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Abstract

Graphic sketch representations are effective for representing
sketches. Existing methods take the patches cropped from s-
ketches as the graph nodes, and construct the edges based
on sketch’s drawing order or Euclidean distances on the can-
vas. However, the drawing order of a sketch may not be u-
nique, while the patches from semantically related parts of a
sketch may be far away from each other on the canvas. In
this paper, we propose an order-invariant, semantics-aware
method for graphic sketch representations. The cropped s-
ketch patches are linked according to their global semantics
or local geometric shapes, namely the synonymous proximi-
ty, by computing the cosine similarity between the captured
patch embeddings. Such constructed edges are learnable to
adapt to the variation of sketch drawings, which enable the
message passing among synonymous patches. Aggregating
the messages from synonymous patches by graph convolu-
tional networks plays a role of denoising, which is beneficial
to produce robust patch embeddings and accurate sketch rep-
resentations. Furthermore, we enforce a clustering constraint
over the embeddings jointly with the network learning. The
synonymous patches are self-organized as compact clusters,
and their embeddings are guided to move towards their as-
signed cluster centroids. It raises the accuracy of the com-
puted synonymous proximity. Experimental results show that
our method significantly improves the performance on both
controllable sketch synthesis and sketch healing.

Introduction
Free-hand sketches is a traditional medium for social com-
munication and conveying human emotions. They are vivid
and impressive, but are always abstract, iconic and lack-
of-details. Though sketches are with various visual appear-
ances, a sketch only consists of several pen strokes. It is chal-
lenging to learn accurate and robust sketch representations.

Recently, graphic sketch representation is effective for
representing sketches. A sketch is cropped into small patch-
es (Su et al. 2020; Qi et al. 2022b) or constructed as co-
ordinates on lattice (Qi et al. 2021), regarded as the graph
nodes. These nodes are linked by edges according to the Eu-
clidean distances on the canvas (spatial proximity) (Qi et al.
2021) or the sketch drawing order (temporal proximity) (Su
et al. 2020; Qi et al. 2022b). Usually, graph convolutional
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Figure 1: The definition of synonymous proximity. Sketch
patches can be semantically related (A, B and C all contain
a wheel) or collect pen strokes with analogous shape (D and
E are similar in a right-angle-shape). We summarize these
neighboring rules as the synonymous proximity.

network (GCN) (Kipf and Welling 2016) is utilized to ag-
gregate the feature from the node itself and the ones from its
neighboring nodes to get the final node representation. Such
a GCN-based learning is promising on sketch generation as
the neighboring nodes are helpful additional sources for the
structural patterns, but its performance largely depends on
the principle to connect small patches for message passing.

Neither the temporal nor the spatial proximity is robust
against the variation of sketch drawings for patch linking.
On one hand, the drawing order of a sketch is not unique. For
example, when drawing a cat, its head may be drawn before
or after its body, which produces different groups of edges in
the constructed graph. On the other hand, the patches from
semantically related parts of a sketch may be far away from
each other on the canvas. For example, the patches of two
ears of a cat may not be linked by an edge. The message
from a patch of one ear is difficult to reach a patch of the
other ear, as it has to go through a long, multi-hop path (if
any). The messages would be diluted or interrupted by other
patches from different sketch parts along the path.

It motivates us to link the patches by semantics or geomet-
ric shapes. More specifically, if two cropped sketch patches
are semantically related (e.g., the patches A, B and C in Fig.
1 all contain a wheel), or their collections of pen strokes
share analogous shapes (e.g., D and E in Fig. 1 are similar in
a right-angle-shape), we link them by a graph edge and name
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this neighboring rule as synonymous proximity. Synonym is
a term borrowed from the field of linguistics, describing that
two words or phrases are with exactly or nearly the same
meanings. We use this word to represent the similarity be-
tween the patch contents. Compared with the edges linked
by temporal or spatial proximity, our principle is learnable
to adapt to the variation of sketch drawings. Aggregating the
messages from the synonymous patches plays a role of de-
noising, which is beneficial to causally produce robust patch
embeddings and accurate sketch representations.

Furthermore, we enforce a clustering constraint on the
embeddings of patches cropped from different sketches
jointly with the network learning. The synonymous inter-
sketch patches (e.g., A and C in Fig. 1) are encoded close to-
gether as clusters, and their embeddings are forced to move
towards their assigned cluster centroids, which are learned
from the entire training set. Thus, the embeddings become
compact for computing accurate synonymous proximity.

To realize the above idea, we propose synonymous prox-
imity based graph to sequence (SP-gra2seq)1 to dynamical-
ly link patches for graphic sketch representation. A sketch is
cropped into patches which are embedded by a convolution-
al neural network (CNN) encoder. We construct the sketch
graph by synonymous proximity computed by cosine sim-
ilarity between the patch embeddings. A GCN encoder is
devised to aggregate the patch features for the final sketch
representation. Moreover, we cluster the inter-sketch patch
embeddings jointly with the network training, and push the
embeddings towards their assigned cluster centroids to stabi-
lize the estimation of synonymous proximity. To summarize,
we make the following contributions:
1. We propose SP-gra2seq to learn graphic sketch represen-

tations by linking sketch patches by synonymous prox-
imity. The constructed graph edges are learnable to adapt
to the variation of sketch drawings.

