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Abstract

Existing domain generalization aims to learn a generalizable
model to perform well even on unseen domains. For many
real-world machine learning applications, the data distribu-
tion often shifts gradually along domain indices. For exam-
ple, a self-driving car with a vision system drives from dawn
to dusk, with the sky darkening gradually. Therefore, the sys-
tem must be able to adapt to changes in ambient illumina-
tion and continue to drive safely on the road. In this paper,
we formulate such problems as Evolving Domain General-
ization, where a model aims to generalize well on a target
domain by discovering and leveraging the evolving pattern
of the environment. We then propose Directional Domain
Augmentation (DDA), which simulates the unseen target fea-
tures by mapping source data as augmentations through a
domain transformer. Specifically, we formulate DDA as a
bi-level optimization problem and solve it through a novel
meta-learning approach in the representation space. We eval-
uate the proposed method on both synthetic datasets and real-
world datasets, and empirical results show that our approach
can outperform other existing methods.

1 Introduction
One common assumption in conventional machine learning
methods is that the training and test data are sampled from
the same distribution. However, in many real-world prob-
lems, this assumption does not hold, and the data distribu-
tion can shift in changing environments. Consequently, a
model learned from training data often fails to generalize
well on the data sampled from a shifting distribution, es-
pecially when the target data is not accessible. To address
the problem of domain shift, domain generalization (DG)
is proposed to train a model with source domains that can
generalize to unseen target domains.

Most existing DG methods aim to extract domain-
invariant features by either statistical distance minimiza-
tion (Muandet, Balduzzi, and Schölkopf 2013; Albuquerque
et al. 2019; Shui, Wang, and Gagné 2022; Zhou et al.
2021a) or adversarial learning (Li et al. 2018b; Volpi et al.
2018; Zhou et al. 2020a), implicitly assuming that all
the domains are independently sampled from a static en-
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Figure 1: The data distribution shifts along a smoothing
curve in a low-dimensional manifold: The appearance of a
female changes over years. We capture the data evolving di-
rection (grey arrow) between observed source domains and
predict the evolving direction (black arrow) towards the un-
seen domain beyond the last observed distribution.

vironment (Muandet, Balduzzi, and Schölkopf 2013; Ar-
jovsky et al. 2019a; Sagawa et al. 2019). These methods
may collapse when the learning tasks are collected from
a non-stationary environment. For example, environmen-
tal changes due to illumination, seasons, or weather condi-
tions can pose significant challenges for an outdoor robot
equipped with vision systems (Wulfmeier, Bewley, and Pos-
ner 2018; Hoffman, Darrell, and Saenko 2014; Lampert
2015). Since the evolving patterns are not taken into account,
the existing popular DG methods are not able to handle
such problems properly (Muandet, Balduzzi, and Schölkopf
2013; Li et al. 2018b; Arjovsky et al. 2019b).

To alleviate the aforementioned issues, one can take ad-
vantage of data shift patterns in non-stationary environ-
ments. For example, when deploying a face recognition sys-
tem to search for a missing person, the system may be built
only on photos from childhood to adolescence that were
taken decades ago. In such a scenario, the system can ben-
efit from modelling the domain shift along the age to pre-
dict a person’s current appearance (Fig. 1). In this work, we
address this problem under the evolving domain generaliza-
tion (EDG) scenario (Nasery et al. 2021; Qin, Wang, and Li
2022), where the source domains are sampled from a chang-
ing environment, and the objective is to train a model that
generalizes well on an unseen target domain by capturing
and leveraging the evolving pattern of the environment.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

11147



𝐒𝟐𝐒𝟏 𝐒𝟑𝟎

…

𝐒𝟑

Source Domain Target Domain

(a)

𝐒𝟐𝐒𝟏 𝐒𝟑𝟎

…

𝐒𝟑

Source Domain Target Domain

𝐒𝟒

Camera ready

Figure 2: The Rotated Gaussian datasets (dashed lines are the ground truth of decision boundaries)

To this end, we propose directional domain augmenta-
tion (DDA) for EDG. First, we generate augmented features
along the direction of the domain shift, such that the aug-
mentations can mimic the next unobserved target domain
feature. To achieve this, we design an attention-based do-
main transformer to capture the evolving pattern between
consecutive domains by leveraging the power of the atten-
tion mechanism to capture the temporal pattern (Girdhar and
Grauman 2021; Vaswani et al. 2017) for predicting the fea-
ture of future unseen domains. Furthermore, we demonstrate
in an illustrative example (Sec. 2.2) that the training process
can be formulated as a bi-level programming problem that
allows us to effectively capture and leverage the domain shift
patterns via a meta-learning scheme.
To summarize, the contribution of our work is trifold:
1. Our work provides a framework to mitigate the im-

pact of lacking data from the target domain under
non-stationary environments with an attention-based do-
main transformer. We show that the optimal domain
transformer can generate augmentations whose decision
boundaries are aligned with target data without any ex-
plicit distribution divergence loss.

