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Abstract

Despite the great achievements of Graph Neural Networks
(GNNs) in graph learning, conventional GNNs struggle to
break through the upper limit of the expressiveness of first-
order Weisfeiler-Leman graph isomorphism test algorithm (1-
WL) due to the consistency of the propagation paradigm of
GNNs with the 1-WL. Based on the fact that it is easier to
distinguish the original graph through subgraphs, we propose
a novel framework neural network framework called Sub-
structure Aware Graph Neural Networks (SAGNN) to address
these issues. We first propose a C'ut subgraph which can be
obtained from the original graph by continuously and selec-
tively removing edges. Then we extend the random walk en-
coding paradigm to the return probability of the rooted node
on the subgraph to capture the structural information and use
it as a node feature to improve the expressiveness of GNNs.
We theoretically prove that our framework is more powerful
than 1-WL, and is superior in structure perception. Our exten-
sive experiments demonstrate the effectiveness of our frame-
work, achieving state-of-the-art performance on a variety of
well-proven graph tasks, and GNNs equipped with our frame-
work perform flawlessly even in 3-WL failed graphs. Specif-
ically, our framework achieves a maximum performance im-
provement of 83% compared to the base models and 32%
compared to the previous state-of-the-art methods.

Introduction

Structured data modeled as graphs has a long history in
many fields such as chemo-informatics (Gilmer et al. 2017),
bioinformatics (Gainza et al. 2020), physics (Battaglia
et al. 2016), traffic (Pan et al. 2023), scene understand-
ing (Liu et al. 2022b) and recommender systems (Wang
et al. 2019). The use of Graph Neural Networks (GNN5s)
to process graph-structured data has also become common,
where concise and elegant learning paradigms like Message-
passing Neural Networks(MPNNs) (Gilmer et al. 2017) have
achieved great success. Although deep learning has greatly
enhanced the influence of artificial intelligence in various
fields in recent years (Wang et al. 2022, 2023; Zhang et al.
2022; Li et al. 2022; Wang and Chen 2023). With the in-
depth researche of GNNs, the foundational problem that

“These authors contributed equally.

Corresponding author: Hong Qu
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

11129

limits the expressive power of GNNs is discovered, namely
that the paradigm of their message passing limits their abil-
ity to perceive structures. The message passing paradigm of
GNNs (Xu et al. 2018a) is consistent with the Weisfeiler-
Lehman graph isomorphism test algorithm (Weisfeiler and
Leman 1968), which leads to the upper limit of GNNs’ ex-
pressive power within the 1-WL. However, many higher-
order substructures are extremely important for specific
downstream tasks (Fey, Yuen, and Weichert 2020; Thiede,
Zhou, and Kondor 2021; Tahmasebi, Lim, and Jegelka 2020;
Kishan et al. 2022), yet most GNNs cannot perceive such
substructures due to the upper limit of 1-WL. Directly con-
structing higher-order GNNs (Maron et al. 2019a; Morris,
Rattan, and Mutzel 2020; Morris et al. 2019; Balcilar et al.
2021; Kishan et al. 2022; Li et al. 2021) that exceed 1-WL
test becomes the most hopeful choice, bringing problems of
scalability and complexity. Due to the high computational
consumption of training and inference, the limited com-
puting resources make extensive use of higher-order GNNs
a luxury. Thus directly using predefined hand-crafted sub-
structures (Bouritsas et al. 2022; Chen et al. 2020b; Niko-
lentzos, Dasoulas, and Vazirgiannis 2020; Sandfelder, Vi-
jayan, and Hamilton 2021) as additional features also be-
comes a highly feasible solution, but at the expense of the
generalization ability of the GNNs. More flexible use of sub-
structures (Zhao et al. 2022; Chen et al. 2020b; Nikolent-
zos, Dasoulas, and Vazirgiannis 2020; Sandfelder, Vijayan,
and Hamilton 2021) has been researched, resulting in further
improvements. At the same time, inductive coloring meth-
ods (You et al. 2021; Vignac, Loukas, and Frossard 2020;
Sato, Yamada, and Kashima 2021; Zhang and Chen 2018;
Velickovi¢ et al. 2019; Xu et al. 2019b) such as random col-
oring of specific nodes also bring certain performance im-
provements.

Based on the fact that solving the subgraph isomorphism
problem is easier than the original graph isomorphism prob-
lem (Bevilacqua et al. 2022), we introduce subgraphs to im-
prove the expressiveness of GNNs. According to different
perspectives of subgraph extraction methods, we divide ex-
isting subgraph extraction strategies into node-based strate-
gies and graph-based strategies. At the same time, in order
to improve the expressiveness of subgraphs for the origi-
nal graph, we propose a C'ut subgraph which can be ob-
tained from the original graph by continuously and selec-



tively removing edges. Unlike most methods using MPNN
to encode subgraphs, we extend random walks to the re-
turn probabilities in subgraphs to encode the structural in-
formation of subgraphs, which reduces time complexity and
improves expressiveness. Then we propose a graph neu-
ral network framework based on subgraph encoding in-
jection called Substructure Aware Graph Neural Network
(SAGNN), which greatly enhances the expressiveness of
GNNs without increasing complexity. We further theoreti-
cally prove that any 1-WL GNNs equipped with any com-
ponents of our framework are strictly more powerful than
1-WL. Our extensive experiments validate the state-of-the-
art performance of our framework on various base model
networks, tasks and datasets, especially on the graph regres-
sion task of drug constrained solubility prediction (ZINC-
FULL). Our framework achieves a maximum MAE reduc-
tion of 83% compared to the base model and a maximum
MAE reduction of 32% compared to the previous state-of-
the-art model.
In summary, our main contributions are as follows:

¢ We propose a C'ut subgraph which can be obtained from
the original graph by continuously and selectively re-
moving edges to help solve graph isomorphism problem.
Then we extend random walks to the return probabilities
in subgraphs to encode the structural information of sub-
graphs.

* We propose a GNN framework based on subgraph en-
coding injection called Substructure Aware Graph Neural
Network (SAGNN), which greatly enhances the expres-
siveness and performance of GNNs.

Extensive and diverse experiments demonstrate the state-
of-the-art performance of our framework on various tasks
and datasets'.

Preliminaries and Related Work
Notations and Background

Let G = (V, E, X) be a simple, undirected, connected graph
with a finite set of nodes V and a finite set of edges FE,

where the node feature X = [x1, X2, . . . 7xn}T

Graph Neural Networks

The concept of GNNss is not new (Sperduti and Starita 1997,
Baskin, Palyulin, and Zefirov 1997) while the idea of using
neural networks to model graph data and extract features has
long existed and achieved certain results (Gori, Monfardini,
and Scarselli 2005; Scarselli et al. 2008). A more modern
version is graph convolutional neural network (GCN) (Kipf
and Welling 2017), a graph neural network used for semi-
supervised node classification, which laid the foundation for
advanced Graph Neural Networks. Besides, researchers also
introduce the graph neural networks to the unsupervised
scheme like graph contrastive learning and node cluster-
ing (Liu et al. 2022c.d,e, 2023; Chen and Kou 2023). Based
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on the message passing mechanism (Gilmer et al. 2017) sim-
ilar to GCN, a series of advanced graph neural networks are
proposed to solve the problems of over-smoothing and over-
squashing (Chen et al. 2020a; Topping et al. 2021; Xu et al.
2018b; Zeng et al. 2022).

Message Passing Neural Networks

MPNNs (Gilmer et al. 2017) provide a methodology to ab-
stract GNNs with a unified view of message passing mech-
anisms. In the case of this paradigm, node-to-node infor-
mation is propagated by iteratively aggregating neighboring
node information to a central node. Fomally, given a node
i in graph G, its hidden representation h! at ¢ iteration, its
neighboring nodes N (i), edge e;; connecting node 4 to node
J, a iteration of standard message passing paradigm can be
expressed as:

C'tL: Z ¢t (hfvhzve’bj)v (l)
JEN(i)
h§+1 = Ut(cfv h§)7 2

where ¢! and ¢! are the aggregate and update function at
t iteration.