2. SP-gra2seq enforces a regularization by clustering the
embeddings of inter-sketch patches. The regularization
improves the computation of the synonymous proximity.

3. Experimental results show that SP-gra2seq significant-
ly improves the state-of-the-art performance on control-
lable sketch synthesis (Zang, Tu, and Xu 2021) and s-
ketch healing (Su et al. 2020; Qi et al. 2022b).

Related Work
Representing Sketches by Different Formats
When represented by a sequence of pen strokes, the tempo-
ral features of a sketch are captured by the recurrent neural
network (RNN)-based (Ha and Eck 2018) or transformer-
based (Lin et al. 2020; Ribeiro et al. 2020) encoders. When
represented by an image, its spatial relationships among pix-
els are extracted by CNNs (Chen et al. 2017; Tian et al.
2021). Moreover, both sketch formats are used simultane-
ously for learning efficient representations (Song et al. 2018;
Choi et al. 2019; Xu et al. 2020; Li et al. 2022).

Recently, graph neural networks (GNNs) (Scarselli et al.
2008) and GCNs were utilized for sketch recognition (Yang

1The codes are in: https://github.com/CMACH508/SP-gra2seq.

et al. 2020; Xu, Joshi, and Bresson 2021; Li et al. 2021),
sketch segmentation (Yang et al. 2021; Qi et al. 2022a), im-
age retrieval (Zhang et al. 2020b) and sketch synthesis (Su
et al. 2020; Qi et al. 2021, 2022b). They focused on learning
graphic sketch representations by highlighting the proximity
among different parts of a sketch. A sketch was represented
by the cropped patches (Su et al. 2020; Qi et al. 2022b) or the
latticed coordinates on the canvas (Qi et al. 2021) and were
regarded as the graph nodes. These nodes were linked by
graph edges based on either the temporal proximity follow-
ing the sketch drawing order (Su et al. 2020; Qi et al. 2022b)
or the spatial proximity revealed by the Euclidean distances
(Qi et al. 2021). However, these edge constructions rely on
the inherent sketch attributes, which are specific to sketch
individuals. The huge variation of sketch drawings may re-
duce the accuracy for their representations.

Different from the existing methods, we link the sketch
patches by the learnable synonymous proximity for accu-
rate, causal and robust sketch representations.

Constraining the Distribution of Sketch Codes
Constructing a proper latent structure for modeling the s-
ketch data manifold contributes to efficient sketch represen-
tations. When the sketch codes are single Gaussian distribut-
ed, e.g., in sketch-rnn (Ha and Eck 2018), sketches in dif-
ferent categories are chaotically encoded in a latent cluster,
reducing the representing performance on multi-categorized
datasets. To make the codes more freely encoded, sketch-
pix2seq (Chen et al. 2017) removed the Kullback-Leibler
(KL) divergence term from the objective. RPCL-pix2seq
(Zang, Tu, and Xu 2021) self-organized Gaussian mixture
model (GMM) distributed codes to constrain sketches with
similar patterns in a compact Gaussian component of GMM.

Inspired by the aforementioned articles, we cluster and
regularize the latent embeddings of the sketch patches joint-
ly with the network training. The clustered embeddings are
more compact and self-organized, and thus it raises the ac-
curacy of the computed synonymous proximity.

Methodology
SP-gra2seq falls into the encoder-decoder framework. A s-
ketch is cropped into patches which are embedded by a CNN
encoder. The sketch graph is constructed based on the learn-
able synonymous proximity computed by the patch embed-
dings. The features captured from patches are aggregated by
a GCN encoder for the RNN decoder to reconstruct the input
sketch.

Linking Sketch Patches by Synonymous Proximity
The graph nodes of a sketch are defined as the sketch patch-
es following (Su et al. 2020; Qi et al. 2022b). Firstly, we crop
M patches ptm ∈ R256×256 (1 ≤ m ≤ M ) from the sketch
image St ∈ R640×640. The selecting rule for the cropping
positions is adopted from (Su et al. 2020; Qi et al. 2022b),
but we enlarge the patch size from 128× 128 as in (Su et al.
2020; Qi et al. 2022b) to 256×256, ensuring that our patches
collect enough drawing strokes for composing meaningful s-
ketch parts, e.g., a cropped wheel in Fig. 1.
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Two patches with similar semantic contents or analogous
geometric shape of the drawing strokes are synonymous. For
example, the patches A, B and C in Fig. 1 are in close syn-
onymous proximity of one another, as all of them collec-
t a wheel from the vehicles. We employ a CNN encoder
qφ(v|p) to capture the embeddings vti and vtj ∈ R512×1