2. We formulate the training process as a bi-level optimiza-
tion problem with meta-learning. We also demonstrate
that the meta-parameter of the shared classifier could
be effectively adapted to the unseen target domain. Our
analysis then leads to a novel algorithm, namely direc-
tional domain augmentation (DDA), for the EDG prob-
lems, which can capture the evolving patterns of domains
and predict the future feature effectively.

3. We evaluate the algorithm with both synthetic and real-
world datasets showing that DDA improves the perfor-
mance over the state-of-the-art DG algorithms for the
EDG problem.

2 Preliminary
2.1 Problem Setup
Let Dt be the probability distribution that characterizes t-
th domain in Evolving Domain Generalization (EDG), and
St = {(xti, yti)}

nt
i=1 is a set of nt instances drawn from Dt,

where xti ∈ X is the i-th data point in the t-th domain, and
yti ∈ Y is its label. For every instance, we encode it with a
feature extractor ϕ : X → Z , and we obtain the embedded
instance zti ∈ Z by zti = ϕ(xti). The goal of EDG is to learn
a robust and generalizable model from T source domains by

capturing and leveraging the evolving pattern so that it can
perform well on the unseen target domain DT+1.

To this end, we propose a generative approach to EDG
which simulates the features for the target domain DT+1

by learning a domain transformer ψ : Z → Z . Intuitively,
given the data set of the t-th domain St, if ψ can properly
capture the evolving pattern, a predictive model h̃∗t+1 trained
on the simulated data set S̃t+1 = {(z̃t+1

i , yti)}
nt
i=1, where

z̃t+1
i = ψ(zti), should perform well on St+1. Likewise, a

model h∗t+1 trained on the real data set St+1 should also per-
forms well on S̃t+1. Note that we implicitly assume that the
evolving pattern is consistent across all consecutive domains
(i.e., ∀t, ψ can map instances from t to t + 1-th domain),
which is reasonable in real-world applications. Otherwise, it
is impossible to capture the evolving pattern if the environ-
ment varies arbitrarily (e.g., it is extremely challenging to
predict the stock market tomorrow).

2.2 An Illustrative Example
As an illustrative example, we consider the rotated Gaus-
sian data sets as shown in Figure 2, where the instances for
binary classification are generated by a d-dimensional Gaus-
sian distribution with a mean of 0, and the decision boundary
for each next domain is rotated by 12 degrees counterclock-
wise. In this example, the domain transformer ψ can be char-
acterized by a rotation matrix: ψ ∈ Rd×d, and the transform
process from t to t+1 is simply given by x̃t+1

i = ψxti (here
we apply an identity mapping as a featurizer ϕ, so zti = xti).

As analyzed in Section 2.1, the decision boundaries
trained on St+1 and S̃t+1 should be well aligned if ψ can
capture the rotation pattern. Thus, we aim to learn ψ in a way
such that, for any two consecutive domains, a linear classi-
fier h∗t+1 ∈ Rd trained on St+1 also performs well on S̃t+1,
leading to the following bi-level optimization problem:

min
ψ
∥Y t − X̃t+1h∗t+1∥22 (1)

s.t. h∗t+1 = argmin
h
∥Y t+1 −Xt+1h∥22 (2)

∀t ∈ {1, · · · , T − 1}

where Y t = [yt1, . . . , y
t
nt
]T, X̃t+1 = [x̃t+1

1 , . . . , x̃t+1
nt

]T,
Xt+1 = [xt+1

1 , . . . , xt+1
nt

]T, and T is the transpose operator.
Here, we adopt the squared loss for classification in order
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Figure 3: Illustration of the proposed Directional Domain-Augmentation (DDA) model. The domain transformer generates
the augmented features in the direction of the unseen domain. With the bi-level optimization, the decision boundary of the
augmented embeddings and the embeddings from the unseen domain gets aligned. The meta-parameters are then updated with
the softened version classification loss on the augmented features.