Weisfeiler-Leman Algorithm

The Weisfeiler-Lehman (WL) algorithm (Weisfeiler and Le-
man 1968) is a computationally efficient heuristic algorithm
for testing graph isomorphism proposed by Weisfeiler and
Lehman. The main idea of the WL algorithm is to contin-
uously relabel the root node through the neighbor nodes
until the label converges, and to judge whether the two
graphs are isomorphic by comparing the labels of the two
graphs. Significantly, WL algorithm provides a theoretical
basis for many further graph methods (Morris, Rattan, and
Mutzel 2020; Bevilacqua et al. 2022) due to its low com-
putational complexity. The Weisfeiler-Lehman subtree ker-
nel (Shervashidze et al. 2011), one of the most successful
kernel approaches, utilizes WL algorithm to generate node
features through an iterative relabeling. Moreover, based on
WL algorithm, a more hierarchical graph isomorphism test-
ing framework (Grohe 2017) is proposed, and higher-order
WL tests are also instantiated from the framework.

Limitations of MPNNs

Compared with traditional graph algorithms, GNNs exhibit
better adaptability and generalization capabilities, which are
mainly reflected in data-driven training methods for classi-
fication and regression. The similarity of the message pass-
ing mechanism of MPNNs to the WL algorithm makes it
regarded as a neural network implementation of the WL al-
gorithm (Gilmer et al. 2017), which brings about the prob-
lem of limited expressiveness of MPNNs. Specifically, the
upper limit of the expressiveness of MPNNs is 1-WL (Xu
et al. 2019a), which makes it cannot distinguish a large class
of graphs (Cai, Fiirer, and Immerman 1992), and have cer-
tain defects in structure perception. Both MPNNs and 2nd-
order Invariant Graph Networks (Maron et al. 2019¢) can-
not count induced subgraphs of any connected pattern of



3 or more nodes but only star-shaped patterns (Chen et al.
2020b), however such structures have a strong impact on
certain downstream tasks such as functional groups in or-
ganic chemistry (Lemke 2003).

Beyond 1-WL by inductive coloring Some task-specific
inductive node coloring methods (Zhang and Chen 2018;
Velickovié et al. 2019; Xu et al. 2019b) are proposed to im-
prove the performance of existing GNNs, which are mainly
used for tasks such as link prediction and algorithm exe-
cution. An inductive node coloring framework (You et al.
2021) is proposed to fill the gaps of coloring methods on
graph-level and node-level tasks. Moreover, CLIP (Dasoulas
et al. 2020) use colors to disambiguate identical node at-
tributes and is capable of capturing structure characteristics
that traditional MPNNSs fail to distinguish.

Beyond 1-WL by positional encoding There are absolute
positions in text and images, so explicit position encoding
for them is efficient. Due to the non-Euclidean spatial char-
acteristic of graph structures, it becomes particularly diffi-
cult to explicitly encode graph data, often resulting in loss
of information (Liu et al. 2022a). Direct index encoding of
all nodes requires n! possible index permutations (Murphy
et al. 2019), so it is difficult for neural networks to induc-
tive generalize such encoding methods. Laplacian eigenvec-
tors are also used for positional encoding (Dwivedi et al.
2020; Dwivedi and Bresson 2020) to encode local and global
structure information of the graph, but this encoding method
does not address the global sign ambiguity problem. The
method using random anchor sets of nodes (You, Ying,
and Leskovec 2019) has no problem of symbol ambiguity,
but its random selection strategy of anchor points limits its
inductive generalization ability. A more generalized posi-
tional encoding method based on random walks and Lapla-
cian eigenvectors is proposed and instantiated as a frame-
work (Dwivedi et al. 2021), which achieves a great perfor-
mance.

Beyond 1-WL by substructure perceiving Since spe-
cific substructures are extremely important for some graph
tasks, directly prior encoding the substructures (Bourit-
sas et al. 2022; Bodnar et al. 2021a; Barceld et al. 2021)
becomes an option, which achieves state-of-the-art perfor-
mance. Pattern-specific subgraphs encoding (Fey, Yuen, and
Weichert 2020; Thiede, Zhou, and Kondor 2021) are also
used directly for highly related downstream tasks. Simi-
lar hand-crafted substructure count information is useful in
global tasks for graph kernels (Zhang et al. 2018b). The-
oretical analysis (Tahmasebi, Lim, and Jegelka 2020) veri-
fies the effectiveness of the substructure on graph tasks. G-
meta (Huang and Zitnik 2020)conducts message passing on
subgraphs to improve the efficiency of message passing in
meta-learning. Some works (Chen et al. 2020b; Nikolent-
zos, Dasoulas, and Vazirgiannis 2020; Sandfelder, Vijayan,
and Hamilton 2021) also focus on encoding structure infor-
mation of k-hop subgraphs and injecting them into nodes for
propagation.
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Methodology