(1 ≤ i, j ≤ M ) from the patches pti and ptj , respectively.
qφ consists of seven convolutional layers (channel numbers
as 8, 32, 64, 128, 256, 512 and 512) with the kernel size 2×2
and the ReLU activation function, followed by max pooling
and batch normalization. And we compute the cosine simi-
larity to measure their synonymous proximity:

cos(vti,vtj) =
vT
tivtj

||vti||2 · ||vtj ||2
, (1)

where || · ||2 denotes the L2 norm. A large value of
cos(vti,vtj) indicates that the corresponding pti is in close
synonymous proximity to ptj . As the patch embeddings are
in a high dimensional space (e.g., 512 dimensions in this pa-
per), the ratio of the Euclidean distances of the nearest and
farthest neighbors to a given target is almost 1 (Beyer et al.
1999). Hence, we use the cosine similarity as the metric.

Cropped from the same sketch St, if pti and ptj are in
close synonymous proximity, we link them with a graph
edge, e.g., linking A and B in Fig. 1. We store the com-
puted synonymous proximity in an adjacency matrix At ∈
RM×M . The element aij inAt denotes the synonymous re-
lationships between vti and vtj , which is

aij =



1, j = i,
0.5 · cos(vti,vtj), j = j∗,

j∗ = argmax
m 6=i

cos(vti,vtm),

0.2 · cos(vti,vtj), j = j′,
j′ = argmax

m 6=i,j∗
cos(vti,vtm),

0, otherwise.
(2)

For a graph with M nodes, the node vti is linked to vtj∗
and vtj′ with the top-2 values of cosine similarity among
vtm (m 6= i). aij is proportional to the value of cosine sim-
ilarity. As vtj∗ is more synonymously related to vti than
vtj′ , it is offered with a larger coefficient 0.5 to transport
more messages from vtj∗ to the target vti. Moreover, each
node vti is added with a self-connection, i.e., aii = 1. The
rest elements on the ith row of At are valued as 0, indicat-
ing that these corresponding patches are less synonymous to
pti. The graph edges are constructed by the learnable syn-
onymous proximity, according to the dynamic patch embed-
dings produced from the CNN encoder. It allows SP-gra2seq
to automatically link the sketch patches for message passing
during the graphic sketch representation learning.

Graphic Sketch Representation
With the constructed sketch graph, we integrate the informa-
tion of all patch nodes via the synonymous proximity for the
final sketch representation. We also resize the full sketch St

to obtain pt0, which is with the same size as ptm. Its cap-
tured embedding vt0 from the CNN encoder qφ is regarded

as a global observation of St to cooperate with the local de-
tails via the sketch patches ptm.

We build the GCN encoder qξ(y|V , Ã) to compute the fi-
nal latent code yt for sketch St. Vt = [vt0,vt1, · · · ,vtM ]

T

concatenates all the outputs from the CNN encoder and
Ãt ∈ R(M+1)×(M+1) is a matrix shown in Eq. (3),

Ãt =

[
0.5 0T

0.5 · 1 At

]
,At =


a11 a12 · · · a1M
a21 a22 · · · a2M

...
...

. . .
...

aM1 aM2 · · · aMM

 ,
(3)

where 0 and 1 are two M × 1 vectors with all elements
valued as 0 and 1, respectively. And the element aij inAt is
computed by Eq. (2).

We construct a GCN layer with the weightW as

Ft = ReLU
(
D̃
− 1

2
t ÃtD̃

− 1
2

t VtW
)
, (4)

where D̃t represents the degree matrix of Ãt. The embed-
ding vt0 extracted from the full sketch is weighted by the
split first column of Ãt with the weights 0.5 in Eq. (3), co-
operating with {vtm}Mm=1 from the sketch patches to yield a
comprehensive feature Ft. Ft is sent into a pair of fully con-
nected layers to obtain two vectors µt and σt, which are for
computing the final code yt by yt = µt + σt � ε. The op-
eration � denotes the Hadamard product and ε is randomly
sampled from a standard Gaussian distribution G(ε|0, I).

We illustrate the relative advantage of our method which
is driven by synonymous proximity in Fig. 2, where for con-
venience we use simple geometric shapes (e.g., circle, trian-
gle, square) to roughly categorize the structural patterns in
a patch. For example, in Fig. 2(a), the target node v1 rep-
resenting a circle receives the messages from its neighbors.
If the graph edges are constructed by our synonymous prox-
imity, aggregating the messages from the neighbors of circle
plays a role of denoising, which is beneficial to produce ro-
bust and accurate embedding of v1. However, if the edges
are built by other methods, e.g., the temporal proximity, the
passing messages may bring noises (e.g., messages from the
square and the triangle) to interrupt the circle representation.

