The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

Data-Efficient Reinforcement Learning

! Department of Automation, BNRist, Tsinghua University
2Sea Al Lab

Value-Consistent Representation Learning for

Yang Yue'?*, Bingyi Kang? 7, Zhongwen Xu?, Gao Huang', Shuicheng Yan’

yueyang22f@gmail.com, {kangby, xuzw, yansc} @sea.com, gaohuang @tsinghua.edu.cn

Abstract

Deep reinforcement learning (RL) algorithms suffer severe
performance degradation when the interaction data are scarce,
which limits their real-world application. Recently, visual
representation learning has been shown to be effective and
promising for boosting sample efficiency in RL. These meth-
ods usually rely on contrastive learning and data augmentation
to train a transition model for state prediction, which is dif-
ferent from how the model is used in RL—performing value-
based planning. Accordingly, the learned representation by
these visual methods may be good for recognition but not op-
timal for estimating state value and solving the decision prob-
lem. To address this issue, we propose a novel method, called
value-consistent representation learning (VCR), to learn rep-
resentations that are directly related to decision-making. More
specifically, VCR trains a model to predict the future state
(also referred to as the “imagined state”) based on the cur-
rent one and a sequence of actions. Instead of aligning this
imagined state with a real state returned by the environment,
VCR applies a (Q-value head on both states and obtains two
distributions of action values. Then a distance is computed
and minimized to force the imagined state to produce a similar
action value prediction as that by the real state. We develop
two implementations of the above idea for the discrete and con-
tinuous action spaces respectively. We conduct experiments
on Atari 100K and DeepMind Control Suite benchmarks to
validate their effectiveness in improving sample efficiency. It
has been demonstrated that our methods achieve new state-of-
the-art performance for search-free RL algorithms.

1 Introduction

An important research direction in Deep Reinforcement
Learning (RL) is to improve data efficiency, which is much
demanded by the wide application of deep RL techniques in
real-world scenarios. With the state-of-the-art RL algorithms,
simple tasks such as video games in Arcade Learning Envi-
ronment (Bellemare et al. 2013) require billions of frames to
achieve human-level performance (Badia et al. 2020). In real-
world applications, such as robot controllers and self-driving
systems, it is impractical to obtain such a huge amount of

“This work was done when Yang Yue was an intern at Sea Al
Lab.

TCorresponding Author.
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

11069

ball_in_cup-catch walker-walk

60
50
40

—— ours 30

— SPR 20

0 10
0 10 40 50

20 30
steps (1e4) 0

battle zone crazy climber

1.2
1.0
0.8 5
0.6 4
0.4
0.2
0.0

2 4 6 8 10 12 14 0 3 4 6

8 10 12 14
Figure 1: @) error of imagined states. Given a dataset of real
trajectories, we have a imagined state for each of the state
in the dataset by shooting forward for several steps with
the dynamic model. The curves represents the average error
between the value estimation from imagined states and the
ground-truth values along trajectories. The first row shows @
errors of SPR (blue) and VCR (ours, green) on 2 DeepMind
Control environments. The second row shows () error on
a subset of Atari 100K games. The shaded area represents
standard deviation. Details are described in Sec. 4.1.

interaction due to the costly data collection process. To en-
able deep RL to go beyond virtual games and simulators,
researchers explore the data efficiency issue from various
perspectives, including model-based RL (Hafner et al. 2019,
2020; Kaiser et al. 2020), auxiliary tasks (Jaderberg et al.
2016; Yarats et al. 2021; Laskin, Srinivas, and Abbeel 2020;
Schwarzer et al. 2021), data augmentation (Yarats, Kostrikov,
and Fergus 2021; Laskin et al. 2020), etc. A majority of the
works borrow ideas from the wider deep learning community
to create additional training signals that accelerate the agent
training process. Most of these techniques are not specifically
tailored for RL problems and some heavily rely on extracting
high-quality visual features.

Recently, Self-Predictive Representation (SPR; Schwarzer
et al. 2021) introduces contrastive learning into transition

model learning. Specifically, SPR aims at learning an em-
bedding space in which the agent can predict future state
embeddings. Despite its effectiveness, it solely focuses on
learning discriminative state features, ignoring the fact that
some information in the raw pixels is unnecessary or even dis-
tracting for decision-making. This part of information would
be encoded into representation by visual contrastive learning.
Moreover, it is possible in practice that two visually similar
states result in significantly different returns. In other words,
the learned representation in this visual way might be good
for recognition but not optimal for estimating state value
and solving the decision problem. For example, it’s common
in video games that state value highly depends on a very
small number of pixels in a state (e.g., a high-reward trea-
sure), while the predictive representation by SPR focus on
global visual features. As evidenced by Fig. 1, the predicted
values based on imagined states of SPR are consistently devi-
ated from the true values (by Monte-Carlo estimation) across
multiple environments.

Similar observations have been made on the Value Equiv-
alence (VE) principle (Grimm et al. 2020) for model-based
RL, which advocates that a model should be able to gener-
ate the same Bellman updates as the real environment rather
than directly modeling state-to-state transitions. The success
of some state-of-the-art algorithms such as MuZero (Schrit-
twieser et al. 2020), Value Prediction Network (Oh, Singh,
and Lee 2017), and Predictron (Silver et al. 2017) can be at-
tributed to this principle. However, value equivalence is only
studied with state value functions V'(S), and is often coupled
with search-based algorithms, which makes it non-trivial to
apply VE for value-based RL.

In this paper, we develop a value-consistent metric for
action-values (i.e., @-values) and propose a novel method
called Value-Consistent Representation Learning (VCR) to
boost sample efficiency for action-value-based RL methods.
In contrast to existing data-efficient RL ideas, VCR is based
on RL semantics other than losses constructed purely upon
input states. Specifically, we introduce a dynamics model
to predict the next states in a latent representation space
induced by a state encoder. When a real trajectory from the
environment is provided, our dynamics model can roll out
an imagined trajectory from the initial state by taking the
same sequence of actions. Then, for each of the real and
imagined state pairs, we obtain two ()-value distributions
(over all available actions). A value-consistent loss function
is applied to align these two distributions. VCR can be viewed
as a clean implementation of value equivalence with action-
values so that it is highly extendable in a significant family
of RL algorithms. The idea is simple yet effective and it can
be easily integrated into any value-based RL algorithm. We
demonstrate the effectiveness of the idea with two concrete
implementations based on Rainbow DQN (Hessel et al. 2018)
and Soft Actor-Critic (SAC) (Haarnoja et al. 2018).

We conduct experiments to validate the effectiveness of
VCR on two benchmarks: Atari 100K (Kaiser et al. 2020)
(discrete action) and DeepMind Control Suite (Tassa et al.
2018) (continuous action). Despite its simplicity, the results
show our method can boost sample efficiency significantly
and achieve new state-of-the-art in search-free methods.

11070

2 Related Work
2.1 Data-Efficient Reinforcement Learning

Reinforcement learning algorithms suffer severe performance
degradation when only a limited number of interactions are
available. Various methods are trying to tackle this prob-
lem, by either model-based (Kaiser et al. 2020), model-
free (van Hasselt, Hessel, and Aslanides 2019; Kielak 2020;
Yarats, Kostrikov, and Fergus 2021), or non-parametric learn-
ing (Long, Blair, and van Hoof 2022). For example, Sim-
PLe (Kaiser et al. 2020) utilizes a world model learned with
collected data to generate imagined trajectories to train the
agent. Later, Data-Efficient Rainbow (van Hasselt, Hessel,
and Aslanides 2019) and OTRainbow (Kielak 2020) show
that Rainbow DQN with hyperparameter tuning can be a
strong baseline for the low-data regime by simply increasing
the number of steps in multi-step return and allowing more
frequent parameter update.

Recently, leveraging computer vision techniques is draw-
ing increasingly more attention from the community to boost
representation learning in RL. DrQ (Yarats, Kostrikov, and
Fergus 2021) and rQdia (Lerman, Bi, and Xu 2021) makes a
successful attempt by introducing image augmentation into
RL tasks, while Yarats ef al. (Yarats et al. 2021) use image
reconstruction as an auxiliary loss function. Inspired by the
remarkable success of contrastive learning for representation
learning (Chen et al. 2020; Grill et al. 2020), the contrastive
loss has been integrated into RL as an effective component.
For example, CURL (Laskin, Srinivas, and Abbeel 2020)
forces different augmentations of the same state to produce
similar embeddings and different states to generate dissimilar
embeddings, with the contrastive loss jointly optimized with
an RL loss.

Recently, SPR (Schwarzer et al. 2021) and KSL (MclIn-
roe, Schifer, and Albrecht 2021) make a sophisticated design
by employing contrastive loss in transition model learning.
In this way, an agent can learn representations that are pre-
dictable when the previous state and action are given. As a
follow-up, PlayVirtual (Yu et al. 2021) introduces a back-
ward prediction model that enables the agent to imagine for-
ward and backward to form a cycle. Therefore, arbitrary ac-
tions can be taken in imagination to compute cycle-consistent
loss. EfficientZero (Ye et al. 2021) introduces SPR loss into
MuZero (Schrittwieser et al. 2020), achieving super-human
performance on the Atari 100K for the first time.

These successes demonstrate that self-predictive represen-
tation learning is indeed a promising way to improve sample
efficiency. We also choose to base our method on SPR. How-
ever, these methods only focus on making accurate state
predictions, ignoring that value prediction is key to decision-
making problems. In this work, we propose value-consistent
representation learning and show its importance for decision-
making.

2.2 Value Equivalence Principle

Some works in model-based RL have proposed a high-level
idea of learning the transition model in terms of the value
space. Value-Aware Model Learning (VAML) (Farahmand,
Barreto, and Nikovski 2017; Farahmand 2018) incorporates

the knowledge of value function into optimization to learn
the probabilistic transition model in model-based reinforce-
ment learning. Grimm et al. (Grimm et al. 2020) come
up with the value equivalence principle which forces the
learned transition model to have the same Bellman operator
updates with the real environment conditioned on a set of
value functions and policies. Empirically successful works
like VPN (Oh, Singh, and Lee 2017), VIN (Tamar et al. 2016),
and MuZero (Schrittwieser et al. 2020) can be viewed as the
instances that follow the value equivalence principle. Self-
consistent models and values (Farquhar et al. 2021) boost the
performance of Muesli agent (Hessel et al. 2021) by encour-
aging a value function to satisfy the Bellman equation under
a learned transition model and a learned policy.

Although based on similar motivation as the value equiva-
lence principle, our core idea greatly differs from the above
works. The above works lie in the category of planning-based
RL and leverage value regularization or value equivalence to
train a dynamics model for planning. However, our method,
a search-free algorithm, harnesses value consistency to learn
a transition model for better state representation. Besides,
our method employs the reward from the real environment
to estimate the target value, while those planning algorithms
use predicted rewards with an extra reward predictor.

3 Method

We are especially interested in RL in a low-data regime,
where only a limited number of interactions are allowed. In
this section, we detail our value-consistent representation
(VCR) learning method step by step. First, we prepare the
readers with certain preliminaries required by VCR. Then, we
introduce the intuition and the overall framework for VCR.
In the end, we provide two implementations of VCR for both
discrete and continuous action settings.

3.1 Preliminaries: Value-Based Reinforcement
Learning

Reinforcement Learning (RL) addresses the problem of se-
quential decision-making, which is usually formulated with
a Markov Decision Process (MDP). A typical MDP is rep-
resented with a tuple (S, A, T, r,~). Here S is a finite set of
states; A is the action space; T'(s, a, s') = P(s'|s, a) is the
dynamics function describing the probability of transition-
ing from a state s to s’ after taking an action a; r(s, a, s)
and v € (0, 1] are the reward function and the discount fac-
tor respectively. The fundamental goal of RL is to learn an
agent maximizing the discounted cumulative reward (i.e.,
return) G; = Zio Y riyr4+1 at any time step t. The
behavior of an agent is denoted by a policy m(a|s) map-
ping from states to actions, while the action-value function
Qr(s,a) = E; [G|ss = s,a: = a] predicts the expected re-
turn if the agent takes an action « for state s at the time step
t, following the policy 7.

There are various ways to learn the optimal policy 7*. In
this paper, we focus on value-based RL algorithms that are
rooted in @-learning. ()-learning performs approximate dy-
namic programming by following the Bellman equation (Sut-
ton and Barto 2018). Deep) Network (DQN) (Mnih et al.
2015) scales Q-learning to large state (e.g., visual inputs)

11071

St St+1 St+k
° —>.—>@—>—>@—>.
v v
- o . O
Z s (X A a [~
t+1 76| Qes1 t+k "o Qrir
2 Zepr el Zeri 0\ Qtrk

ool < iodel-~-— gl

Figure 2: Pipeline of Value-Consistent Representation Learn-
ing. The agent interacts with the environment to produce a
sequence of states {s;1}x=1.x. The sequence is encoded
into a latent embedding space, denoted as {Z: 1 1, } x—1.x . Then
the parametric transition model predicts the sequence of la-
tent states {2;4x }x—1.x conditioned on the start point 2; and
the action sequence, where Z; is the latent embedding from
s¢. Value-Consistent Representation Learning enforces the
value prediction from imagined states to be consistent with
the values of a real state from the environment. SPR loss is
also utilized to help stabilize the training at the early stage.
For simplicity, SPR loss and action inputs to the environment
and the transition model are omitted in the figure.

by utilizing neural networks to encode states and generate
@ values. Additionally, experience replay and a separated
target network are used to stabilize the training of DQN. The
overall objective for DQN is given by

2
TO) = Eppsrinn | (r+ v mx Qo @) = o)) | @)

where (g is the () network parameterized with 6, (5 is the
target () network, and D represents the replay buffer which

stores the experience tuples. Let G\") = S A e +
™ max, Qg(St+n,a) be the n-step value target. Note that
when n = 1, it reduces to the estimator used in Eqn. (1), but
n > 11is also commonly used to get a better estimation (Sut-
ton and Barto 2018; Hessel et al. 2018).

As the main goal of our work is to boost the sample effi-
ciency of RL algorithms, without loss of generality, we build
our method upon two best-performing algorithm variants, i.e.,
Rainbow DQN for discrete action domains and Soft Actor-
Critic (SAC) for continuous action domains. For more details,
please refer to the Appendix or their papers. The appendix
can be found in the paper’s arXiv version. Though empir-
ical results are only shown with these two algorithms, our
method is general enough to be easily integrated into any
other value-based RL algorithms.

3.2 Value-Consistent Representation Learning

Various methods have shown that representation learning
can boost the sample efficiency of RL. However, all these
methods approach the problem from a computer vision per-
spective, i.e., encouraging similar states to generate similar
embeddings and forcing different states to be discriminative.
Despite their effectiveness, visual recognition is not always
directly related to decision-making. To alleviate this issue, we
base our method on the assumption (Schwarzer et al. 2021;

Yu et al. 2021) that a good representation for RL should be
able to predict the resulting state following a sequence of
actions. Instead of aligning the predictions in the embedding
space, our key idea is the value prediction from an imagined
state should be consistent with the values of a real state from
the environment, as illustrated in Fig. 2. Thus, the method is
termed Value-Consistent Representation Learning (VCR).

State Prediction with Transition Model. Considering a
one-step interaction between an agent and the environment:
(8¢, at, St41), St+1 can be determined by the transition T
in the underlying MDP, given (s;, a;). Similar to SPR and
PlayVirtual, we introduce a parametric transition model A (-, -)
to mimic the behavior of 7" in a latent embedding space.
More specifically, a (convolutional) neural encoder f(-) is
used to encode a pixel-based observation/state s, into a la-
tent representation z; = f(s¢). Then h(-,-) operates by
2t41 = h(z¢,a¢). As shown in Fig. 2, based on the cur-
rent latent state z;, following a sequence of future K actions
at14+K—1, a sequence of state predictions Z;y1.44x 1S ob-
tained by applying h(-,) recursively:

2 =2z = f(s¢)

Zivk1 = h(Zitk, Gitr),

2
k=01, K—1 @
The transition model h(:,-) is usually optimized to mini-
mize the prediction error between Z; 1.4+ x and Zy 1.4+ x, @
sequence of latent features extracted directly from the raw
observations / states with Z;yp = fr(si+r). For example,
the self-predictive representations (SPR) (Schwarzer et al.
2021) method utilizes a cosine similarity for prediction error,
leading to the following objective:

)) 3)

()
where Z is often referred to as the target embedding and gen-

erated from a target encoder fr(-), which is a stop-gradient
version of the online encoder f(-).

K

Lopp=—Y

k=1

Zitk
|

Lot
[Ze+k]l2

Value Consistency. Intuitively, for a good encoder and a
reasonable transition model in RL algorithms, the predic-
tive representations should contain abundant information
such that precise value estimation can be made by feeding
the latent embedding into a value head. With a slight abuse
of notation, we denote the J-value predictions by a value
head for the embedding-action pair (2, a;) as Q(z¢, at). For
simplicity, we use Q(z¢, -) to denote the action values from
the embedding z; for all possible actions. In this way, the
value predictions for imagined states Z;1.;4+x and target
states Zi41.t+x can be written as {Q(Z¢4k,) k=1.x and
{Q1(Zt+k,) }k=1.K respectively. Then our value-consistent
representation learning loss is obtained by minimizing the
distance between these two value predictions, described by:

K

Lyvcr = z dver (Q(Zi4ks) