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Abstract

Modeling continuous dynamical systems from discretely
sampled observations is a fundamental problem in data sci-
ence. Often, such dynamics are the result of non-local pro-
cesses that present an integral over time. As such, these sys-
tems are modeled with Integro-Differential Equations (IDEs);
generalizations of differential equations that comprise both an
integral and a differential component. For example, brain dy-
namics are not accurately modeled by differential equations
since their behavior is non-Markovian, i.e. dynamics are in
part dictated by history. Here, we introduce the Neural IDE
(NIDE), a novel deep learning framework based on the the-
ory of IDEs where integral operators are learned using neu-
ral networks. We test NIDE on several toy and brain activity
datasets and demonstrate that NIDE outperforms other mod-
els. These tasks include time extrapolation as well as pre-
dicting dynamics from unseen initial conditions, which we
test on whole-cortex activity recordings in freely behaving
mice. Further, we show that NIDE can decompose dynamics
into their Markovian and non-Markovian constituents via the
learned integral operator, which we test on fMRI brain activ-
ity recordings of people on ketamine. Finally, the integrand
of the integral operator provides a latent space that gives in-
sight into the underlying dynamics, which we demonstrate
on wide-field brain imaging recordings. Altogether, NIDE is
a novel approach that enables modeling of complex non-local
dynamics with neural networks.

Introduction
Integro-differential equations (IDEs) are a class of func-
tional differential equations that are non-local in time. IDEs
naturally describe many dynamical systems, including pop-
ulation dynamics, nuclear reactor physics, and visco-elastic
fluids, as considered in detail in Lakshmikantham (1995).
Further examples are models of brain dynamics (Martin
et al. 2018; Wilson and Cowan 1972; Amari 1977), as well
as infectious disease spreading (Medlock and Kot 2003).

Functional differential equations, and IDEs in particular,
are equations determined by non-local operators. These are
mappings, or functionals, from a space of functions into it-
self that require knowledge of the input function at non-
infinitesimal neighbourhoods in order to be computed. In-
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tegral operators epitomize such functionals, and the corre-
sponding theory of IDEs has become central, for instance,
in kinetic theory (Grigoriev et al. 2010). Examples of such
applications are the Boltzmann kinetic equation, the Vlasov
equation, and the Landau kinetic equation. In contrast, dif-
ferential operators such as time derivatives are local opera-
tors in that the notion of derivative at one point requires in-
formation from the “immediate vicinity” of the point. This
is formalized through the concept of limit.

The theory of IDEs stems from the necessity of modeling
systems that present spatio-temporal relations which tran-
scend local modeling, and works of Volterra on population
dynamics have motivated this since as early as the beginning
of the 1900’s (Volterra 1913, 1932). Consequently, IDEs
present several properties that are unique to their purely non-
local behavior (Grigoriev et al. 2010; Trenogin 2020). De-
spite their importance, no approach for learning IDE sys-
tems from data exists. Motivated by this, we develop a deep
learning method called Neural Integro-Differential Equation
(NIDE), which learns an IDE whose solution approximates
data sampled from given non-local dynamics. A schematic
representation of the functioning of NIDE is given in Fig-
ure 1A. To the best of our knowledge, this is the first deep
learning framework for modeling of non-local continuous
dynamics.

Contributions

The main contributions of this article are as follows:

• We implement an IDE solver fully supported by PyTorch.

• We introduce a deep learning method for modeling IDEs,
namely Neural IDE, which learns an integral operator
from a space of functions into itself.

• We derive the adjoint state of NIDEs and use this for
backpropagation during training.

• We present a method for decomposing dynamics into lo-
cal and non-local components.

• Finally, we use our method to model brain dynamics, in-
cluding wide-field calcium imaging in mice and fMRI
recordings of people on ketamine.
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Figure 1: Panel A shows a schematic of the NIDE method, where time steps are determined through a superposition of local and
non-local components. Panel B shows performance (MSE of model fits) of NIDE and NODE on data sampled at increasingly
longer time segments from an IDE system. NIDE significantly (P < 10−6) outperforms NODE, especially at longer time
segments (see Table 1). Panel C shows 2D spirals generated with either an ODE (left) or an IDE (right) and fitted by NODE
(top) or NIDE (bottom). While both models can fit the ODE spiral, only NIDE can accurately fit the IDE spiral.

Related Work
The use of differential equation solvers to learn dynamics
through neural networks has been pioneered in Chen et al.
(2018); Chen, Amos, and Nickel (2021) to address the need
of having continuous deep learning models. These models,
called Neural Ordinary Differential Equations, will be re-
ferred to as NODEs in the rest of the article. Our theory in-
troduces a deep learning approach to the case of functional
differential equations, where dynamics present global (i.e.
non-local) behavior. An introduction to functional differen-
tial equations can be found in (Stech et al. 1981). A viable
approach to incorporating non-local dependence in ODEs
would be, for example, the use of LSTMs in NODEs. How-
ever, this is essentially equivalent to the use of delay differ-
ential equations (DDEs (Smith 2011)).

In various applications that span from computational bi-
ology to physics and engineering, however, both ODEs and
DDEs are not capable of modeling dynamical systems with
non-local properties, where the use of functional differen-
tial equations, such as IDEs, is employed instead (Volterra
1913, 1932; Grigoriev et al. 2010; Wazwaz 2011; Stech et al.
1981). In our setting, we learn an integral operator on a space
of functions. Learning operators on function spaces is a deep
learning problem that has been considered for instance in Lu
et al. (2021a) and Goswami et al. (2022), where the case of
integral operators is considered in detail as well. The main
difference between our method and the latter is that the use
of an IDE solver, as we will show, allows us to learn in a
continuous manner, as well as produce continuous dynam-
ics.

Operator learning is a widely developed approach that en-
compasses numerous machine learning techniques, and is
applied in several disciplines. We emphasize that the usual

setting of operator learning is over a fixed grid that ap-
proximates the domain of the functions, and that the in-
finite dimensional space of functions is usually projected
(e.g. Galerkin method). Moreover, recovering the continu-
ous limit (i.e. the grid steps going to zero) is a fundamen-
tal challenge. A general perspective is given in Kovachki
et al. (2021), for instance, where the authors consider sev-
eral problems arising from Partial Differential Equations
(PDEs). In the introduction of Kovachki et al. (2021), a rela-
tively comprehensive account of the different methodologies
is also provided.

Solving IDEs by means of deep learning approaches has
been considered in Fu and Hirsa (2021), and several method-
ologies are overviewed in Lu et al. (2021b). We point out,
however, that the perspective of the present article is some-
how inverted with respect to the previous works on IDEs
appearing in the context of machine learning. In fact, to
our knowledge, previous works have only focused on ob-
taining methods for solving IDEs, in supervised or unsuper-
vised settings, that are given as input of the problem. In-
stead, the approach that we take learns an IDE whose solu-
tion approximates data sampled from a dynamical system.
What is learned here is not a solution to a known system,
but the system itself. Consequently, the input of our method
is not an analytical IDE, but data without any a priori knowl-
edge of the system that has generated it. The main novelty of
the present work resides in the fact that no prior analytical
knowledge of the system is required and, therefore, NIDE
provides insight into dynamical systems whose underlying
nature is not necessarily well understood.
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Learning Dynamics with Integro-Differential
Equations

We consider the problem of learning dynamics that depend
nontrivially on non-local effects, as well as on instantaneous
information. Such a dynamical system is expressed in terms
of both the derivative of a function, and a temporal integral.
The resulting equation of this type is an integro-differential
equation, and its general form (see Lakshmikantham (1995);
Wazwaz (2011)) is given as

dy

dt
= f(t,y) +

∫ β(t)

α(t)

G(t, s,y)ds,

where y : R −→ Rn is a vector function of the indepen-
dent time variable t. The functions f : Rn+1 −→ Rn and
G : Rn+2 −→ Rn generate the dynamics. Observe that
G depends explicitly on t, so that differentiating the inte-
gral with respect to t produces, in general, a new expres-
sion where an integral appears, using the Leibniz integral
rule. The derivative is parameterized by a neural network
f along with a temporal integral of another neural network
G, the main difference lying in the fact that past and fu-
ture states explicitly appear in the present state. We call such
a model Neural Integro-Differential Equation, or NIDE for
short. The theory of IDEs is better understood in the setting
where the function G is a product of type K(t, s)F (y(s))
for some arbitrary function F : Rn −→ Rn, and a matrix
valued function K : R2 −→ M(R, n), where M(R, n) in-
dicates the space of square matrices with real coefficients.
The function K is called kernel. In this article, we therefore
consider systems of type

dy

dt
= f(t,y) +

∫ β(t)

α(t)

K(t, s)F (y)ds, (1)

where K and F are both neural networks that will be learned
during training, and K will explicitly depend on the two time
variables t and s. In fact, we can generalize this setup and
assume that the kernel function takes values in the space of
rectangular matrices M(R,m, n) where m is the dimension
of a latent space, and therefore F : Rn −→ Rm maps y
in the latent space. This allows us to learn dynamics in the
latent space. The kernel then maps the latent space back to
the original data space. We observe that the variables t and s
that K depends on can be intuitively interpreted as “global”
and “local” times, respectively. For each time t, the value of
the solution y(t) is determined via an integration in ds, so
that for each value of t we have a different integration space
[α(t), β(t)] where s lies.

We implement an IDE solver based on the work by Gelmi
and Jorquera (2014) and Karpel (2018). We use this solver
to obtain dynamics, i.e. a solution y(t) of an IDE as above,
for given neural networks K and F . To minimize the loss
function L with respect to target data, we use the adjoint
state of the IDE in Equation 1, cf. Chen et al. (2018); Stapor,
Fröhlich, and Hasenauer (2018), or backpropagate directly
through the IDE solver. The adjoint function is defined as
a(t) := ∂L

∂y and its dynamics is determined by another sys-
tem of IDEs, since it is obtained by differentiating the loss

function evaluated on the output of the IDE solver. Before
considering the dynamical system that determines the evo-
lution of a(t), it is important to consider the method for solv-
ing the IDEs that is employed in this article, as this plays a
fundamental role in the implementation and provides a sub-
stantial difference with respect to the case of NODEs.

Notice that the functions α(t) and β(t) are arbitrary and,
therefore, for each t ∈ [t0, t1], the derivative of the func-
tion y(t), dy

dt , depends on values of y(t) both in the past, the
present, and the future of the dynamics. Common choices
of α and β are α(t) = 0 and β(t) = t (Volterra IDEs)
or α(t) = a and β(t) = b (Fredholm IDEs), see Zappala
et al. (2022) Appendix A. Effectively, this means that the
RHS of Equation 1 is a functional of y rather than a func-
tion. Therefore, an IDE solver cannot sequentially output the
value of y(t) based on the computation of y on the previous
time point. The idea is therefore to iteratively solve the IDE
by producing successive approximations of the solution y(t)
from an initial guess y0(t) until convergence of yn(t) to the
solution, within some predetermined tolerance. This allows
us to have a full function yn(t) at each iteration, and this can
then be integrated over arbitrary intervals [α(t), β(t)] during
the dynamics.

Following the discussion in the previous paragraph,
a(t) = ∂L

∂y is the functional derivative of the loss L with
respect to y(t). The loss function L is computed by apply-
ing a chosen method (e.g. mean squared error) to the output
of the IDE solver. One has the formula

da(t)

dt
= −

∫ t0

t1

a(t)T
∂f

∂y
dt

−
∫ t0

t1

a(t)TK(t, t)F (y(t))dt,

(2)

which is derived in the next section. In order to derive the
gradients with respect to the parameters θ of the neural net-
works K and F that define the NIDE we have another equa-
tion, namely

dL

dθ
= −

∫ t0

t1

∫ β(t)

α(t)

a(t)T
∂K(t, s)

∂θ
F (y(s))dsdt

−
∫ t0

t1

∫ β(t)

α(t)

a(t)TK(t, s)
∂F (s)

∂θ
dsdt.

(3)

As discussed in Appendix B Zappala et al. (2022), the ad-
joint state can be both solved as an ODE where the RHS is
obtained via integration of gradients, or it can be solved as
an IDE through an iterative procedure.

Adjoint Dynamics
We now consider the dynamics of Equation 1 and derive
the corresponding adjoint state, cf. Chen et al. (2018) and
Stapor, Fröhlich, and Hasenauer (2018). In particular, we
want to show that the adjoint function a(t) := ∂L

∂y , where
L is the loss function used for training, when f is trivial,
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satisfies the IDE

daaug
dt

= [−aT · ∂

∂y
(K(t, t)F (y(t)))| (4)

−aTθ ·
∫ β(t)

α(t)

∂

∂θ
(K(t, s)F (y(s)))ds], (5)

where aaug is the adjoint state of the augmented dynamics,
which includes the gradients with respect to the parameters
θ of the neural networks K and F , and the square brackets
refer to the fact that the dimensions of aaug are split in two
groups of direct summands, which we separate by a verti-
cal bar for clarity. The case when f is nontrivial is obtained
from Equation 4 by appropriately adding the computation
for the adjoint found in (Chen et al. 2018). This accounts to
adding −aT · ∂f(y,t)

∂y to the first term in the RHS of Equa-
tion 4, and concatenating −atθ · f(y, t) to the second term,
where θ here refers to the parameters of the neural network
f . For simplicity we explicitly consider the case with triv-
ial f , since the general case is a combination of this and the
results of Chen et al. (2018).

Before showing that Equation 4 describes the dynamics
of the adjoint state, we recall the notion of functional deriva-
tive, and some known results that can be found in standard
quantum field theory textbooks, e.g. Srednicki (2007). An
application of such techniques in Bayesian inference has
also recently appeared in Kim (2021).

A functional S is a mapping from a space of functions,
say F , to the real (or complex) numbers S : F −→ R. The
notion of variation of a functional is a well known concept
from the theory of calculus of variations, and finds its roots
in the classical formulation of mechanics, where the equa-
tions of motion are found by minimizing the action, which
is a functional, whose variation is set to zero. Extending the
notion of variation to that of derivative for a functional is not
straightforward, and it is formally defined as a limit of test
functions (i.e. a distribution). Let us now consider the case
of scalar argument functions in F , since the extension to
vector functions follows from this. For a functional of type
S(y(x)) =

∫
G(y(t), dty(t), . . . , d

k
t y(t))dt, where drt is a

shorthand for dr

dtr , the functional derivative is

δS(y(t))

δy(t)

=

∫
[
∂G

∂y(τ)
− dτ

∂G

∂(dτy(τ))
+ · · · ]δy(τ)

δy(t)
dτ

(6)

The distribution δy(τ)
δy(t) is the Dirac’s Delta function δ(t− τ),

so that one finds

δS(y(t))

δy(t)
=

∂G

∂y(t)
− dτ

∂G

∂(dty(τ))
+ · · · (7)

Observe that, in our case, the integral part of the NIDE is
an example of the functional S given above, parametrized by
global and local times, and without higher order derivatives
with respect to y(t). Moreover, the function G appearing in
S is the composition of F and kernel K, so the functional

derivative of the integral part of the NIDE in Equation 1 be-
comes

δ

δ(y)
[

∫ β(t)

α(t)

K(t, s)F (y(s))ds] =
∂(K(t, t)F (y(t)))

∂y(t)
(8)

We now consider the adjoint dynamics. We proceed in a
fashion similar to Section B.1 in Chen et al. (2018). Recall,
from above, that a(t) := ∂L

∂y , where L is the loss function
evaluated on the output of the IDE solver. Then, we con-
sider the equality dL

dy(t) = dL
dy(t+ϵ)

dy(t+ϵ)
dy(t) (cf. with previous

discussion on functional derivatives), which corresponds to
a(t) = a(t + ϵ)T · dy(t+ϵ)

dy(t) , using the definition of a(t). To

derive dy(t+ϵ)
dy(t) , let us first write

y(t+ ϵ) = y(t) +

∫ t+ϵ

t

∫ β(τ)

α(τ)

K(τ, s)F (y(s))dsdτ, (9)

which is obtained by integrating the IDE from t to t+ ϵ. For
small values of ϵ, Equation 9 becomes

y(t+ ϵ) = y(t) + ϵ ·
∫ β(t)

α(t)

K(t, s)F (y(s))ds, (10)

from which we obtain

dy(t+ ϵ)

dy(t)
=

δ

δy(t)
[y(t) + ϵ ·

∫ β(t)

α(t)

K(t, s)F (y(s))ds]

= 1 + ϵ · ∂(K(t, t)F (y(t)))

∂y(t)
, (11)

where in the last equality we have used Equation 8. As a
consequence, for small ϵ, we can write the equality

a(t) = a(t+ ϵ) + ϵa(t+ ϵ)T · ∂(K(t, t)F (y(t)))

∂y(t)
, (12)

up to terms that vanish to zero with the same order of ϵ2.
To complete, we now compute the derivative of a(t) w.r.t.

time. We have

da

dt
= lim

ϵ→0+

a(t+ ϵ)− a(t)

ϵ
(13)

= lim
ϵ→0+

−1

ϵ
a(t+ ϵ)T [ϵ

∂(K(t, t)F (y(t)))

∂y(t)
](14)

= −a(t)T · ∂(K(t, t)F (y(t)))

∂y(t)
. (15)

In order to update the parameters of the neural networks
of the NIDE, we need to consider the augmented system
(cf. Chen et al. (2018) and Stapor, Fröhlich, and Hasenauer
(2018)). The augmented state aaug(t) is obtained by consid-
ering the augmented IDE, where yaug = [y(t)|θ] is obtained
by concatenating the parameters of F and K to y(t). The
temporal derivative θ is trivial, since the parameters are time
independent, and the augmented IDE reads

dyaug

dt
= [

∫ β(t)

α(t)

K(t, s)F (y(s))ds|0]. (16)
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When considering the augmented adjoint function aaug(t),
the time derivative of the dimensions of aaug(t) correspond-
ing to

∫ β(t)

α(t)
K(t, s)F (y(s))ds are obtained as above. Then,

given aθ(t) := ∂L
∂θ we need to obtain the dynamics associ-

ated to aθ(t). We can proceed as in the case of Equation 15
with the difference that the term involving δ

δθ in this case
simply gives

δ

δθ

∫ β(t)

α(t)

K(t, s)F (y(s))ds

=

∫ β(t)

α(t)

∂

∂θ
(K(t, s)F (y(s)))ds.

(17)

The latter then can be used to compute the time derivative
aθ(t) completing the derivation of Equation 4.

Experiments
In this section we perform several experiments with NIDEs
on data that was analytically generated by dynamical sys-
tems corresponding to IDEs, and data of real-world systems
that present non-local characteristics. Specifically, we con-
sider brain dynamics data from whole-cortex activity record-
ings in freely behaving mice, and fMRI brain activity record-
ings of people on ketamine. We focus on comparing our
model with NODEs, as this is another model that is con-
tinuous in time, and with LSTMs, which are discrete-time
deep learning methods that model non-locality by including
previous states of the data.

In addition, we investigate the interpretability of NIDEs
in two ways: 1) By decomposing the dynamics into instan-
taneous and non-instantaneous components, and 2) by in-
specting the latent space provided by the integrand function
of the integral operator F .

We analyze, in detail, the capability of NIDE to extrap-
olate with respect to time, and to generalize to unseen ini-
tial conditions. Furthermore, in order to directly compare the
expressivity of NIDE to NODE, we consider fitting models
to data sampled from increasingly complex dynamics. We
show that when the dynamics are generated by an IDE with
sufficiently complex non-local properties, NODE is not ca-
pable of properly fitting the data, but NIDE is. Details about
the architecture of the model used in each task are provided
in Table 2 Zappala et al. (2022).

Testing the Expressivity of NIDE
We first compare the expressivity of NIDE to NODE by fit-
ting data of dynamics generated by IDE and ODE systems.
Here, we use the same number of parameters for both NIDE
and NODE, with NIDE having its parameters split between
function F and kernel K. While both NIDE and NODE per-
form well on the ODE generated curve, only NIDE can accu-
rately fit the IDE generated data (Figure 1C). These exper-
iments suggest that, with the same number of parameters,
NIDE is a more expressive model than NODE, capable of
fitting complex non-local dynamics.

To further explore this, we perform a more systematic ex-
periment in which we gradually increase the data complex-
ity, while fitting both NIDE and NODE models. Specifically,

we sample points from a self-intersecting spiral that was
generated using an IDE and fit models while increasing the
range from which we sample the dynamics. We observe that
shorter, and thus simpler dynamics, can easily be fitted by
both models while longer, and thus more complex dynam-
ics, can only be properly fitted by NIDE (Figure 1B, Table
1).

Time Extrapolation
To assess the ability of NIDE to generalize to future time
points (i.e. extrapolate), we generate 1000 4D dynamics
over a fixed interval using an IDE with uniformly sampled
initial conditions. During training, we randomly mask up to
50% of the time points at the end of the dynamics, which
we predict during test. The experiments show that NIDE has
lower MSE (Table 3 of Zappala et al. (2022)) and higher R2

for the masked points, thereby demonstrating that NIDE ex-
trapolates better than NODE on data sampled from an IDE
system. An example of such extrapolation is shown in Fig-
ure 2.

Next, to inspect the extent to which NIDE can generalize
to new initial conditions, we consider the model trained on
the 4D curves dataset and evaluate it on curves from new
initial conditions that have not been seen during training.
We find that NIDE yields lower MSE for predicted dynamics
from initial conditions than NODE, as shown in Table 5 in
Zappala et al. (2022) per extrapolated time point.

Decomposition into Markovian and
Non-Markovian Dynamics
NIDEs learn dynamics through the derivative of the function
y(t) considered above, as the superposition of two compo-
nents. The first one is common to the setting of NODEs,
where dy

dt is given by a neural network f , evaluated on pairs
(t,y(t)): f(t,y). We refer to this summand as the Marko-
vian component, as the contribution of f at the instant t de-
pends only on the current time step of the solver. On the con-
trary, the integral part of the NIDE will be referred to as the
non-Markovian component, as at each time t this depends
on the full interval [α(t), β(t)].

To test this construction, we generate 2D curves through
an IDE with nontrivial analytical functions f,K, F , with
different initial conditions. Since f,K and F are known,
we can recover the decomposition into Markovian and non-
Markovian for each of the curves in the dataset. This gives
us a ground truth.

We train a NIDE model on the full data without provid-
ing any information regarding the underlying decomposi-
tion. Then, we compute the Markovian and non-Markovian
decomposition of the trained models, and compare these to
the ground truth. We find that NIDE can accurately recon-
struct the ground truth components for both training and val-
idation data. We find R2 = 0.991±0.01 (mean±std) for the
whole fitting, R2 = 0.957± 0.03 for the instantaneous part,
and R2 = 0.943 ± 0.05 for the integral part. An example
of a reconstructed decomposition is shown in Figure 4 of
Zappala et al. (2022).
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Number of time points

25 50 100 125 150

NODE 5.0E-04± 1.0E-04 2.4E-03± 7.0E-04 1.35E-01±1.6E-03 1.7E-02±2.1E-03 2.34E-01±4.2E-02
NIDE 2.82E-05± 1.01E-05 4.02E-04± 2.00E-04 7.5E-03± 2.10E-03 6.4E-03±2.60E-03 1.94E-02±1.34E-02

Table 1: Average MSE for NIDE (ours) and NODE on fitting data sampled from an IDE generated self-intersecting spiral
(lower is better).

Figure 2: Comparison between NODE (red) and NIDE (ours, blue) in a time extrapolation task. Shown is one of the 4D curves.
Panel A shows each of the 4 dimensions as a function of time, while panel B shows the 2D PCA projection of the dynamics.
Data points that were masked during training and were then extrapolated are indicated as “hidden” (green). NIDE outperforms
NODE in a time extrapolation task where, during training, up to 50% of the points are masked and then predicted during
inference.

We stress that this is indeed a highly nontrivial result, as
there is no a priori reason to assume that a given dynam-
ics needs to be learned following a prescribed superposition
of Markovian and non-Markovian components. However, if
NIDE is exposed to a sufficiently large sample of dynamics
generated by a given system, it is able to accurately recon-
struct the local and non-local components.

We note that, for this experiment, we did not compare
NIDE to other models since, to the best of our knowledge,
no prior attempts have been made to decompose dynamics
into their Markovian and non-Markovian components. For
example, a NODE would only learn a Markovian compo-
nent.

Modeling Brain Dynamics Using NIDEs
Spatiotemporal neural activity patterns can be modeled as
a dynamical system (Vyas et al. 2020), for example using
ODEs (Linden et al. 2021). However, ODEs have shown
only partial success in modeling brain dynamics, arguably
due to the significant non-local component of neuronal activ-
ity (Linden et al. 2021; Breakspear 2017). Previous attempts
at considering the non-local behavior of brain dynamics in-
clude the Amari model (Amari 1977). The latter was a theo-
retical model based on IDEs, and NIDE provides a practical
and concrete realization of it. More specifically, we apply
NIDE to wide-field calcium brain imaging in freely behav-
ing mice as well as fMRI recordings in humans on ketamine.

Wide-field calcium imaging is a recently developed tech-
nology that uses calcium indicators as a proxy for neu-
ral activity, which allows recording of brain dynamics at
high spatial and temporal resolution in mice (Cardin, Crair,
and Higley 2020). Details about data collection and pre-

processing are found in Zappala et al. (2022).
We compare NIDE to NODE in a time extrapolation task

of calcium imaging recordings in mice passively exposed
to a visual stimulus (Lohani et al. 2020). Extrapolation per-
formance is shown as the mean R2 between prediction and
ground truth for several recording segments (Table 4 of Zap-
pala et al. (2022)). We find that NIDE outperforms NODE
in this task. An example of an extrapolation is provided in
Figure 3. Qualitatively, we observe that NIDE learns a bet-
ter model because it predicts excitation in the visual cortex,
which is present in the original data, while NODE predicts
an inhibitory pattern.

We also test the performance of NIDE on predicting dy-
namics of new initial conditions (see Figure 5 in Zappala
et al. (2022)). In this task, the whole sequence is predicted
from a given initial condition. Here, too, NIDE outperforms
NODE.

The function F (the integrand of the integral operator)
produces a latent space embedding of the data. To test the
resulting latent representation we compare the output of F
to PCA and UMAP (McInnes, Healy, and Melville 2018)
on the calcium imaging data. As shown in Zappala et al.
(2022), Figure 7, the latent space of F presents a higher de-
gree of geometric structure and resembles more accurately
the topology of the embedded manifold with respect to time,
which we quantify with k-NN regression using k=3 neigh-
bors (Figure 7 of Zappala et al. (2022)).

Next, we apply our method of Markovian and non-
Markovian decomposition to the calcium imaging data. This
allows us to quantify the extent to which the brain dynam-
ics are dictated by non-local components (Figure 8 in Zap-
pala et al. (2022)). Interestingly, the decomposition shows
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Figure 3: Time extrapolation performance of NODE and NIDE (ours) on wide-field calcium brain imaging data. NODE and
NIDE were trained on brain dynamics in which time points (at the end of sequences) were masked. Time extrapolation was
then assessed by predicting the masked (future) time points. NIDE (ours) outperforms NODE in this task. Shown is a dynamics
with NODE and NIDE predictions and corresponding R2 values with the ground truth. IC refers to the initial condition, which
is provided to both models.

that the Markovian part of the signal mainly represents in-
hibition of neural activity in the visual cortex, while the
non-Markovian part represents excitation, suggesting that
the visual cortex is driven by non-local dynamics. Neural
inhibition after the excitation is a known property of the
excitatory-inhibitory networks in the brain, ensuring that any
increase in neural activity will be followed by suppression
(Bhatia, Moza, and Bhalla 2019). Its Markovian dynamics
suggest that excitation is primarily determined locally in
time, thus by the current state of the brain.

Functional magnetic resonance imaging (fMRI) is the
most common technique for studying whole-brain activ-
ity in humans. In fMRI, the blood-oxygen-level dependent
(BOLD) signal is used as a proxy for brain activity (Akiki
and Abdallah 2019). Major depression is a worldwide lead-
ing cause of disability with poorly understood neurobiology
and high treatment resistance. Ketamine, a serendipitously
discovered rapid acting antidepressant, offers a unique op-
portunity to unravel the brain networks underlying major de-
pression and to establish novel treatment targets (Abdallah
et al. 2018). In this experiment, fMRI scans were acquired
repeatedly during infusion of normal saline followed by in-
travenous infusion of a subanesthetic dose of ketamine in
healthy subjects. The aim is to determine the ketamine in-
duced brain dynamics during infusion, which are believed
to reverse critical aspects of the psychopathology of major
depression and lead to sustained relief of symptoms (Abdal-
lah et al. 2017, 2021).

We find that the decomposition into Markovian and non-
Markovian components, learned by NIDE, provides a space
with better separation between ketamine and control con-
ditions, as indicated by a higher k-NN classification accu-
racy with k=3 neighbors (Zappala et al. (2022) Figure 6, Ta-
ble 6). This suggests that NIDE recovers dynamics relevant
to the underlying biology. Interestingly, the separation be-
tween the two conditions is greater in the instantaneous part,
compared to the integral part, suggesting that ketamine af-
fects the Markovian component of brain dynamics, possibly
by inducing a brain state that is more localized in time.

Scope and Limitations
The objective of this work is to introduce a new machine
learning framework for IDEs. This is applicable to several
domains arising in biology, physics, and engineering where
data is sampled from systems that follow IDE-like dynam-
ics.

While our implementation of integration makes use of
torchquad (Gómez, Toftevaag, and Meoni 2021) and it is
therefore fully supported by GPUs, hence relatively effi-
cient, improvements can be made by implementing more ad-
vanced and more efficient integration methods.

Conclusions
We presented a novel method for modeling dynamical sys-
tems with non-instantaneous behavior. Our method, termed
Neural Integro-Differential Equations (NIDE), models com-
plex non-local dynamics based on the theory of IDEs,
which are commonplace in physics and biology. To train our
model, we have presented a differentiable IDE solver im-
plemented in PyTorch. We have performed extensive experi-
mentation on tasks such as time extrapolation and predicting
dynamics of unseen initial conditions on both toy and real
world data and show that NIDE outperforms other methods.
To showcase real-world applications, we have used NIDE to
model two brain activity recording datasets: 1) Wide-field
calcium brain imaging in freely behaving mice, and 2) fMRI
recordings of people on ketamine. For the calcium imaging
dataset, NIDE more accurately predicts future brain states as
well as unseen dynamics. In addition, a latent space learned
by NIDE, via the integrand of the integral operator, pro-
vides an embedding that more accurately reflects time dy-
namics compared to other unsupervised embedding meth-
ods. For the fMRI data, NIDE learns a decomposition that
improves the ability to classify patients’ conditions. IDEs
are a well-established mathematical framework and have
found numerous applications in mathematics, physics, and
biology. We have taken IDEs into the world of deep learn-
ing, and since many real-world dynamical systems display
non-instantaneous behavior, we anticipate that there will be
many applications for NIDEs.
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