The message passing can form multi-hop paths after go-
ing through the stacked GCN layers by Eq. (4). Although
two patch nodes, like v1 and vn+1 in Fig. 2(b), which are
actually very similar to each other, may not have an edge be-
tween them for not being at the top-3 neighbors of each oth-
er according to Eq. (2), they are still likely to be connected
in a multi-hop path. With synonymous proximity, the multi-
hop message passing will strengthen the patch embeddings
v1 and lead to accurate sketch representations. When using
temporal proximity or spatial proximity, it is even more like-
ly to connect the patch nodes of different patterns (e.g., the
square and the triangle) in a long multi-hop path, leading to
inconsistent, corrupted information propagation.

Clustering Sketch Patches from Different Sketches
Patches cropped from different sketches can be in close syn-
onymous proximity of one another as well, e.g., the patches
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...

embeddings vtm for ptmpatches ptmsketch St

adjacency matrix

11 12 1

21

1

0.5 0 0 0

0.5

0.5

0.5

M

M MM

a a a

a

a a

 
 
 
 
 
 
  





  

generated sketch ˆ
tS latent code yt

vt0 for pt0 ① 
Compute the synonymous
proximity between vti and 
vtj by cos(vti, vtj). 
② 
Link vti to vtj, if

or

and value aij as

③
Cluster vtm and guide vtm 
towards its assigned 
clustering centroid.

*,*argmaxcos(, ),ti tm
mi

j j j


  vv

A

B

C

Patch centers Masked canvas

Corrupt Crop
Output

Patches

A

B

C

(a)

Crop patch A

NA
Corrput

Y

Crop patch B

Corrput
B

Mask canvas and 
corrupt patch Cm

Corrput

N

Cm C

Crop patch C

(b)

A

B

Cm

Output

pt0 resized from St

tA

,*

, argmaxcos(, ),ti tm
mij

j j j


   vv

1,                       ,

0.5 cos( , ),  *,

0.2 cos( , ),  ,

0,                     otherwise.

ti tj

ij

ti tj

j i

j j
a

j j


    


v v

v v

encoder q
encoder q

G
C

N
 

decoder p

C
N

N
 

R
N

N
 

A B

C

D

E

A B

C E

shape
(a right-angle)

semantics 
(a wheel)

D

bus

car

synonymous proximity

(a)

(b) (d)

(c)

sketch patch

message passingv1

v2

v3 v4

v1

v2

v3 v4

v1 v2 v3 vm

v1 v2 v3 vm

By synonymous proximity By other methods
sketch patch

message passing

v1 v1

v1 v2 v3 vn+1

v1 v2 v3

(a) 1-hop message passing (b) n-hop message passing

vn+1

By synonymous proximity

By other methods

Figure 2: Message aggregation by GCNs for learning the patch embedding v1. We use simple geometric shapes, e.g., circle,
triangle, square, for convenience to roughly categorize the structural patterns in a patch. (a) 1-hop message passing. When
using synonymous proximity, a patch with a circle is linked to other ones with circles. The target v1 receives the messages from
other circles to achieve a robust circle representation. But in other methods, v1 may receive the messages from a square or a
triangle, which could be noises to interrupt the circle representation. (b) n-hop message passing by using stacked GCN layers.
Actually, two synonymous nodes v1 and vn+1 may not be linked for not being at the top-3 neighbors of each other. But they
could be connected in a multi-hop path. With synonymous proximity, multi-hop message passing would strengthen v1. But in
other methods, it is more likely to connect the patch nodes of different patterns (e.g., the square) in a long multi-hop path.

A and C in Fig. 1. Though these inter-sketch patches can-
not be linked by edges, we enforce a clustering constraint on
their embeddings jointly with the network training.

At the (τ )-th training iteration, the network is fed with
a mini-batch of N sketches {St}Nt=1. Thus, we capture all
N×M embeddings vtm and cluster them in the latent space.

q(τ)(k|vtm) =

{
1, k = argmax

k∗
cos(vtm, c

(τ−1)
k∗ ),

0, otherwise.

c
(τ)
k = η ·

∑N
t=1

∑M
m=1 q

(τ)(k|vtm) · vtm∑N
t=1

∑M
m=1 q

(τ)(k|vtm)
+ (1− η) · c(τ−1)

k ,

(5)

where ck ∈ R512×1 (1 ≤ k ≤ K) and η denote the cluster
centroids and the learning rate for updating ck, respectively.
The node vtm is assigned to the k-th cluster, if vtm and ck
are with the largest cosine similarity among all K centroids.

The nodes {vtm} with analogous patterns are assigned to
the same cluster, wherever vtm is from. Hence, the cluster
centroid ck generalizes the synonymous features from the
entire training set. We guide vtm to move towards its as-
signed cluster centroid to self-organize the compact embed-
dings, and thus the computation of the synonymous proxim-
ity is more robust against the variation of sketch drawings.

Training an SP-gra2seq via Sketch Reconstruction
We send the final code yt for sketch St into the RNN de-
coder pθ(S|y), whose network architecture is adopted from
sketch-rnn (Ha and Eck 2018), to reconstruct the sketch Ŝt

in a sequence format. Our objective is to maximize

L(θ, ξ,φ|S) =
N∑
t=1

[
Eqφ,ξ(yt|St) [log pθ(St|yt)]

−λ
M∑

m=1

K∑
k=1

q(k|vtm) · ||vtm − sg(ck)||2

]
, (6)

where sg(·) stands for the stop-gradient operator. The first
log-likelihood term in Eq. (6) aims to reconstruct the input

by the sequence-formed sketch generation, and we calculate
this term following (Ha and Eck 2018). The second term
weighted by λ is a regularization by pushing vtm towards its
assigned cluster centroid ck. We remove the KL divergence
term KL [qφ,ξ(y|St)||p(yt)] from the objective (Chen et al.
2017; Su et al. 2020; Qi et al. 2021) to encourage the latent
code yt to be more freely encoded.

Experiments
We choose controllable sketch synthesis (Zang, Tu, and Xu
2021) and sketch healing (Su et al. 2020; Qi et al. 2022b) to
testify whether our method learns accurate and robust graph-
ic sketch representations.

Preparation
Datasets. Three datasets from QuickDraw (Ha and Eck
2018) are selected for experimental comparison. Dataset 1
(DS1) and dataset 2 (DS2) are adopted from (Zang, Tu, and
Xu 2021) and (Qi et al. 2021), respectively. DS1 (bee, bus,
flower, giraffe and pig) evaluates the representation learn-
ing on the large variations of the sketches within the same
category. DS2 (airplane, angel, apple, butterfly, bus, cake,
fish, spider, the Great Wall and umbrella) evaluates whether
the methods are sensitive to categorical patterns. We also in-
troduce the most challenging dataset 3 (DS3), which is an
enhanced version of DS1 with three newly introduced cate-
gories (car, cat and horse). DS3 evaluates whether the meth-
ods can still recognize the sketch categories from the shared
non-categorical patterns between categories (e.g., wheels
can be found in cars or buses). Each category contains 70K
training, 2.5K valid and 2.5K test samples (1K = 1000).
Baselines. We compare our SP-gra2seq with eight baseline
models. Sketch-rnn (Ha and Eck 2018) learns the sketch rep-
resentations from sketch sequences. Sketch-pix2seq (Chen
et al. 2017) and RPCL-pix2seq (Zang, Tu, and Xu 2021)
both use sketch images as input, and constrain the sketch
codes with a proper distribution to learn better representa-
tions. Song et al. (Song et al. 2018) is fed with sketch se-
quences and images as pairs simultaneously. SketchHealer
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Models
DS1 DS2 DS3

Rec
Ret (top-)

Rec
Ret (top-)

Rec
Ret (top-)

1 10 50 1 10 50 1 10 50
sketch-rnn 50.33 0.38 2.84 9.33 46.28 10.93 23.73 48.38 57.64 3.72 13.42 26.14
sketch-pix2seq 83.99 13.45 30.12 49.99 85.46 50.94 71.38 80.15 79.13 22.92 47.55 58.19
Song et al. 91.77 16.41 36.43 52.22 86.98 58.84 76.84 80.06 83.28 25.47 43.39 56.16
RPCL-pix2seq 93.18 17.86 38.87 55.30 88.73 53.19 71.60 87.91 81.80 28.80 59.05 77.52
SketchHealer 91.04 58.80 82.15 91.33 94.04 87.54 96.19 98.26 87.03 68.52 82.37 86.57
SketchHealer 2.0 93.13 57.19 84.54 90.26 90.94 87.37 94.59 97.60 87.37 50.67 76.11 82.42
SketchLattice 75.91 6.55 14.01 26.72 71.80 6.91 14.76 28.82 62.21 5.90 10.36 19.39
SketchLattice+ 95.18 72.74 91.60 97.14 94.30 90.56 97.78 99.2799.2799.27 89.49 87.27 96.82 98.98
SP-gra2seq 95.9195.9195.91 94.8894.8894.88 99.1199.1199.11 99.7299.7299.72 94.8594.8594.85 90.8390.8390.83 98.2998.2998.29 99.08 89.8389.8389.83 94.0594.0594.05 98.7298.7298.72 99.5799.5799.57

Table 1: Controllable sketch synthesis performance (%) on three datasets.

(Su et al. 2020), SketchLattice (Qi et al. 2021) and Sketch-
Healer 2.0 (Qi et al. 2022b) learn graphic sketch representa-
tions by linking graph nodes based on the temporal or spatial
proximity. Especially, the source code of SketchHealer 2.0
is not released yet, and the article does not provide the de-
tails to develop a differentiable sketch rasterisation module
for calculating the perceptual loss term. We employ a bi-
directional long-short term memory (Bi-LSTM) to calculate
the perceptual loss term over the sketch sequences. Besides,
we use the Gumbel-softmax (Jang, Gu, and Poole 2016) to
make the sampling process differentiable. Moreover, we also
produce an extended SketchLattice named SketchLattice+,
whose node embeddings are captured from sketch patches
as in SketchHealer, instead of the coordinates on lattice. A
lattice of 8 × 8 is set on the canvas to determine the crop-
ping positions, and the Euclidean distances between them
are utilized to construct graph edges as in SketchLattice.