Generally speaking, MPNNs still cannot exceed 1-WL
in terms of expressiveness with sufficient depth and
width (Loukas 2020) while distinguishing larger graphs
requires stronger expressiveness. Based on the fact that
subgraphs are more easily to distinguish than original
graphs, we generalize the problem of graph isomorphism
to subgraph isomorphism. In this section we introduce our
SAGNN framework, which includes (1) Subgraph Extrac-
tion Strategies, (2) Subgraph Random Walk Return Proba-
bility Encoding, and (3) Subgraph Information Injection.

Subgraph Extraction Strategies

For subgraph-based methods, the subgraph extraction strat-
egy has a crucial impact on the expressiveness of the model.
In this section, we classify subgraph extraction strategies
into node-based strategies and graph-based strategies.

Node-based Strategies We define the node-based strat-
egy as a single-node-based subgraph extraction strategy
that does not require information about the entire graph.
Generally speaking, the number of subgraphs of the node-
based extraction strategy is equal to the number of nodes
of the original graph, and the most common strategy is
EgoN etwork. Specifically, N (v) denotes the set of neigh-
boring nodes of the root node v and a more generalized no-
tation N (v) denotes the set of nodes within k-hop from
the root node v. Then the Ego(v) is a k-hop Egonetwork
rooted at node v and its corresponding nodes are the neigh-
bors within k-hop Ni(v) of the root node v.

Graph-based Strategies Different from the node-based
strategy, the graph-based strategy requires the information
of the entire graph to obtain subgraphs, and the number of
subgraphs obtained is not directly related to the number of
nodes in the original graph. In practice, the simplest graph-
based strategy is to randomly delete a single edge or delete
a single node, which is difficult to stably improve the ex-
pressiveness of the model and has a poor performance on
high-density strongly regular graphs. To better improve the
expressiveness of GNNs, we propose the C'ut subgraph, a
subgraph obtained from the original graph by continuously
and selectively removing edges.

Definition 1. Formally, we define the block containing node
v among b blocks as a Cut(v)y, subgraph obtained by remov-
ing edges from the original graph using a specific method. In
order to get Cut(v)y, subgraph, we first calculate the Edge
Betweenness Centrality (EBC) (Girvan and Newman 2002)
of all edges in the original graph, and then continuously re-
move the edge with the biggest EBC until the original graph
is split into b blocks.

1. Cut(v)y is equal to the original graph G when b = 1.
As b increases, both the size of the Cut(v)y and the level of
information it contains decreases.

2. Cut(v)y is equal to the node i when b is equal to the
number of nodes in the graph G and b = 1.

3. Any Cut(v)y is a connected graph containing node v.
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Figure 2: Two non-isomorphic graphs that cannot be distin-
guished by WL test but can be distinguished by a MPNN
with Fgo subgraph information injection.

Subgraph Random Walk Return Probability
Encoding

The use of random walk for graph encoding is not new,
but existing methods (Zhang et al. 2018b; Li et al. 2020;
Dwivedi et al. 2021) have shortcomings in complexity or
expressiveness. To address these issues, we extend random
walk encoding to return probabilities in subgraphs, while re-
ducing time complexity and improving expressiveness. For-
mally, the random walk return probability encoding of node
v in the subgraph G, is defined as:

T
pGewr = [R};Mb (v,v), Résub(v7 ) PN R(S;wb (v, v)} ,

3)
where Ry, (v,v),s = 1,2,...,.5,is the return probability
of a s-step random walk starting from the root node v in the
subgraph G,;. We apply the subgraph encoding to the Ego
subgraph and the C'ut subgraph and obtain the correspond-
ing return probability pZ9° and p&ut

v .
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Then we use a linear layer to encode the subgraph random
walk return probabilities into a subgraph hidden representa-
tion vector hGs«». Similarly, the subgraph hidden represen-
tation of node v corresponding to the Fgo subgraph > and
the C'ut subgraph is h29° and h§*!.

Message Passing with Subgraph Information
Injection

We concatenate our subgraph hidden representation with the
initial features of nodes to obtain F'go subgraph information
injection feature h”:% and C'ut subgraph information injec-
tion feature h®. In order to capture the global structural
information, we also concatenate hf, which is the structural
hidden representation of node v corresponding to the origi-
nal graph G. Formally, hZ-° and h®"? are defined as follows:

by =[x, 0% b, b5 =[x, bSO RT] ()

We adopt two message passing channels: EFgo channel and
C'ut channel defined as follows,

= Y P e.). ()
uEN(v)

1= Y dbmihiten).  ©
u€N (v)

B — o (e B, HOT = (e hE), ()
where ¢%;, ¢L and o, ol are the aggregate and update
functions for two channels respectively at ¢ iteration, ¢t =0, ...
, L-1. Finally, the whole graph representation h is obtained
through pooling operation defined in detail as follows:

he = POOL ({[h}"",h$ ] [v eV},
where POOL is a global pooling function for all nodes.

®)

In our implementation, the Fgo encoding of a single node is
the aggregation of all Ego subgraph encodings that contain this
node.



Method MUTAG PTC PROTEINS NCI1 IMDB-B
RWK (Girtner, Flach, and Wrobel 2003) 79.2+2.1 55.9+0.3 59.6+0.1 >3 days N/A

GK (k = 3) (Shervashidze et al. 2009) 81.4+1.7 55.7+0.5 71.440.3 62.5+0.3 N/A

PK (Neumann et al. 2016) 76.0+2.7 59.5+2.4 73.7+0.7 82.5+0.5 N/A

WL kernel (Shervashidze et al. 2011) 90.4+5.7 59.9+4.3 75.0+£3.1 86.0£1.8 73.8+3.9
DCNN (Atwood and Towsley 2016) N/A N/A 61.3+£1.6 56.6x1.0 49.1+1.4
DGCNN (Zhang et al. 2018a) 85.8+1.8 58.6+£2.5 75.5+0.9 74.4+0.5 70.0+0.9
IGN (Maron et al. 2019b) 83.9+13.0 58.5+6.9 76.6+5.5 743427  72.0£5.5
GIN (Xu et al. 2018a) 89.4+5.6 64.6+7.0 76.2+2.8 82.7+1.7 75.1%5.1
PPGNSs (Maron et al. 2019a) 90.6+8.7 66.2+6.6 77.244.7 83.2+1.1 73.0+5.8
Natural GN (de Haan, Cohen, and Welling 2020) 89.4+1.6 66.8+1.7 71.7+1.0 82.4+1.3 73.5%2.0
GSN (Bouritsas et al. 2022) 92.247.5 68.2+72 76.6+5.0 83.5+£2.0 77.8+3.3
SIN (Bodnar et al. 2021b) N/A N/A 76.4+£3.3 82.7£2.1 75.6+£3.2
CIN (Bodnar et al. 2021a) 92.7+6.1 68.245.6 77.0+4.3 83.6£1.4 75.6+3.7
GIN-AK+ (Zhao et al. 2022) 91.3£7.0 67.7+8.8 77.1+5.7 85.0+£2.0 75.0+4.2
ESAN-GIN (Bevilacqua et al. 2022) 91.0+7.1 69.2+6.5 77.1+4.6 83.8+2.4 77.1+£3.0
DropGIN (Papp et al. 2021) 90.4+7.0 66.3+8.6 76.3+6.1 N/A 75.7+4.2
SAGIN(Ours) 95.2+3.0 72.1+7.6 79.8+3.8 85.3x1.7 75.9+3.8
SAPNA*(Ours) 92.04+6.8 70.3£6.5 79.3+3.6 85.0+1.1 77.4+3.7

Table 1: Test results for TUDatasets. The first section of the table includes the results of graph kernel methods, while the second
includes the results of GNNs, and the third part includes the results of the GNNs boosted by our framework. The top three are

highlighted by red, green, and blue.
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Figure 3: Two non-isomorphic graphs that cannot be distin-
guished by WL test but can be distinguished by a MPNN
with C'ut subgraph information injection.

Expressiveness Analysis

Proposition 1. With Ego subgraph information injection,
an 1-WL MPNN is strictly more powerful than 1-WL Test.

Proof. This proof for Proposition 1 mainly consists of two
parts. We first prove that if two graphs are judged to be iso-
morphic by the 1-WL MPNN with Fgo subgraph informa-
tion injection, then the 1-WL test also must judge the two
graphs to be isomorphic, which proves that 1-WL MPNN
with Ego subgraph information injection is at least as pow-
erful as I-WL. Then we give two graphs that are judged to
be isomorphic by the 1-WL, but not isomorphic from the 1-
WL MPNN with Ego subgraph information injection thus
proving the 1-WL MPNN with Ego subgraph information
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injection is more powerful than 1-WL.

Assuming that there are graphs A and B that are judged
to be isomorphic by 1-WL MPNN with Ego subgraph
information injection. The sets of A and B generated by
1-WL MPNN with Ego subgraph information injection

after ¢ iterations {HASHf‘(/\/’( D)y n O ¢ VA} and

{HASHt (N (n! (0 ))|h ) e VB} are identical. So there
h’llv(o)vA’ hgv(o)vA’ e h:llv(o)vA

hZ’(O)»B

exists an ordering of nodes
and hflt,(O),B h;’(o)’B, .

graphs order %

?

, such that for any sub-
1a 2) N, {HASHt(N(hZL(O)’A))}

{HASHt(J\/' (hf’“’)ﬂ))} If two

node feature with FEgo subgraph information injec-
tion are identical, their original feature are identical,

there exists an ordering of nodes x‘{‘,x‘z4 AR ,xﬁ

and are identical.

and xP x8 ... xB, such that for any node or-
der @ = 1,2,---,n, {HASH'N(x}))} and
{HASH'(N(x{'))} are identical. Finally it can be

deduced that the sets {HASH'(NV(x:)))|v € Va} and

{HASH'(N(x4))|v € Vp} are identical which means
I-WL MPNN with Ego subgraph information injection is
at least as powerful as 1-WL test.

In Figure 2, two graphs are judged to be isomorphic by the
1-WL test but not isomorphic by the 1-WL MPNN with Fgo
subgraph information injection, which demonstrates 1-WL
MPNN with Ego subgraph information injection is more
powerful than 1-WL test.

Proposition 2. With Cut subgraph information injection,
an I-WL MPNN is strictly more powerful than 1-WL Test.

Proof. Similarly to previous proof, this proof for Proposi-



Method EXP _ SR25 ZINC ZINC-FULL  MoIPCBA  MolHIV
(ACC)  (ACC) (MAE) (MAE) (AP) (ROC)

HIMP (Fey, Yuen, and Weichert 2020)  N/A N/A  0.151£0.006  0.03620.002 N/A 78.80+0.82
PNA (Corso et al. 2020) N/A N/A  0.188+0.004 N/A 28.38+0.35  79.05+1.32
GSN (Bouritsas et al. 2022) N/A N/A  0.108+0.018 N/A N/A 77.99+1.00
CIN (Bodnar et al. 2021a) N/A N/A  0.079£0.006  0.022+0.002 N/A 80.94+0.57
GIN (Xu et al. 2018a) 50%  6.67% 0.163£0.004 0.088+0.002  26.82+0.06 78.81%1.19
GIN-AK+ (Zhao et al. 2022) 100% 6.67%  0.080£0.001 N/A 29.30£0.44  79.61+1.19
ESAN-GIN (Bevilacqua et al. 2022) 100%  N/A  0.102+0.003 N/A N/A 78.00£1.42
SAGIN(Ours) 100% 100%  0.07220.001  0.016+0.002 28.53+0.30  80.64+0.42
PNA¥ (Corso et al. 2020) 50%  6.67% 0.140%0.006 N/A 27.37£0.00  79.05x1.02
PNA*-AK+ (Zhao et al. 2022) 100% 6.67%  0.085+0.003 N/A 28.85+0.06  78.80+1.53
SAPNA*(Ours) 100% 100%  0.073x0.001  0.016+0.003  27.84+0.03  79.44+1.44

Table 2: Test results for expressiveness datasets and large scale datasets. The first section of the table includes the results of
some specific methods, while the other sections include results of base model and that have been boosted by different methods.

The top three are highlighted by red, green, and blue.

Dataset ZINC SR25
(MAE) (ACC)
Layers Valid Test Test
2 0.1006+0.0024  0.0822+0.0063 100%
4 0.0974+0.0045  0.0778+0.0001 100%
6 0.0825+0.0023  0.0721+0.0025 100%
8 0.0897+0.0023  0.0782+0.0038 100%
10 0.0945+0.0020  0.0790+0.0057 100%

Table 3: Hyperparameter study of layers on ZINC and SR25
datasets.

tion 2 mainly consists of two parts. It is easy to prove that if
two graphs are judged to be isomorphic by the 1-WL MPNN
with C'ut subgraph information injection, then the 1-WL
test also must judge the two graphs to be isomorphic, which
proves that 1-WL MPNN with Cut subgraph information
injection is at least as powerful as 1-WL. And in Figure 3,
two graphs are judged to be isomorphic by the 1-WL test but
not isomorphic by the 1-WL MPNN with C'ut subgraph in-
formation injection, which demonstrates 1-WL MPNN with
C'ut subgraph information injection is more powerful than
1-WL test.

Experiments and Discussion

Experimental Setup

Datasets and tasks We use EXP (Abboud et al. 2021)
and SR25 (Balcilar et al. 2021) datasets to verify the ex-
pressiveness improvement of our framework for MPNNS,
where EXP contains 600 pairs of 1-WL failed graphs and
SR25 contains 15 3-WL failed strongly regular graphs. For
performance on real-world tasks, we use three kinds of
datasets of different scales for validation. The first kind
is small-scale real-world datasets TUDataset (Morris et al.
2020), which includes MUTAG, PTC, PROTEINS, NCI1
and IMDB from biology, chemistry and social networks.
The second is a large-scale molecular benchmark from the
zinc database from the ZINC database (Sterling and Irwin
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Figure 4: Hyperparameter study on ZINC, PROTEINS and
MOLHIV.

2015), which includes ZINC (12K graphs) (Dwivedi et al.
2020) and ZINC-FULL (250k graphs) (Gémez-Bombarelli
et al. 2018; Jin, Barzilay, and Jaakkola 2018; Zhang et al.
2018a). Specifically, ZINC and ZINC-FULL are two graph
regression task datasets for drug constrained solubility pre-
diction. The last is a molecular large-scale dataset from the
Open Graph Benchmark (Hu et al. 2020, 2021) which in-
cludes OGBG-MOLHIV (41k graphs) and OGBG-PCBA
(437k graphs). Experiments are repeated 10 times on ex-
pressiveness datasets and 3 times on large scale datasets to
calculate mean and standard derivation. For TUDataset, we
perform 10-fold cross-validation and report the average and
standard deviation of validation accuracy across the 10 folds
within the cross-validation.

Baselines We equip our framework on GIN (Xu et al.
2018a) and PNA*3 (Corso et al. 2020) models to ver-
ify the effectiveness of our framework. For some small
real-world datasets: MUTAG, PTC, PROTEINS, NCI1 and
IMDB from TUDatset, we directly reference the existing
experiment results for RWK (Gértner, Flach, and Wro-
bel 2003), GK (Shervashidze et al. 2009), PK (Neu-
mann et al. 2016), WL kernel (Shervashidze et al. 2011),
DCNN (Atwood and Towsley 2016), DGCNN (Zhang et al.
2018a), IGN (Maron et al. 2019b), GIN (Xu et al. 2018a),
PPGNs (Maron et al. 2019a), Natural GN (de Haan, Co-
hen, and Welling 2020), GSN (Bouritsas et al. 2022),
SIN (Bodnar et al. 2021b), CIN (Bodnar et al. 2021a)

3PNA* is a variant of PNA that uses degree to scale embeddings
to encoding degree and concatenate to node embeddings .



Methods MUTAG PTC PROTEINS NCI1 IMDB-B
SAGIN 95.23£2.99 72.07+£7.64 79.79+3.75 85.28+1.68 75.90+£3.84
SAGIN w/o Ego 94.68+4.38 71.21+6.95 78.53+2.49 84.94+1.53 75.30+3.97
SAGIN w/o Cut 94.12+3.09 70.91+7.47 78.98+2.44 84.90+1.37 75.50+3.89
SAGIN w/o Global 93.1045.62 72.38+5.82 79.54+3.67 84.60+1.46 75.4043.75
Table 4: Ablation study on small scale datasets.
Methods EXP SR25 ZINC ZINC-FULL MOLPCBA MOLHIV
(ACC) (ACC) (MAE) (MAE) (AP) (ROC)
SAGIN 100% 100% 0.072+0.002 0.01620.002 28.53+0.30 80.64+1.28
SAGIN w/o Ego 100% 100% 0.094+0.002 0.028+0.001 27.14+0.62 76.97+2.26
SAGIN w/o Cut 100% 100% 0.081+0.002 0.031+0.001 27.57+0.05 77.78+1.92
SAGIN w/o Global 100% 100% 0.079+0.001 0.019+0.001 28.34+0.16 80.13+0.68

Table 5: Ablation study on expressiveness datasets and large scale datasets.

models from (Bodnar et al. 2021a), ESAN (Bevilacqua
et al. 2022), k-Reconstruction GNNs (Cotta, Morris, and
Ribeiro 2021) and DropGNN (Papp et al. 2021). We refer-
ence other real world datasets results for PNA* (Corso et al.
2020), CIN (Bodnar et al. 2021a), GNN-AK+ (Zhao et al.
2022), GraphSNN (Wijesinghe and Wang 2022), MPGNNs-
LSPE (Dwivedi et al. 2021), GatedGCN (Dwivedi et al.
2020), HIMP (Fey, Yuen, and Weichert 2020) in their lit-
erature for comparison.

Results and Discussion

Small real-world datasets Table 1 presents the results of
our framework and other competitive models on small real-
world datasets. Our framework achieves state-of-the-art per-
formance on all TUDatset datasets, demonstrating the great
advantage of our framework in structural awareness.

Expressiveness datasets Table 2 presents the perfor-
mance of our framework on two expressiveness datasets,
where our framework achieves 100% accuracy on both the
EXP and SR25 datasets with different base models. Com-
pared with other methods, our framework shows a superior
boosting effect, which can obtain more than 3-WL capabili-
ties with the base models of less than 1-WL capabilities.

Large scale datasets We further validate the performance
of our framework on large-scale datasets and achieve signifi-
cant performance improvements with different base models,
which can be viewed in Table 2. Our framework achieves
a maximum MAE reduction of 83% compared to the base
model and a maximum MAE reduction of 32% compared
to the previous state-of-the-art model on the graph regres-
sion task of drug constrained solubility prediction (ZINC-
FULL). On other relative structure-insensitive graph-level
tasks, our framework still outperforms other frameworks and
competitive models on multiple datasets.

Hyperparameter effect We first conduct an ablation
study to analyze the impact of the values of F'go and C'ut
on model performance on different tasks and different data
schema. Figure 4 visualizes the results of our hyperparam-
eter experiments on three datasets. All three datasets show
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the same performance trend, that is, the best performance
in the case of Fgo=3, C'ut=4, which shows our model’s
great hyperparameter stability. Our models perform opti-
mally with relatively similar hyperparameters under differ-
ent data structures and different tasks, which allows for less
hyperparameter tuning when deploying our model on real
world tasks. Then we investigate the impact of the number
of layers on SR25 and ZINC. As is shown in Table 3, the
accuracy achieves 100% when the number of layers is only
2 and remains 100% with the increase of the number of lay-
ers, which illustrates that the expressiveness of our model
does not depend on model depth. But on real-world dataset
(ZINC), our model needs proper layer numbers to achieve
good performance.

Ablation study To better demonstrate the capabilities of
our components, we conduct ablation study on all datasets
of our experiments. Table 4 and Table 5 present all results
of our ablation experiments, where different datasets exhibit
different dependencies on different components. For exam-
ple, the ZINC dataset pays more attention to low-level local
structure information, so the performance loss of ablating
Cut component is not as large as ablating £'go component.

Conclusion

In this paper, we first propose a C'ut subgraph which can
be obtained from the original graph by continuously and se-
lectively removing edges to help solving graph isomorphism
problem. Then we further propose a GNN framework called
Substructure Aware Graph Neural Network, which enhances
the expressiveness and performance of GNNs by encoding
subgraphs at different levels and injecting information into
nodes. Our extensive and diverse experiments demonstrate
the state-of-the-art performance of our framework on vari-
ous tasks and datasets.
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