiabadi, H.
2020. Robust metric learning based on the rescaled hinge
loss. International Journal of Machine Learning and Cy-
bernetics, 11: 2515–2528.
Bromley, J.; Bentz, J. W.; Bottou, L.; Guyon, I.; LeCun, Y.;
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