When training an SP-gra2seq, the patch number M , the
mini-batch size N , the learning rate η for updating cluster-
ing centroids and the weight λ in the objective are fixed at
20, 256, 0.05 and 0.25, respectively. The numbers of cluster
centroids K are 30, 50 and 50 for three datasets, respec-
tively. We employ Adam optimizer for the network learning
with the parameters β1 = 0.9, β2 = 0.999 and ε = 10−8.
And the learning rate starts from 10−3 with a decay rate of
0.95 for each training epoch.

Controllable Sketch Synthesis
Controllable sketch synthesis requires the method to gen-
erate sketches Ŝt with exact patterns as the input St. We
quantitatively evaluate the performance by metrics Rec and
Ret proposed by (Zang, Tu, and Xu 2021). Rec indicates
whether the generated sketch Ŝt and its corresponding in-
put St are in the same category. We respectively pre-train
three sketch-a-net (Yu et al. 2017) as classifiers to calculate
Rec for three datasets. Ret represents whether Ŝt is well
controlled to preserve both the categorical and the detailed
non-categorical patterns from St. More specifically, when
feeding the network with St, we obtain its latent code yt
and the generated sketch Ŝt. By sending Ŝt back to the same
encoder, we get its corresponding code ŷt. We retrieve the
original yt from Y = {yt(St)|St ∈ test set} with ŷt, and

Ret is the successful retrieving rate. Both Rec and Ret are
calculated from the entire test set.

Table 1 reports the controllable sketch synthesis perfor-
mance. By learning the graphic sketch representations, S-
ketchHealer (Su et al. 2020), SketchHealer 2.0 (Qi et al.
2022b) and SketchLattice+ achieve significant improvemen-
t on Ret, compared with the other baselines. The temporal
or spatial proximity for constructing sketch graphs improves
grasping the sketch details. Thus, the generated sketches re-
semble the corresponding input, leading to high Ret perfor-
mance. Especially, SketchHealer 2.0 uses a perceptual loss
term to guide the network to preserve more global seman-
tics of sketches, instead of exactly reconstructing the local
input details. As these two objectives are trade-off (Qi et al.
2022b), SketchHealer outperforms SketchHealer 2.0 a lit-
tle on controllable synthesis. Besides, the original Sketch-
Lattice (Qi et al. 2021) is a light weight model by learning
the representations from the coordinates only. SketchLattice
fails to restore the sketch details in the generations, resulting
in poor performance on Ret.

The graph edges constructed by SP-gra2seq are equipped
with synonymous awareness, which are more adaptive to the
divergent sketch drawings, especially when sketches are rich
in non-categorical patterns, e.g., in DS3. The passing mes-
sages through the edges are more reliable to produce accu-
rate patch embeddings. Hence, SP-gra2seq achieves the best
performance on controllable synthesis.

Moreover, Fig. 3 presents a comparison between different
principles for constructing the graph edges. When using the
synonymous proximity, the blue lines regarded as the graph
edges can cross the entire canvas to link the most synony-
mous patches, e.g., the connected bus wheels and windows
in the 2nd column and the connected butterfly wings in the
5th column. The passing messages are more freely activated
for efficient and accurate sketch representations. But these
sketch parts fail to be linked by temporal or spatial proximi-
ty, as they are temporally separated in drawing order or with
huge distances on the canvas.

Sketch Healing
Sketch healing requires the method to recreate a full sketch
Ŝt from a corrupted sketch Sm

t with masks. If Ŝt resem-
bles the original St (Sm

t is corrupted from St), it is regard-
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Figure 3: The constructed edge links by temporal, spatial and the proposed synonymous proximity. The red dots denote the
patching centers (or the coordinates on lattice) as graph nodes. In this figure, each node is linked to its “nearest” neighboring
node with a blue line by the calculated proximity, representing the graph edge.

Mask Models
DS1 DS2 DS3

Rec
Ret (top-)

Rec
Ret (top-)

Rec
Ret (top-)

1 10 50 1 10 50 1 10 50

10%

SketchHealer 70.38 14.25 27.91 45.51 70.56 35.22 55.86 66.24 60.91 15.10 37.89 53.10
SketchHealer 2.0 90.18 19.45 41.51 59.94 87.07 39.40 64.01 81.20 76.45 15.55 39.99 61.67
SketchLattice 54.18 1.09 5.48 14.00 52.97 1.34 6.86 17.41 44.14 0.71 4.19 11.36
SketchLattice+ 89.98 19.86 43.59 63.70 90.52 46.98 70.21 83.12 78.28 22.56 44.89 62.11
SP-gra2seq 92.9092.9092.90 41.2441.2441.24 65.7465.7465.74 80.1680.1680.16 91.2491.2491.24 50.4250.4250.42 73.3573.3573.35 85.1885.1885.18 83.3883.3883.38 40.2040.2040.20 63.4063.4063.40 77.5277.5277.52