ERM CIDA EAML LSSAE LDDA
59.2 ± 1.1 50.5 ± 1.5 61.0 ± 2.8 88.4 ± 0.8 94.6 ± 0

Table 1: Experiment Results (accuracy %) on Synthetic Ro-
tated Gaussian dataset

to obtain an analytical solution, which also corresponds to
Fisher’s linear discriminant (Bishop 2006).

Setting the derivative with respect to ht+1 to zero
for Eqn. 2, we obtain the optimal solution h∗t+1 =

[(Xt+1)TXt+1]−1(Xt+1)TY t+1. Similarly, setting the
derivative with respect to ψ to zero for Eqn. 1, we obtain the
following equation for ψ (detailed derivation can be found
in Section A of the supplementary materials):

Atvec(ψ) = Bt, (3)

where function vec(·) is the vectorization operator, At =(
h∗t+1(h

∗
t+1)

T
)
⊗
(
XtTXt

)
, Bt = vec(XtTY th∗t+1

T), and
⊗ is the Kronecker product operator.

As the rotation is consistent across all domains, Eqn. 3
holds for any t = 1, . . . , T − 1, which gives

[(A1)T, . . . , (AT−1)T]Tvec(ψ) = [(B1)T, . . . , (BT−1)T]T.
(4)

As rank(At) = d, Eqn. 4 will be well-posed when d ≤ T−1.
Then, for the rotated Gaussian shown in Fig. 2, the domain
transformer ψ∗ learned by solving Eqn. 4 is given by

ψ∗ =

[
0.9824 0.2031
−0.2107 0.9720

]
≈

[
cos 12◦ sin 12◦

− sin 12◦ cos 12◦

]
,

which is very close to the ground-truth rotation matrix.
We denote this method as the linear DDA (LDDA), and its

classification accuracy on the unseen target domain is shown
in Table 1 (see Section 5.1 for the details of other base-
line algorithms), from which it can be observed that LDDA
achieves the best performance.

3 Method
In the rotated Gaussian example, LDDA aims to learn a do-
main transformer ψ to capture the evolving patterns of the
environment, which motivates an effective solution to the
EDG problem by designing a bi-level optimization problem.
Note that ψ of LDDA in the illustrative example is assumed
as a linear mapping in order to obtain an analytical solution
and is only applicable to low-dimensional cases (i.e., solv-
ing Eqn.4 requires d ≤ T − 1). We will illustrate our DDA
framework in this section which extends to the general cases,
including the non-linear cases.

3.1 Method Overview
In this section, we extend the proposed method to deep mod-
els by learning the domain transformer in the representation
space and solving the bi-level optimization problem through
a novel meta-learning scheme. Specifically, the proposed
model consists of three components: a feature extractor ϕ,
a domain transformer ψ, and a classification model h, which
are parameterized by θϕ, θψ , and θh, respectively.

DDA’s overall design is illustrated in Fig. 3. The sampled
inputs first get projected into feature space by ϕ. ψ gener-
ates the augmentations to mimic the data from the next un-
seen domain by leveraging the evolving pattern. h takes fast
adaptations on augmentations and the optimized h will per-
form well in the classification task of the next domain.

3.2 Domain Transformer
To capture the evolving patterns, the domain transformer ψ
is designed to generate augmentations by transforming the
features from historical domains into the next domain. In
Section 2, only one preceding domain is utilized to simulate
the next domain in a point-wise manner (i.e., ψ only maps zti
to z̃t+1

i ). In order to take full advantage of the source data,
we design ψ with an attention module, taking its strength to
extract sequential information (Vaswani et al. 2017; Zeng,
Fu, and Chao 2020), which allows the information to propa-
gate over the evolving domains. Consequently, it can lever-
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age the data from all historical source domains to effectively
capture evolving patterns and simulate the target data.

Specifically, we first calculate the similarity score st,t
′

i,j be-
tween i-th sample from domain t and j-th sample from a
historical domain t′,

st,t
′

i,j =
ψq(z

t
i)ψk(z

t′

j )√
d

(5)

where 1 ≤ i, j ≤ B, 1 ≤ t′ ≤ t ≤ T , B is the batch
size, ψq(·) and ψk(·) denote the transformation that maps
input features into the query and key embeddings, and zt

′

j is
a sampled feature from the historical domains in a batch. The
similarity score st,t

