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Abstract

Incomplete multi-view clustering (IMVC) has attracted re-
markable attention due to the emergence of multi-view data
with missing views in real applications. Recent methods
attempt to recover the missing information to address the
IMVC problem. However, they generally cannot fully ex-
plore the underlying properties and correlations of data sim-
ilarities across views. This paper proposes a novel Enhanced
Tensor Low-rank and Sparse Representation Recovery (ETL-
SRR) method, which reformulates the IMVC problem as a
joint incomplete similarity graph learning and complete ten-
sor representation recovery problem. Specifically, ETLSRR
learns the intra-view similarity graphs and constructs a 3-way
tensor by stacking the graphs to explore the inter-view corre-
lations. To alleviate the negative influence of missing views
and data noise, ETLSRR decomposes the tensor into two
parts: a sparse tensor and an intrinsic tensor, which models
the noise and underlying true data similarities, respectively.
Both global low-rank and local structured sparse character-
istics of the intrinsic tensor are considered, which enhances
the discrimination of similarity matrix. Moreover, instead of
using the convex tensor nuclear norm, ETLSRR introduces
a generalized nonconvex tensor low-rank regularization to
alleviate the biased approximation. Experiments on several
datasets demonstrate the effectiveness and superiority of our
method compared with the state-of-the-art methods.

Introduction
In the big data era, multi-view data become very common
in real-world applications, and multi-view learning has at-
tracted much attention in the machine learning and data min-
ing communities (Han et al. 2022; Li et al. 2023; Xia et al.
2022b; Hassani and Khasahmadi 2020; Zhang et al. 2022d).
As one of the most important tasks of multi-view learning,
multi-view clustering (MVC) aims to partition the multi-
view data into groups by exploiting the potential consistent
and complementary information across views. Recently, var-
ious successful MVC methods have been developed (Zhang
et al. 2017; Peng et al. 2019; Wang et al. 2019; Chen et al.
2020; Tang et al. 2020; Pan and Kang 2021; Xu et al. 2022b).
These methods have achieved promising clustering perfor-
mance in the case that the information of all views is avail-
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able. However, in real scenarios, the collected multi-view
data are usually incomplete with missing views. For exam-
ple, some webpages contain texts, images, and videos, while
some others only have texts. In industrial monitor, the multi-
source data are often collected independently by a set of
detectors, which can be incomplete due to detector failure.
Traditional MVC methods cannot handle this problem, and
increasing attention has been paid to incomplete multi-view
clustering (IMVC) (Zhao, Liu, and Fu 2016; Liu et al. 2021;
Wen et al. 2020; Lin et al. 2021; Zhang et al. 2022a).

Most existing IMVC methods can be categorized into
non-imputation and imputation based approaches. Non-
imputation based methods usually learn a common rep-
resentation or subspace from existing data. Partial multi-
view clustering (PVC) learns a common representation for
aligned samples and a private representation for unaligned
ones by non-negative matrix factorization (Li, Jiang, and
Zhou 2014). Anchor based partial multi-view clustering
(APMC) selects anchors from paired samples and cap-
tures the pairwise similarities based on anchors (Guo and
Ye 2019). Consensus bipartite graph based IMVC (IMVC-
CBG) adaptively learns latent anchors and bipartite graphs
in a unified framework (Wang et al. 2022). Different from
the above methods that neglect the underlying information
of missing views, imputation based methods try to fill the
missing information. Early works directly fill the missing
views by zero values or average features, which will in-
troduce large errors under high data missing rates. Some
recent methods attempt to explore the multi-view correla-
tions for filling the missing views (Wen et al. 2019; Zhang
et al. 2022b). Zhang et al. recently proposed a Low-rank ten-
sor regularized views recovery (LATER) method to fill the
missing views for IMVC (Zhang et al. 2022b). It assumes
a shared latent representation for all views to recovery the
missing views, and the inter-view correlations are regular-
ized by a low-rank tensor (Xie et al. 2018; Wu, Lin, and Zha
2019; Zhang et al. 2020) to enhance the recovery quality.
Incomplete multi-view tensor spectral clustering with miss-
ing view inferring (IMVTSC-MVI) (Wen et al. 2021b) fills
the missing views by error matrices, and learns view-specific
self-expression graphs with low-rank tensor regularization.

More recently, instead of directly filling the original
views, some researchers perform imputation on incomplete
similarity graphs which essentially transfers the missing data
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problem from original feature space to graph space (Wen
et al. 2021a; Xia et al. 2022a; Wen, Xu, and Liu 2020). For
example, adaptive graph completion based method (AGC-
IMC) performs low-rank matrix completion on all kNN sim-
ilarity graphs of incomplete views, and learns a consensus
representation for clustering (Wen et al. 2021a). By stacking
the similarity graphs with missing values into a 3-order ten-
sor, Xia et al. proposed a tensor completion based method
(TCIMC), which recovers a complete low-rank tensor and
learns a common representation under the guidance of re-
covered tensor (Xia et al. 2022a). Recovering the similar-
ity graphs is interesting and natural to address the IMVC
problem. Although the above graph completion methods
have achieved promising performance, there are still some
limitations. On the one hand, these methods generally con-
duct completion on pre-defined graphs (e.g., kNN graphs),
which separates the graph learning and graph recovery into
two steps, making the clustering performance sensitive to
the initial graphs quality. On the other hand, these meth-
ods mainly focus on the global low-rank property, while
the local structures in graphs are not fully exploited. The
local structures characterize the intra-class and inter-class
relationships among data, which is significant for effective
clustering. Moreover, most methods use the convex nuclear
norm for low-rank approximation, which is a biased estima-
tion of rank function.

To this end, we propose a novel enhanced tensor low-rank
and sparse representation recovery method, called ETLSRR.
ETLSRR formulates the IMVC problem as a joint incom-
plete graph learning and tensor based complete graph recov-
ery problem. The graph learning and tensor recovery are in-
tegrated into a unified framework and coordinates with each
other to boost graph quality. The noisy tensor stacked by in-
complete graphs is decomposed into a sparse noise tensor
and an intrinsic similarity tensor with low-rank and sparse
property. Moreover, a generalized tensor low-rank regular-
ization is introduced to enhance the low-rank property. We
summarize the main contributions as follows:
• ETLSRR provides a novel joint graph learning and tensor

based graph recovery optimization framework to address
the IMVC problem.

• To alleviate the negative influence of noise, ETLSRR
adopts tensor decomposition to explicitly model the
noisy values, and recover an intrinsic tensor with both
global low-rank and local structure sparse regularization.

• ETLSRR introduces a generalized nonconvex approxi-
mation for tensor low-rank property, and considers the lo-
cal structure with row fiber sparsity regularization, which
enhances the discrimination of learned affinity graphs.

Notations and Preliminaries
We use bold lower case letters (e.g. a) for vectors, up-
per case letters (e.g., A) for matrices, and calligraphy let-
ters (e.g., A) for tensors. For a matrix A ∈ Rn1×n2 , its
Frobenius norm, nuclear norm, and ℓ2,1-norm are defined

as ∥A∥F =
√∑

ij a
2
ij , ∥A∥∗ =

∑
i δi(A), and ∥A∥2,1 =∑

j

√∑
i a

2
ij , respectively, where aij is the element of A

at position (i, j), and δi(A) is the i-th singular value of
A. For a tensor A ∈ Rn1×n2×n3 , its ℓ1 norm, Frobenius
norm, and infinity norm are defined as ∥A∥1 =

∑
ijk |aijk|,

∥A∥F =
√∑

ijk a
2
ijk, and ∥A∥∞ = maxijk |aijk|, respec-

tively. A(:,:,i), A(:,i,:), A(i,:,:) denote the i-th frontal, lateral,
and horizantal slice, respectively. For convenience, we use
A(i) to represent A(:,:,i). The inner product between A and
B is ⟨A,B⟩ =

∑n3

i=1⟨A(i),B(i)⟩. Â denotes the fast Fourier
transformation (FFT) of A along the third dimension, i.e.,
Â = fft(A, [], 3), and A can be recovered from Â by the in-
verse FFT operation, i.e., A = ifft(Â, [], 3)(Lu et al. 2020).
Definition 1 (t-SVD (Kilmer et al. 2013)). For a tensor A ∈
Rn1×n2×n3 , its t-SVD is defined as

A = U ∗ S ∗ VT ,

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogo-
nal tensors, S ∈ Rn1×n2×n3 is an f-diagonal tensor, whose
frontal slices are all diagonal matrices, and ”∗” denotes the
t-product.

Based on t-SVD, the tensor multi-rank and tensor nuclear
norm are defined as follows.
Definition 2 (tensor multi-rank (Zhou et al. 2018)). Given
a tensor A ∈ Rn1×n2×n3 , its multi-rank rankm(A) is a vec-
tor defined as

rankm(A) = [rank(Â(1)); rank(Â(2)); ...; rank(Â(n3))].

Definition 3 (tensor nuclear norm (Zhou et al. 2018)).
Tensor nuclear norm is the tightest convex relaxation to the
ℓ1 norm of tensor multi-rank, which is defined as

∥A∥⊛ =

n3∑
k=1

∥Â(k)∥∗ =

min(n1,n2)∑
i=1

n3∑
k=1

δi(Â
(k)),

where δi(Â(k)) is the i-th singular value of Â(k).

Let X̃ = {X̃v}mv=1 be an incomplete multi-view dataset
with m views, and X̃v ∈ Rdv×nv denotes the existing data
matrix of the i-th view, where dv is the feature dimension
and nv is the number of samples in view v. X = {Xv}mv=1
with Xv ∈ Rdv×n represents the complete dataset by filling
the missing values in X̃, and n is the number of all samples
(n ≥ nv). Note that we do not fill X̃ in our method and just
use X for ease of expression.

Method
Recovering the missing information is significant for IMVC.
Considering that directly recovering the original missing
features may be difficult due to the complex intra- and inter-
class variations, we attempt to recover the latent similarity
graphs for clustering, and reformulate the IMVC problem
as a joint graph learning and tensor recovery problem. The
overall framework of our ETLSRR is shown in Figure 1.

Formulation
Graph based methods are popular and have been developed
in recent years, which seek the pairwise similarity among
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Figure 1: The overall framework of ETLSRR.

all data points for clustering. Low-rank representation based
graph learning is widely adopted, in which a common graph
with nuclear norm regularization is usually learned for all
views (Zhang et al. 2017; Chen et al. 2020). However, for in-
complete multi-view data, the common graph cannot be di-
rectly obtained due to the missing views. A straightforward
strategy to deal with the incomplete data can be formulated
as

min
Z̃v,Ev

m∑
v=1

∥Z̃v∥∗ + λφ(Ev) s.t. X̃v = X̃vZ̃v +Ev, (1)

where Z̃v ∈ Rnv×nv is the similarity graph of the v-th view,
Ev ∈ Rdv×nv is the reconstruction error, φ is a function to
estimate the data noise, and λ is a tradeoff parameter.

Due to the missing views of samples, each Z̃v is incom-
plete in which the similarities related to missing samples are
not encoded. For effective clustering, it is necessary to ob-
tain a complete graph by leveraging and exploring all incom-
plete graphs. For its purpose, we first define an index matrix
Hv ∈ Rn×nv for the v-th view as follows:

hvij =

1,
if the i-th sample in Xv is the
j-th existing sample in X̃v,

0, otherwise.
(2)

Hv indicates the positions of missing samples in view v.
Then, a complete graph Zv ∈ Rn×n can be constructed by

Zv = HvZ̃vHvT . (3)

Zv is equivalent to filling the missing values in Z̃v by zero,
which is corrupted and introduces noisy information. Di-
rectly using these corrupted graphs for clustering will lead
to degraded performance. Thus, we expect to recover an in-
trinsic similarity matrix from these corrupted ones.

By stacking the view-specific graphs into a 3-order tensor,
low-rank tensor based graph learning has been proved effec-
tive to explore the underlying correlations across views (Xie
et al. 2018; Wu et al. 2020; Gao et al. 2020). Inspired by
this, we first stack {Zv}mv=1 into a tensor Z ∈ Rn×m×n (see
Figure 1), and then reformulate the intrinsic graph learning
problem as a tensor recovery problem. Specifically, the cor-
rupted tensor Z can be decomposed into a low-rank tensor

L and a sparse noise tensor S , i.e., Z = L+ S . The overall
model can be described as follows:

min
Ω

m∑
v=1

∥Ev∥2,1 + λ∥L∥⊛ + θ∥S∥1

s.t. X̃v = X̃vZ̃v +Ev,Z = L+ S,

Z = Φ(H1Z̃1H1T , ...,HmZ̃mHmT ),

(4)

where Φ is an operator to construct a 3-order tensor by col-
lecting all graphs, and Ω = {Ev, Z̃v,Z,L,S} is the target
variables set. ℓ2,1 norm is used to characterize the recon-
struction errors, the intrisic tensor L is regularized by the
popular tensor nuclear norm which encodes the true relation-
ships among all samples including existing and missing ones
in each view, and the sparse noise tensor S characterizes the
noisy values caused by missing values imputation and origi-
nal graph learning. According to definition 2, the convex nu-
clear norm in Eq. (4) directly sums all nuclear norms, which
treats each singular value equally and ignores their different
roles, leading to a biased approximation (Gao et al. 2020).
Besides, Eq. (4) mainly focuses on the global low-rank prop-
erty, but neglects the local structures in graphs. As shown in
Figure 1, due to the local intra-class compactness, the frontal
slices of recovered tensor L describes the sample-level sim-
ilarities across views, and they should be structured sparse,
i.e., row-wise sparse.

To enhance the low-rank property of recovered tensor, we
extend the tensor nuclear norm by introducing a general sur-
rogate to approximate the tensor rank as follows:

∥L∥γ,⊛ =

min(n,m)∑
i=1

n∑
k=1

ψγ(δi(L̂
(k))), (5)

where ψγ(·) is a nonconvex function with adjustment pa-
rameter γ ∈ R+. Obviously, when ψγ(·) is convex function
ψγ(x) = x, Eq. (5) becomes the tensor nuclear norm. In-
spired by (Lu et al. 2016), we define

ψγ(δi(L̂
(k))) = 1− exp(

−δi(L̂(k))

γ
), (6)

which is the Laplace function, and it has been widely used
for matrix low-rank nonconvex surrogates.
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To capture the structured sparse property, we define
∥L∥F1F =

∑
ik ∥L(i,:,k)∥2, where L(i,:,k) is a mode-2 (row)

fiber. Minimizing ∥L∥F1F encourages the sparsity at row
fibers level. By intergrating the nonconvex low-rank and
sparse regularization terms into Eq. (4), the objective func-
tion of ETLSRR is described as

min
Ω

m∑
v=1

∥Ev∥2,1 + λ∥L∥γ,⊛ + µ∥L∥F1F + θ∥S∥1

s.t. X̃v = X̃vZ̃v +Ev,Z = L+ S,

Z = Φ(H1Z̃1H1T , ...,HmZ̃mHmT ).

(7)

As can be observed, ETLSRR jointly learns graphs and
recovers an intrinsic tensor from a corrupted one with low-
rank and sparse regularization. Once the optimal tensor L
is acquired, we can compute the final complete similarity
matrix Q ∈ Rn×n by

Q =
1

m

m∑
v=1

|Lv|+ |Lv|T

2
, (8)

where Lv is the v-th graph in L (i.e., the v-th lateral slice).
Then, we can perform spectral clustering on Q to obtain
clusters (Zhang et al. 2017).

Optimization
The ETLSRR model can be solved by the alternation di-
rection method of multipliers algorithm (Boyd et al. 2011;
Zhang et al. 2022c). We first introduce two tensor variables
B and C, and rewrite the original problem as follows:

min
Ω

m∑
v=1

∥Ev∥2,1 + λ∥B∥γ,⊛ + µ∥C∥F1F + θ∥S∥1

s.t.Xv = X̃vZ̃v +Ev,Z = L+ S,L = B,L = C,

Z = Φ(H1Z̃1H1T , ...,HmZ̃mHmT ).

(9)

The augmented Lagrangian function of problem (9) is:

Lρ =

m∑
v=1

∥Ev∥2,1 + λ∥B∥γ,⊛ + θ∥S∥1 + µ∥C∥F1F

+ ⟨X̃v − X̃vZ̃v −Ev,Yv⟩+ ⟨Z − L − S,F1⟩

+ ⟨L − B,F2⟩+ ⟨L − C,F3⟩+
ρ

2
∥L − B∥2F +

ρ

2
∥L − C∥2F

+
ρ

2
∥X̃v − X̃vZ̃v −Ev∥2F +

ρ

2
∥Z − L − S∥2F ,

s.t. Z = Φ(H1Z̃1H1T , ...,HmZ̃mHmT ).

where ρ > 0 is a penalty factor, Yv , F1, F2 and F3 are
Lagrange multipliers. Then, all variables can be updated by
iteratively solving the corresponding sub-problems. Specifi-
cally, in the (t+1)-th iteration, it solves the following prob-
lems in sequence.

Step 1: By fixing other variables, Z̃v can be updated by

Z̃v
t+1 = argmin

Z̃v
∥Qv

t −X̃vZ̃v∥2F +∥HvZ̃vHvT −Pv
t ∥2F , (10)

where Qv
t = X̃v−Ev

t +Yv
t /ρt and Pv = Lv

t +Sv
t −Fv

1/ρt.
By setting the derivative over Z̃v to zero, we can obtain

(HvTHv)−1X̃vT X̃vZ̃v + Z̃vHvTHv = Mv, (11)

where Mv = (HvTHv)−1(X̃vTQv
t + HvTPv

tH
v). It is a

typical Sylvester equation and can be solved by the Bartels-
Stewart algorithm (Zhang et al. 2017).

Step 2: Ev can be updated by

Ev
t+1 = argmin

Ev
∥Ev∥2,1 +

ρt
2
∥Ev − Jv

t+1∥2F , (12)

where Jv
t+1 = X̃v−X̃vZ̃v

t+1+Yv
t /ρt. The optimal solution

can be obtained by Lemma 4.1 in (Liu et al. 2013).
Step 3: L can be updated by

Lt+1 = argmin
L

∥Zt+1 − L− St +
F1,t

ρt
∥2F+

∥L − Bt +
F2,t

ρt
∥2F + ∥L − Ct +

F3,t

ρt
∥2F .

The optimal solution is

Lt+1 = (K +
F1,t −F2,t −F3,t

ρt
)/3, (13)

where K = Zt+1 − St + Bt + Ct.
Step 4: B can be updated by

Bt+1 = argmin
B

λ

ρt
∥B∥γ,⊛ +

1

2
∥Bt −Dt+1∥2F , (14)

where Dt+1 = Lt+1 + F2,t/ρt. It is difficult to directly
yield the closed-form solution due to the nonconvexity of the
generalized tensor rank approximation. Based on Eq. (5), we
transform problem (14) into n separated sub-problems in the
frequency domain, and the k-th problem is

B
(k)
t+1 = argmin

B̂(k)

λ

ρt

m∑
i=1

ψγ(δi(B̂
(k))) +

1

2
∥B̂(k) − D̂

(k)
t+1∥

2
F .

(15)
Due to the antimonotone property of gradient of the noncon-
vex function in Eq. (5) and the descending order of singular
values, it holds that 0 ≤ ∇ψγ(δ

t
1) ≤ ∇ψγ(δ

t
2) ≤ ... ≤

∇ψγ(δ
t
m). Then, we can obtain

ψγ(δi(B̂
(k))) ≤ ψγ(δ

t
i) +∇ψγ(δ

t
i)(δi(B̂

(k))− δti),

where δti denotes the i-th singular values of B̂
(k)
t , and

∇ψγ(δ
t
i) is the gradient of ψγ(B̂

(k)) at δti . By using the in-
equality, we relax problem (15) as follows:

B
(k)
t+1 =argmin

L̂(k)

λ

ρt

m∑
i=1

ψγ(δ
t
i) +∇ψγ(δ

t
i)(δi(B̂

(k))− δti)

+
1

2
∥B̂(k) − D̂

(k)
t+1∥

2
F

=argmin
B̂(k)

λ

ρt

V∑
i=1

∇ψγ(δ
t
i)δi(B̂

(k)) +
1

2
∥B̂(k) − D̂

(k)
t+1∥

2
F ,

which can be viewed as a weighted nuclear norm regularized
problem. We solve it by the generalized weighted singular
value thresholding operator (Lu et al. 2015), i.e.,

B
(k)
t+1 = UHλ∇ψγ

ρt

(Σ)VT , (16)

where UΣVT is the SVD of D̂
(k)
t+1, and Hλ∇ψγ

ρt

(Σ) =

diag{max(0,Σi,i − λ∇ψγ(δ
t
i)/ρt)}.
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Algorithm 1: ETLSRR algorithm
Input: Data matrices {X̃v}mv=1, parameters λ, µ, θ, γ.

1: Initialize E(v) = 0, Z(v) = 0, Y(v) = 0, L = S = 0,
F1 = F2 = F3 = 0, ρ = 10−3, δ = 1.3, µmax = 106,
ϵ = 10−5.

2: while not converged do
3: Update Z̃v by solving (11);
4: Update Ev by solving (12);
5: Construct Z = Φ(H1Z̃1H1T , ...,HmZ̃mHmT );
6: Update L by solving (13);
7: Update B by solving (16);
8: Update C by Eq. (18);
9: Update S by solving (19);

10: Update the Lagrange multipliers and penalty factors
by Eqs. (20);

11: end while
Output: Compute the final similarity graph Q by Eq. (8).

Step 5: C can be updated by

Ct+1 = argmin
C

µ

ρt
∥C∥F1F +

1

2
∥C − Gt+1∥2F , (17)

where Gt+1 = Lt+1 + F3,t/ρt. The optimal solution Ct+1

can be obtained by operating on each row fiber, i.e.,

C(i,:,j)
t+1 =


∥∥∥G(i,:,j)
t+1

∥∥∥
2
− µ
ρt∥∥∥G(i,:,j)

t+1

∥∥∥
2

G(i,:,j)
t+1 , if

∥∥∥G(i,:,j)
t+1

∥∥∥
2
> µ

ρt
,

0, otherwise.
(18)

Step 6: S can be updated by

St+1 = argmin
S

θ

ρt
∥S∥1 +

1

2
∥S −Qt+1∥2F , (19)

where Qt+1 = Zt+1−Lt+1+
1
ρt
F1,t. It can be solved by the

well-known soft-threshold operator (Yang and Zhang 2011).
Step 7: The Lagrange multipliers and penalty factor can

be updated by

Y
(v)
t+1 = Y

(v)
t + ρt(X̃

(v) − X̃(v)Z̃
(v)
t+1 −E(v)),

F1,t+1 = F1,t + ρt (Zt+1 − Lt+1 − St+1) ,

F2,t+1 = F2,t + ρt (Lt+1 − Bt+1) ,

F3,t+1 = F3,t + ρt (Lt+1 − Ct+1) ,

ρt+1 = min (δρt, ρmax) ,

(20)

where δ and ρmax are positive scalars. The convergence con-
ditions are defined as

max


∥∥∥X̃v − X̃vZ̃v

t+1 −Ev
t+1

∥∥∥
∞

∥Zt+1 − Lt+1 − St+1∥∞
∥Lt+1 − Bt+1∥∞
∥Lt+1 − Ct+1∥∞

 ≤ ϵ, (21)

where ϵ is a small tolerance. Algorithm 1 summarizes the
optimization procedure of ETLSRR.

Computational Complexity Analysis

In Z̃v step, the major time cost is the matrix inverse op-
eration and Sylvester equation. Since index matrix Hv is
fixed and the inverse of HvTHv can be computed outside
the loop. The complexity for solving Sylvester equation is
O(n3). In L step, the major computational costs are the FFT
and inverse FFT and SVD operations. The computational
complexity of FFT and inverse FFT is O(mn2log(n) +
m2n2) (Wen et al. 2021b), and that of SVD is O(m2n2).
Since the other steps only have some basic matrix operations
which have lower complexity than the above calculations,
we ignore their computational costs. Thus, the total compu-
tational complexity is aboutO(τ(n3+mn2log(n)+m2n2))
if there are total τ iterations.

Experiment

Experimental Settings

Datasets Five popular datasets are adopted, including: (1)
ORL contains 400 face images from 40 individuals. Three
types of features (intensity, LBP and Gabor) in 4096, 3304,
6750 dimensions, respectively, are extracted as three views.
(2) BBCSport consists of 544 documents collected from the
BBC news website. These documents belong to five topic
labels and contain two views with 3183 and 3203 dimen-
sions, respectively. (3) RGB-D dataset contains 1449 indoor
scenes images and sentential descriptions for each image.
The visual and textual views are in 2048 and 300 dimen-
sions, respectively. (4) UCI contains 2000 handwritten digit
images. Each image has two views with 240 and 76 dimen-
sions, respectively. (5) Scene (Xie et al. 2018) has 15 natu-
ral scene categories with both indoor and outdoor environ-
ments. There are total 4485 images and three views in 1800,
1180, and 1240 dimensions, respectively.

Baselines We adopt the following methods as baselines
for comparison: (1) UEAF (Wen et al. 2019), (2) AGC-
IMC (Wen et al. 2021a), (3) IMVTSC-MVI (Wen et al.
2021b), (4) TMBSD (Li et al. 2021), (5) TCIMC (Xia
et al. 2022a), (6) IMVC-CBG (Wang et al. 2022), and (7)
DIMVC (Xu et al. 2022a), in which DIMVC is a deep IMVC
method. For our method, the parameters (λ, µ, θ) are set to
(10, 1, 1) on ORL, BBCSport, and RGB-D; (10, 0.1, 1) on
UCI and Scene. The bandwidth factor γ in Eq. (6) is 20.

Incomplete Data Construction Following (Wang et al.
2022; Xu et al. 2022b), we construct the incomplete data
with different missing rates p (0.1, 0.3, 0.5, 0.7). For exam-
ple, when the missing rate p = 0.7, we randomly select 30%
samples as complete data and randomly drop partial views
of the rest 70% samples.

Evaluation Metrics The clustering accuracy (ACC), nor-
malized mutual information (NMI), and adjusted rand index
(ARI) are used as evaluation metrics. For all metrics, the
higher values indicate the better performance. We run all ex-
periments 10 times to report the mean values.
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p 0.1 0.3 0.5 0.7
Metric ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI

O
R

L
UEAF 63.52 78.45 47.03 50.32 70.34 31.91 45.85 62.65 12.09 42.50 58.16 8.23
AGC-IMC 74.35 86.59 64.22 74.10 84.87 62.08 62.05 76.86 47.02 56.90 73.06 40.61
IMVTSC-MVI 84.13 94.40 80.26 81.67 90.86 74.26 80.83 90.95 73.64 78.67 89.44 70.54
TMBSD 96.00 98.02 95.07 94.60 97.97 92.97 92.54 96.83 89.98 91.30 96.06 87.93
TCIMC 78.70 89.20 71.09 77.05 87.43 65.99 75.05 85.12 63.00 73.80 84.85 62.28
IMVC-CBG 74.02 88.42 64.43 73.00 88.50 63.88 72.68 88.42 64.01 72.15 88.04 63.58
DIMVC 63.66 82.80 46.15 55.28 76.25 37.20 42.16 63.63 27.73 36.31 55.84 17.15
Ours 96.55 98.95 96.31 96.40 98.90 96.26 95.62 98.40 94.99 95.19 98.24 94.50

B
B

C
Sp

or
t

UEAF 84.38 68.67 66.15 84.45 65.03 65.92 81.49 63.43 64.69 77.76 58.06 54.17
AGC-IMC 86.76 78.56 77.13 84.93 73.22 74.94 85.66 72.61 74.26 83.46 68.28 69.53
IMVTSC-MVI 96.27 94.46 94.45 96.08 94.40 94.23 94.92 92.37 93.32 91.17 87.29 89.54
TMBSD 94.04 85.77 87.23 92.66 84.55 82.52 91.54 84.00 80.12 88.05 83.64 73.98
TCIMC 85.08 75.63 72.03 82.50 71.00 69.55 80.15 70.18 64.00 78.13 66.22 64.29
IMVC-CBG 88.60 73.14 74.57 88.10 72.35 74.17 88.11 72.23 72.21 86.03 69.18 68.18
DIMVC 87.89 79.02 75.94 78.64 70.37 66.69 74.83 53.75 51.61 68.11 42.45 38.87
Ours 99.60 98.56 99.16 99.14 97.66 98.47 99.12 96.99 97.92 97.90 93.88 94.91

R
G

B
-D

UEAF 44.29 37.47 25.44 38.16 32.21 18.23 35.97 29.86 13.38 33.18 26.80 9.09
AGC-IMC 43.93 33.08 23.82 40.86 28.57 19.37 35.40 25.93 15.45 31.82 23.53 13.22
IMVTSC-MVI 44.28 51.06 28.12 40.60 32.16 19.37 34.74 27.43 13.58 32.62 23.14 12.67
TCIMC 49.36 42.30 32.68 41.66 35.84 20.64 38.62 33.20 16.07 34.64 30.55 10.57
TMBSD 42.84 34.61 21.81 37.68 27.57 17.56 32.65 23.76 14.67 32.74 21.43 13.12
IMVC-CBG 47.73 34.84 26.38 46.72 34.15 25.66 45.69 33.96 24.56 44.81 34.05 24.33
DIMVC 41.66 37.56 23.77 38.18 30.46 19.17 31.96 22.64 14.51 28.98 17.86 10.98
Ours 60.80 60.71 47.36 60.56 58.95 46.72 60.32 57.04 45.48 58.18 56.47 43.99

U
C

I

UEAF 87.40 78.20 74.49 68.62 62.35 50.55 56.85 51.17 32.18 43.92 41.98 17.19
AGC-IMC 82.70 85.81 78.44 82.85 84.94 78.10 81.85 83.57 76.74 80.20 81.23 74.23
IMVTSC-MVI 99.60 99.01 99.11 99.35 98.32 98.56 98.90 97.05 97.56 97.80 94.63 95.18
TMBSD 99.15 98.00 98.13 98.98 97.60 97.77 98.05 95.85 95.72 96.11 94.41 92.24
TCIMC 81.25 82.62 75.30 73.37 78.42 69.06 68.90 74.99 60.44 48.88 45.85 22.65
IMVC-CBG 79.54 72.62 65.57 79.19 72.38 65.43 76.20 71.29 63.21 71.49 66.68 56.90
DIMVC 84.65 78.67 69.82 78.87 73.84 62.59 62.95 62.94 62.49 57.43 56.23 44.00
Ours 99.80 99.45 99.56 99.68 99.11 99.38 99.65 99.06 99.22 99.42 98.46 98.73

Sc
en

e

UEAF 40.15 45.07 26.06 36.07 37.49 19.98 29.96 31.21 15.12 22.99 23.89 7.97
AGC-IMC 51.12 55.85 36.37 53.71 55.08 38.17 45.86 46.85 29.46 46.13 44.64 28.70
IMVTSC-MVI 76.43 77.09 67.87 66.64 64.43 52.55 59.67 56.38 41.80 52.71 49.47 31.96
TMBSD 59.90 56.93 59.59 52.35 50.79 51.17 43.06 40.88 42.59 31.57 29.61 30.82
TCIMC 54.83 58.88 40.63 52.12 52.41 36.85 49.53 52.69 34.06 46.37 48.14 33.25
IMVC-CBG 51.22 48.85 33.26 51.39 48.37 32.94 50.40 48.72 32.81 50.38 49.47 33.54
DIMVC 57.10 52.92 31.10 46.17 41.75 32.98 34.95 32.16 23.62 25.14 21.04 13.39
Ours 94.39 92.78 92.69 94.28 92.61 92.45 93.97 92.08 91.83 93.81 91.88 91.60

Table 1: Clustering results (%) of different methods on five datasets.

Experimental Results

Clustering Performance Table 1 lists the clustering re-
sults of different methods on five datasets with varying miss-
ing rates w.r.t. three metrics. It can be observed that: (1) Our
ETLSRR achieves the best performance in all cases. Es-
pecially on RGB-D and Scene datasets, the improvements
of our method are significant. This demonstrates that our
method is superior to these methods on underlying infor-
mation excavation and intrinsic similarity learning of in-
complete multi-view data. (2) With the increase of missing
rate, the clustering performance of all methods generally de-
creases. However, ETLSRR shows some robustness against
the missing views and the performance drop is small when
the missing rate increases from 0.3 to 0.7. (3) ETLSRR out-
performs two graph completion based methods, AGC-IMC
and TCIMC, demonstrating the effectiveness and superior-

ity of joint graph learning and recovery with tensor low-rank
and structured sparse regularization for IMVC.

Parameter Analysis In ETLSRR model, there are four
parameters λ, µ, γ and θ that influence the clustering perfor-
mance. To analyze the parameter sensitivity, Figure 2 shows
the change of ACC value of ETLSRR on ORL with different
combinations of parameters. We can observe that the pro-
posed method is more sensitive to λ and γ to some extent
compared with µ and θ. However, our method can obtain sat-
isfactory results with relatively wide ranges for these param-
eters. For example, when µ and λ are selected from [1, 10], θ
is selected from [0.5, 2], and γ is selected from [5, 50], ETL-
SRR can obtain good performance.

Ablation Study To evaluate the effectiveness of noncon-
vex tensor low-rank approximation and row fiber sparsity
in ETLSRR, we derive two variants, i.e., ETLSRR-E and
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Figure 2: ACC values of ETLSRR under different parameter
settings on ORL with missing rate p = 0.7.
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(d) p = 0.7

Figure 3: Ablation study results on ORL with varying miss-
ing rates.

STLSRR-S. ETLSRR-E replaces the nonconvex tensor low-
rank regularization by tensor nuclear norm, and ETLSRR-
S drops the tensor sparse regularization term (i.e., the third
term in Eq. (7)). Besides, we adopt two another nonconvex
functions, ℓp and logarithm function (Lu et al. 2016), to re-
place the laplace function in Eq. (6). The ℓp and logarithm
functions are defined as ψℓp(x) = xp (0 < p < 1) and
ψlg(x) = log(1 + γx)/ log(1 + γ). We denote the ETL-
SRR with the two nonconvex functions as ETLSRR-Lp and
ETLSRR-Lg, respectively. Figure 3 shows the clustering re-
sults of ETLSRR and the four variants on ORL with varying
missing rates. It can be observed that: (1) ETLSRR improves
the performance over ETLSRR-E and ETLSRR-S, indicat-
ing the effectiveness of nonconvex approximation and struc-
tured sparse regularization. (2) Three nonconvex low-rank
based methods (ETLSRR, ETLSRR-Lp, ETLSRR-Lg) out-
perform ETLSRR-E and achieve very competitive results,
which implies that ETLSRR may be further improved by
adopting appropriate nonconvex relaxations.

Visualization ETLSRR recovers an intrinsic tensor L
from the corrupted tensor Z for clustering. To show the
effectiveness of tensor based graph recovery of ETLSRR,

(a) p = 0.3 (b) p = 0.5 (c) p = 0.7

Figure 4: Visualization of recovered graphs of ETLSRR on
UCI with varying missing rates.
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Figure 5: Convergence curves and clustering results w.r.t it-
erations on ORL with missing rate p = 0.7.

Figure 4 shows the learned affinity graph of ETLSRR on
UCI dataset, where the number of diagonal blocks is equal
to the ground-truth cluster number. It can be observed that
all graphs have a clear block diagonal structure, even in the
case of large missing rate. These results demonstrate the ef-
fectiveness of our method for intrinsic similarity discovery
in incomplete multi-view data.

Convergence Figure 5 shows the error values of vari-
ables and clustering results in each iteration on ORL with
missing rate p = 0.7, where the errors of variables
are ER1 = max{

∥∥∥X̃v − X̃vZ̃v
t+1 −Ev

∥∥∥
∞
}mv=1, ER2 =

∥Z − L − S∥∞, ER3 = ∥L − B∥∞, ER4 = ∥L − C∥∞.
We can observe that the errors eventually converge to 0 and
our method obtains stable clustering results within a few it-
erations, demonstrating the convergence property of the op-
timization algorithm.

Conclusion
This paper proposes a new incomplete multi-view clustering
method, called Enhanced Tensor Low-rank and Sparse Rep-
resentation Recovery (ETLSRR). ETLSRR jointly learns the
incomplete similarity graphs and recovers an intrinsic tensor
that characterizes the underlying data similarities. To elimi-
nate the impacts of missing views and data noise, ETLSRR
decomposes the initial tensor stacked by incomplete graphs
into a sparse noise tensor and an intrinsic tensor. The global
tensor low-rank property ensured by a generalized noncon-
vex function and local sparsity of the recovered tensor are
captured. Experimental results demonstrate the superiority
of our method compared with the state-of-the-art methods.
The main limitation of our method is the relatively high
computational complexity, and learning bipartite graph is
expected to improve the algorithm efficiency.
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