30%

SketchHealer 59.00 0.23 3.48 10.76 61.26 7.98 19.04 35.03 48.90 0.43 7.36 15.79
SketchHealer 2.0 79.05 4.66 14.54 28.44 75.08 10.05 24.51 39.57 60.74 3.75 11.66 22.36
SketchLattice 32.03 0.08 2.05 5.96 31.73 0.88 3.64 9.25 23.06 0.41 2.41 5.96
SketchLattice+ 70.91 1.02 5.26 14.28 81.76 10.43 26.44 42.90 67.31 2.75 11.13 23.68
SP-gra2seq 84.8584.8584.85 12.8712.8712.87 29.3929.3929.39 45.5845.5845.58 82.8582.8582.85 12.1912.1912.19 29.3729.3729.37 46.5346.5346.53 71.0771.0771.07 5.655.655.65 17.4017.4017.40 32.9032.9032.90

Table 2: Sketch healing performance (%) on three datasets. “Mask” denotes the probability for the sketch patches to be masked.

ed as a successful sketch healing. Especially, our approach
for masking sketches is different from SketchHealer, Sketch-
Healer 2.0 and SketchLattice. We firstly select the mask-
ing centers on the canvas following the rule for selecting
the cropping centers (Su et al. 2020). Each masking center
corresponds to a 256 × 256 patch, which has a probabili-
ty of 10% or 30% to be masked. Sketch patches cropping
or the coordinates selection are proceeded after the masking
process. But according to the officially released code of S-
ketchHealer in GitHub, the patch cropping and masking are
applied by turns in the drawing order. If two patches A and
B are overlapped, A is cropped in front of B without being
masked, but B is masked. Pixels located in the overlap leak
out to patch A, making the corrupted sketches much easier to
be represented. SketchLattice applies a point-level masking
by randomly dropping a fraction of lattice points. Its masked
region is smaller than ours by patch-level masking. Besides,
our mask size is 256× 256 on the original 640× 640 sketch
canvas, which is four times larger than the ones (128× 128)
in both SketchHealer and SketchHealer 2.0. When calculat-
ing the metrics for different methods, a sketch is always cov-
ered with the same masks to make the comparison fair.

We evaluate sketch healing by the similar metricsRec and
Ret, but adjust the Ret calculation to fit this task. Firstly,
we randomly mask St to obtain the corrupted sketch in-
put Sm

t . Sm
t is fed into the network to generate the corre-

sponding Ŝt. Secondly, we compute the codes yt and ŷt
for St and Ŝt, respectively. Finally, we retrieve yt from

Y = {yt(St)|St ∈ test set} with ŷt to compute Ret. When
calculating the metrics for different methods, a sketch is al-
ways covered with the same masks to make the comparison
fair. Both metrics are calculated from the entire test set.

Table 2 reports the sketch healing performance. Light
weight SketchLattice is heavily sensitive to the coordinate
selection due to the limited information input. If the generat-
ed sketches contain improper strokes (e.g., the redundant cir-
cular strokes), the overlapping points between the improper
strokes and the lattice are counted as corruptions, resulting
in inaccurate sketch representations.

SketchHealer 2.0 focuses on preserving the global seman-
tics from the corrupted sketches by applying the perceptual
loss in the objective, instead of exactly reconstructing the
local details. Accordingly, when the sketches are corrupted
with a large masking probability, e.g., 30%, SketchHealer
2.0 can still recognize the categorical and the semantic con-
tents from scratch and generates resembled sketches.

For a partially masked patch, SP-gra2seq seeks its syn-
onymous neighbors and constructs their edge linkings. The
passing messages may contain the missing information un-
der the masks, which benefits the patch embedding learn-
ing to be more comprehensive and accurate. Besides, as the
patch embeddings are self-organized in compact clusters, a
corrupted patch could still be encoded near the cluster cen-
troid to make the representation robust. Thus, SP-gra2seq
achieves the best sketch healing performance.

Fig. 4 presents the qualitative comparisons. When a s-
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Mask Random
linkings

DS1 DS2 DS3

Rec
Ret (top-)

Rec
Ret (top-)

Rec
Ret (top-)

1 10 50 1 10 50 1 10 50

0% X 95.50 66.79 87.81 95.01 90.23 31.56 61.80 80.22 86.90 56.88 80.57 90.64
× 95.9195.9195.91 94.8894.8894.88 99.1199.1199.11 99.7299.7299.72 94.8594.8594.85 90.8390.8390.83 98.2998.2998.29 99.0899.0899.08 89.8389.8389.83 94.0594.0594.05 98.7298.7298.72 99.5799.5799.57

10% X 91.57 38.91 64.67 79.52 87.35 18.53 42.98 63.13 82.63 32.22 56.32 72.01
× 92.9092.9092.90 41.2441.2441.24 65.7465.7465.74 80.1680.1680.16 91.2491.2491.24 50.4250.4250.42 73.3573.3573.35 85.1885.1885.18 83.3883.3883.38 40.2040.2040.20 63.4063.4063.40 77.5277.5277.52

30% X 84.67 11.34 27.75 44.38 76.93 6.42 19.04 35.05 69.65 8.928.928.92 22.3322.3322.33 36.9236.9236.92
× 84.8584.8584.85 12.8712.8712.87 29.3929.3929.39 45.5845.5845.58 82.8582.8582.85 12.1912.1912.19 29.3729.3729.37 46.5346.5346.53 71.0771.0771.07 5.65 17.40 32.90

Table 3: Controllable sketch synthesis (Mask = 0%) and sketch healing performance of SP-gra2seq by linking the sketch patches
randomly or by the introduced synonymous proximity. “Random linkings” denotes the sketch patches are randomly linked.

Mask Clustering
constraint

DS1 DS2 DS3

Rec
Ret (top-)

Rec
Ret (top-)

Rec
Ret (top-)

1 10 50 1 10 50 1 10 50

0% × 94.51 80.90 95.09 98.19 85.84 41.00 71.80 87.31 83.93 57.50 83.52 93.45
X 95.9195.9195.91 94.8894.8894.88 99.1199.1199.11 99.7299.7299.72 94.8594.8594.85 90.8390.8390.83 98.2998.2998.29 99.0899.0899.08 89.8389.8389.83 94.0594.0594.05 98.7298.7298.72 99.5799.5799.57

10% × 92.55 40.69 65.64 79.69 90.08 41.08 66.21 80.72 83.8483.8483.84 39.03 62.23 76.74
X 92.9092.9092.90 41.2441.2441.24 65.7465.7465.74 80.1680.1680.16 91.2491.2491.24 50.4250.4250.42 73.3573.3573.35 85.1885.1885.18 83.38 40.2040.2040.20 63.4063.4063.40 77.5277.5277.52

30% × 82.18 10.93 26.52 42.02 77.20 10.80 25.61 45.56 70.35 4.72 15.05 29.47
X 84.8584.8584.85 12.8712.8712.87 29.3929.3929.39 45.5845.5845.58 82.8582.8582.85 12.1912.1912.19 29.3729.3729.37 46.5346.5346.53 71.0771.0771.07 5.655.655.65 17.4017.4017.40 32.9032.9032.90

Table 4: Controllable sketch synthesis (Mask = 0%) and sketch healing performance of SP-gra2seq by applying the clustering
constraint over the inter-sketch patch embeddings or not.

Figure 4: Exemplary sketch healing results. The red dash
boxes denote the sketches with masked key characteristics.

ketch is with masked key characteristics, e.g., the pig head
with missing top part in the red bounding box, SP-gra2seq
recognizes its category from the partial corrupted nose and
successfully recreates a pig head. But the others fail. SP-
gra2seq is powerful to restore the original sketch details.

Performance Gained from Synonymous Linkings
Synonymous proximity activates the message communica-
tions between the sketch patches positioned far away on the
canvas by capturing their dynamic long-range dependencies
as (Zhang et al. 2020a). This section verifies whether the per-
formance gained by SP-gra2seq is from the connections be-
tween the synonymous patches or from the ones between the
“non-local” patches. We randomly link the non-local patches
by filling the adjacency matrixAt in Eq. (3) with the values
sampled from the uniform distribution U(0, 1), which acti-

vate the communications between the long-ranged patches
without considering their synonymous relations. The result-
s are in Table 3. The message passing by random affinities
interrupts the model to focus on the local details in target
patch. The performance drops especially when the sketches
are lightly corrupted. It demonstrates that our performance
gain is from the proposed synonymous proximity.

The Impact of Clustering Constraint
We cancel the clustering process in Eq. (5) and remove the
second term in Eq. (6). Table 4 offers the results for con-
trollable sketch synthesis and sketch healing. When train-
ing SP-gra2seq without the clustering constraint, the perfor-
mance for both tasks reduces in most cases. It is because
the synonymous patches are not encoded in compact clus-
ters in the latent space. If a patch is covered with masks or
is challenging to be recognized due to the drawing manner,
the captured embedding could be far away from the cluster
centroid, where the patch ought to be mapped closely. As a
result, the patch embeddings may be unreliable and further
reduce the sketch representing performance.

Conclusion
We have presented SP-gra2seq for learning graphic sketch
representations. Intra-sketch patches are linked by the learn-
able synonymous proximity. The message aggregation from
the synonymous patches plays a role of denoising for ro-
bust patch embeddings and accurate sketch representations.
Moreover, we cluster the inter-sketch patch embeddings to
yield compact clusters of synonymous patches for comput-
ing accurate synonymous proximity. Experiments on con-
trollable sketch synthesis and sketch healing demonstrate the
effectiveness of our method.
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