′

i,j is normalized by the dimension of each
transformed embedding to avoid small gradients caused by
subsequent softmax functions (Vaswani et al. 2017). It mea-
sures how close the current sample is to the historical do-
main samples. Therefore, ψ will attend to the most relevant
samples by reviewing the entire domain evolving history.
Then, the directional transform augmentations z̃t+1

i can be
obtained by a weighted sum of embedded values in the his-
tory domain plus the output of a skip-connection network:

z̃t+1
i =

t∑
t′=1

B∑
j=1

exp st,t
′

i,j

t∑
t′′=1

B∑
k=1

exp st,t
′′

i,k

ψv(z
t′

j ) + ψsc(z
t
i) (6)

where 1 ≤ i, j, k ≤ B, 1 ≤ t′, t′′ ≤ t ≤ T , ψv(·) de-
notes the transform that maps input embeddings into value
embeddings. ψsc is a skip-connection network to help sta-
bilize the learning (Zhang et al. 2018). In our case, it also
helps to preserve the instance-level information. Thus, the
domain transformer ψ = {ψk, ψq, ψv, ψsc}. We name aug-
mentation z̃t+1

i directional transform augmentation, as it is
generated according to the domain-evolving direction and
transformed from the samples of the historical domains. It
is noted that a sample input zti is taken as a query, and the
samples from history domains are taken as keys and values.
The domain transformer aggregates information across do-
mains (Xu et al. 2021) and generates z̃t+1

i in a way such that
its decision boundary can also correctly classify the features
zt+1
i from the next domain.

3.3 Bi-level Optimization with Meta-learning
As shown in Eqn. 1 and Eqn. 2, we aim to optimize ψ
through a bi-level optimization scheme so that S̃t+1 and
St+1 can share the same predictive model h∗t+1. One issue
with this scheme is that each h∗t+1 in the inner loop (i.e.,
Eqn. 2) is only learned from a single domain, which may
lead to the overfitting problem. In order to take advantage of
the transferred knowledge from all the other source domains,
instead of learning h∗t+1 for each domain individually, we
learn a good initialization θh that is shared across all the
domains, and each domain-specific classifier, parameterized
by θht

, can be learned from St via fast adaptations (Finn,
Abbeel, and Levine 2017).

Therefore, learning θψ and θh can be seamlessly inte-
grated into a single bi-level optimization problem that can

Algorithm 1: Directional Domain Augmentation
Input: The feature extractor ϕ, the domain-shared
classifier h, the domain transformer ψ, the learning
rate of the inner loop α, the learning rate of the
outer loop β and the batch size B.

Initialize θ (θ = {θh, θψ, θϕ} )
for sampled mini-batch

{
{xti, yti}Bi=1

}T
t=1

do
Calculate instance features {Zt}Tt=1;
L = 0 ; // Initialize the loss for
this episode

for t = 1 to T − 1 do
for every sample i in each domain t:

z̃t+1
i = ψ(zti |{Zt

′}t−1
t′=1) in Eqn. 6;

for k=1 to num. of inner-loop steps do
Calculate the inner loss Linner in Eqn. 7
θht+1

= θh − α∇θhLinner

Calculate the outer loss Louter in Eqn. 9
L = L+ Louter

Update θ ← θ − β∇θL ;
return trained model parameters θ

be solved by meta-learning, resulting in more effective use
of data. Specifically, we apply the episodic training scheme
in (Finn, Abbeel, and Levine 2017), which consists of two
steps: inner-loop updates and outer-loop updates. The train-
ing protocol is shown in Algorithm 1.

In each episode, we sample B data points of each domain
from domain 1 to domain T , yielding {{xti, yti}Bi=1}Tt=1. Let
Zt = {zti}Bi=1 and Z̃t+1 = {z̃t+1

i }Bi=1, respectively, be fea-
tures of sampled batch instances from the t-th domain and
its directional transform augmentations. We randomly select
two consecutive domains, domain t and domain t+1. Then,
θh is learned with the loss Linner on Z̃t+1 in the inner loop:

Linner(St; θh, θψ, θϕ) =
1

B

B∑
i=1

[λ · Lcls(yit, h(z̃it+1))

+ (1− λ)DKL(σ(ht(zit))/τtemp||σ(h(z̃it+1))/τtemp)] (7)
where Lcls is the cross-entropy loss, σ is the softmax
function, and λ is a trade-off parameter. DKL(·||·) is the
Kullback-Leibler (KL) divergence, which is adopted as a
distillation loss (Hinton, Vinyals, and Dean 2015). It can be
regarded as a softened softmax at a temperature τtemp and
able to reserve the instance semantics. Then, the domain-
specific classifier θht+1

is given by
θht+1

= θh − α∇θhLinner(St; θh, θψ, θϕ) (8)
where α is the inner-loop learning rate. θht+1 is the clas-
sifier optimized with Z̃t+1, which is shared with the tar-
get domain’s instances. Therefore, in the outer loop of each
episode, ht+1 is evaluated on Zt+1, and the corresponding
loss function Louter is given by

Louter(St, St+1; θht+1
, θψ, θϕ) (9)

=
1

B

B∑
i=1

Lcls(yit+1, ht+1(z
i
t+1|θht+1

))
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Then, overall DDA parameters is updated by

θ ← θ − β∇θLouter, θ = {θh, θψ, θϕ} (10)

where β is the outer-loop learning rate.
In the inference stage, we first simulate a set of the feature

augmentations of size N : Z̃T+1 = {z̃T+1
i }Ni=1 from histori-

cal source domain features, and obtain the parameter θhT+1

for the target classifier on Z̃T+1 via fast adaptation from θh.

4 Related Work

Domain Generalization (DG) Distribution matching is
one predominant approach in domain generalization, where
domain-invariant representation learning (Ganin et al. 2016)
is intuitive and has been extensively studied. (Mancini et al.
2018) proposed to ensemble a unified model with general-
ization capability. Meta-learning has also been investigated
for generalization (Li et al. 2018a, 2020; Balaji, Sankara-
narayanan, and Chellappa 2018; Li et al. 2019). It is com-
mon sense that existing DG methods can not handle extrap-
olation well (Gulrajani and Lopez-Paz 2020; Nguyen et al.
2021), which makes it not suitable for our problem setup. In
the early stage, the researchers mainly focused on aligning
feature marginal distributions(Ganin et al. 2016), which has
been proved not enough in case there exists concept-shift
across domains. As a consequence, many recent works pro-
posed to align the joint distributions(Li et al. 2021; Nguyen
et al. 2021). However, joint distribution alignment is much
harder than marginal distribution alignment, which results in
the introduction of varieties of techniques such as informa-
tion theory(Li et al. 2021).

Data augmentation Conventional data augmentation op-
erations include cropping, flipping, rotation, scaling, and
nosing. Data augmentation has been applied to improve the
generalization capability of DG models. Besides conven-
tional data augmentation methods, there are also a large
number of generating-based methods (Rahman et al. 2019;
Zhang et al. 2017) trying to generate all new instances. For
example, (Zhou et al. 2020a) trains a transformation network
for data augmentation.

Recent approaches (Volpi and Murino 2019; Shi et al.
2020; Zhou et al. 2020b, 2021b) have studied the data aug-
mentation methods in DG by generating either augmented
samples or intermediate embeddings to improve the gen-
eralization performance on the unseen domains. However,
the domain shift patterns are absent in these kinds of ap-
proaches making the methods lack the ability to learn the
non-stationary evolving patterns.

Evolving Domain Adaptation (EDA) / Evolving Domain
Generalization (EDG) Several existing works have for-
mulated a similar scenario as evolving domain adapta-
tion (Hoffman, Darrell, and Saenko 2014; Lampert 2015;
Wang, He, and Katabi 2020; Wulfmeier, Bewley, and Pos-
ner 2018), where the environment can change in a continu-
ously evolving way. (Kumagai and Iwata 2016) predicts fu-
ture classifiers on the basis of variational Bayesian inference
by incorporating the vector auto-regressive model to capture

the dynamics of a decision boundary. (Wulfmeier, Bewley,
and Posner 2018; Wang, He, and Katabi 2020) learn the rep-
resentations that are time-invariant using adversarial meth-
ods. We emphasize that EDA still has access to unlabeled
data from upcoming target domains to help learn evolving
patterns, while EDG has no access to the target data at all.

There are very few works (Nasery et al. 2021; Qin, Wang,
and Li 2022) tackling EDG problems. (Nasery et al. 2021)
learns an operator that captures the evolving dynamics of
the time-varying data distribution. (Qin, Wang, and Li 2022)
proposes a novel probabilistic framework named LSSAE by
incorporating variational inference to identify the continu-
ous latent structures of concept shift and covariate shift un-
der EDG settings. Both two EDG methods design complex
Neural-Network structures and did not utilize the decision
boundary alignment to mitigate the evolving domain shift,
which has been verified as efficient in our illustrated exam-
ple and the corresponding analysis.

5 Experiment
To evaluate our method, we demonstrate our method on sev-
eral toy datasets including Sine and Rotated Gaussian toy
datasets and also on the real-world datasets, including Por-
traits, Cover Type, Ocular Disease and Caltran (We dele-
gate description of the datasets to the supplementary materi-
als B). Extensive ablation studies are conducted to show the
effectiveness of the meta-learning of our method.

5.1 Experiment Settings
We evaluate the proposed method with the following base-
lines: (1) ERM (Vapnik 1991); (2) GroupDRO (Sagawa
et al. 2019); (3) IRM (Arjovsky et al. 2019a); (4)
CORAL (Sun and Saenko 2016); (5) MMD (Li et al.
2018b); (6) MLDG (Li et al. 2018a); (7) SagNet (Nam
et al. 2021); (8) SelfReg (Kim et al. 2021); (9) DAML (Shu
et al. 2021); (10) CIDA (Wang, He, and Katabi 2020); (11)
EAML (Liu et al. 2020); (12) LSSAE (Qin, Wang, and
Li 2022); (13) GI (Nasery et al. 2021). All the baselines
and experiments were implemented with DomainBed pack-
age (Gulrajani and Lopez-Paz 2020) under the same set-
tings, which guarantees fair and sufficient comparisons. For
all benchmarks, we conduct the leave-one-domain-out eval-
uation. We train our model on the validation splits of all
seen source domains (domain 1, 2, ..., T ) and select the best
model on the validation of all source domains. For testing,
we evaluate the selected model on all images of the held-out
unseen target domain (domain T + 1).

5.2 Evaluation on Synthetic Dataset and
Real-World Dataset

From Table 2 we can see, most algorithms fail on both Sine
and rotated Gaussian datasets. Since it is a binary classifica-
tion task, other methods with about 50% accuracy are doing
random predictions. One reason is that their decision bound-
aries are static and do not make any adjustments to the di-
rection of the data distribution shift. DDA could successfully
capture such shifts and adaptively adjust the decision bound-
ary to fit each domain including target domains. Fig. 4 visu-
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DATASET SINE ROTATED GAUSSIAN PORTRAIT ROTATING MNIST FOREST COVER OCULAR DISEASE CALTRAN AVERAGE

ERM 56.3 ± 1.2 59.2 ± 1.1 90.3 ± 0.1 78.2 ± 0.2 59.8 ± 0.2 71.2 ± 0.3 96.6 ± 0.7 73.1
GROUPDRO 62.6 ± 1.5 80.8 ± 3.4 92.6 ± 0.2 79.1 ± 0.1 58.9 ± 0.5 71.3 ± 0.2 96.6 ± 0.4 77.4

IRM 51.1 ± 2.3 72.0 ± 2.2 91.3 ± 0.4 79.2 ± 0.3 58.8 ± 0.8 69.8 ± 0.4 94.9 ± 1.2 73.9
MMD 54.7 ± 4.7 56.8 ± 1.3 92.0 ± 0.2 77.4 ± 0.0 59.0 ± 0.3 67.7 ± 0.3 97.4 ± 0.2 72.1

CORAL 54.7 ± 5.4 56.8 ± 1.1 91.3 ± 0.2 78.9 ± 0.1 62.0 ± 1.1 67.8 ± 0.5 96.6 ± 0.5 72.6
MTL 54.2 ± 3.2 56.4 ± 1.4 92.0 ± 0.1 79.0 ± 0.2 60.4 ± 0.7 71.3 ± 0.4 97.5 ± 0.3 73.0

MLDG 54.7 ± 2.5 53.6 ± 2.1 91.5 ± 1.1 82.8 ± 0.2 60.9 ± 0.7 72.3 ± 0.3 97.3 ± 0.2 73.3
SAGNET 51.1 ± 3.1 52.0 ± 1.8 92.7 ± 0.2 80.9 ± 0.1 62.1 ± 2.0 69.3 ± 0.4 97.2 ± 0.1 72.2
SELFREG 55.8 ± 1.7 54.4 ± 1.0 90.6 ± 0.3 81.8 ± 0.5 60.1 ± 0.6 65.2 ± 0.1 96.5 ± 0.4 72.1
DAML 52.6 ± 0.7 62.3 ± 1.3 92.7 ± 0.3 84.0 ± 0.4 61.3 ± 0.6 71.2 ± 0.2 95.9 ± 0.3 74.3
CIDA 65.1 ± 3.7 50.5 ± 1.5 92.3 ± 0.4 83.6 ± 1.2 60.5 ± 0.9 71.4 ± 0.3 97.1 ± 0.7 74.4
EAML 49.0 ± 0.7 61.0 ± 2.8 90.1 ± 0.4 82.6 ± 0.2 60.8 ± 1.4 71.7 ± 0.6 96.5 ± 0.6 73.1
LSSAE 63.2 ± 1.5 88.4 ± 0.8 93.1 ± 0.3 84.7 ± 0.3 63.2 ± 0.4 72.4 ± 0.4 97.2 ± 1.0 80.3

GI 66.8 ± 0.7 85.1 ± 0.5 93.7 ± 0.2 83.4 ± 0.7 63.6 ± 0.4 73.1 ± 0.2 98.2 ± 0.8 80.6
OUR METHOD 98.4 ± 0.9 99.6 ± 0.6 94.9 ± 0.1 86.2 ± 0.3 65.3 ± 0.5 74.1 ± 0.1 98.3 ± 0.4 88.1

Table 2: Experiment Results (accuracy %) on Synthetic Dataset and Real-World Datasets among different methods

(e) DDA (Ours)

Target Domain Target Domain Target Domain Target Domain

(a) Domains (b) Ground Truth (c) EAML (d) CIDA

Target Domain

Figure 4: Results on the Sine dataset with 11 domains. We set the classification model as a single linear layer which makes this
task extremely difficult. The black line is the decision boundary predicted by the model. (a) Domains are indexed by color. The
first 10 domains are source domains, marked by purple to orange color. The 11th domain is the test domain, marked by red
color and a circle. (b) The ground truth of the decision boundaries separates positive and negative samples. (c) The prediction
results of EAML on the source and target domains. (d) The prediction results of CIDA on the source and target domains. (e)
The prediction results of DDA on the source and target domains.

alize the Sine dataset, which indicates an adaptive model as
DDA with domain-specific classifiers can address the EDG
problem properly.

DDA also achieves the best performance on real-world
datasets. In the Rotating MNIST dataset, our algorithm
could achieve 86.2% accuracy, which is 1.5% higher than
the second best method among the baselines. Specifically,
the results on the Rotating MNIST dataset are the aver-
age accuracies under different experimental settings (differ-
ent number of domain intervals, different total number of
domains). On Portrait and Ocular Disease datasets, DDA
achieves 94.9% which is 1.2% higher than the best base-
lines. Ocular Disease contains medical photographs from
5,000 patients that vary with the age of the subjects. Our
method improves the performance by 1.0% compared to
the second best baseline, achieving 74.1% accuracy. Caltran
contains images of traffic taken with stationary cameras over
time. Likewise, our method also improves performance by
capturing evolving patterns. They show the possibility that
our method can be deployed in real-world applications.

MTL also augments the feature space with the marginal
distribution of features. It indicates the superiority of data
augmentations on DG problems but MTL fails to capture the
domain evolving patterns and improve the performance by
generalizing to unknown domains with random directions.

Hence, MTL is still worse than DDA. In our experiments,
CIDA and EAML can not achieve good performance even
with access to target unlabeled data. The reasons may be that
both methods fail to capture the evolving pattern but instead
learn domain-invariant encodings. This also shows capturing
evolving patterns is critical to solving the EDG problem.

5.3 Non-stationary Environments with Multiple
Target Domains

In practice, data can be streamed continuously from mul-
tiple future domains. Therefore, we also conducted ex-
periments on Rotating MNIST by dividing more domains
into target domains in Table 3. The experimental setup
is to have 6 source domains with rotation degrees of
[0◦, 15◦, 30◦, 45◦, 60◦, 75◦] and 3 target domains with rota-
tion degrees [90◦, 105◦, 120◦]. The results in Table 3 demon-
strates that our algorithm can also achieve better perfor-
mance than other baselines in future steps. In order to gener-
ate augmentations in the (t+2)-th domain and the (t+3)-th
domain, it is necessary to make some modifications to our
algorithm. We show the modification details in the supple-
mentary material E.
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Figure 5: (Left) The convergence trajectory of the test accu-
racy with the different number of inner meta-updating steps
on Portrait Dataset. (Right) The convergence trajectory of
the test accuracy with the different step size α of inner meta-
updating steps on Portrait Dataset.

DOMAINS T+1 T+2 T+3

ERM 81.0 ± 0.2 56.5 ± 0.3 39.9 ± 0.3
MLDG 87.9 ± 0.3 66.1 ± 0.4 45.6 ± 0.4
CIDA 87.0 ± 1.3 73.5 ± 1.2 48.1 ± 1.4
EAML 88.6 ± 0.3 72.2 ± 0.3 49.9 ± 0.4

GI 89.6 ± 0.2 73.6 ± 0.3 52.4 ± 0.2
LSSAE 88.9 ± 0.3 74.2 ± 0.3 51.1 ± 0.3

OUR METHOD 92.3 ± 0.2 77.0 ± 0.2 55.8 ± 0.3

Table 3: Experiment Results (accuracy %) on the Rotating
MNIST dataset with multiple target domains

5.4 Ablation Study
Comparison with different numbers of inner updating
steps As (Finn, Abbeel, and Levine 2017) points out the
number of update steps affects the convergence speed and
performance, we test effects of the number of internal update
steps in Fig. 5: Left. Multiple inner-loop steps will result in
more computations. To reduce time complexity, we always
update 2 steps on the source domains; meanwhile, we take 1
to 10 inner steps on the directional transform augmentations
of the target domain. Results show the performance of DDA
improves as the number of inner-loop steps increases.

The performance drops drastically by setting the number
of steps to 0. With fast adaptations of the inner loop, the ac-
curacy of the accuracy trajectory converges faster if the inner
loop step size is set to 0. The performance drops drastically
by setting the number of steps to 0, in which case the model
is not equipped with a classification component parameter-
ized with meta-parameters, but a domain-invariant classifier.
Comparison of step sizes in the inner-loop The step size
α in Eqn. 8 is a factor related to the distance between do-
mains. As the domain interval between the evolving domains
is larger, it requires a largerα. From Fig. 5: Right we can see,
setting α as 0.05 is the best choice for the Portrait dataset.
Different domain interval between domains In Table 4,
the intervals of rotation degrees between domains are set to
10◦, 20◦, 30◦ and the total number of domains is fixed to
9. Our proposed method outperforms all the baselines. As
the domain interval increases, we can see that all methods’
performance degrades. This is because, with a larger domain
discrepancy caused by the bigger domain interval, the model

Source Domain Target Domain

Target Domain Target Domain Target DomainTarget Domain

(a) (d)(b) (c)

(a) 𝐙𝐓 (b) ෨𝐙𝐓+𝟏 (c) 𝐙𝐓+𝟏

Figure 6: Visualizations of the directional augmentations in
rotated Gaussian Datasets. The dashed line represents the
decision boundary for data in T -th domain. The solid line
represents the decision boundary for data in T + 1-th do-
main. (Left) Instance embeddings ZT (Right) Directional
transform augmentations Z̃T+1

gets harder to capture the robust representations for classifi-
cation tasks. Specifically, when the domain interval is 30◦,
our method outperforms the best baseline LSSAE 1.1%.

INTERVAL 10◦ 20◦ 30◦

ERM 90.2 ± 0.3 75.8 ± 0.3 62.0 ± 0.2
MLDG 92.2 ± 0.1 80.9 ± 0.3 70.6 ± 0.2
CIDA 92.0 ± 1.2 85.2 ± 1.4 72.1 ± 1.2
EAML 92.2 ± 0.5 84.7 ± 0.4 71.5 ± 0.4
LSSAE 92.5 ± 0.4 85.5 ± 0.3 72.4 ± 0.4

GI 93.3 ± 0.2 85.3 ± 0.1 71.8 ± 0.2
OUR METHOD 95.1 ± 0.2 86.1 ± 0.3 73.5 ± 0.2

Table 4: Experiment on Rotating MNIST with different in-
tervals with total 9 domains

5.5 Visualizations of Directional Transform
Augmentations

In Fig. 6, we visualize the augmentations and the source
domain data in the rotated Gaussian dataset. From Fig. 6,
the decision boundary of Z̃T+1 corresponds to the T + 1-th
domain’s. It verifies that DDA successfully generates aug-
mentations which have the same decision boundary as the
instances in the next target domain.

6 Conclusion
In this paper, we address the challenging problem of Evolv-
ing Domain Generalization. We first show that a specially
designed domain transformer learns to capture the domain
shifts. Then, we introduce the meta-learning framework to
solve the formulated bi-level optimization problem. We con-
duct extensive experiments on multiple datasets to demon-
strate its superior effectiveness. We will further investi-
gate when and how our method solves more complex non-
stationary problems in future.

Ethics Statement
This paper proposes an algorithm that leverages evolving
patterns to make predictions on the unseen target domain.
The dataset we use is only intended to demonstrate the algo-
rithm’s superior performance on classification tasks.
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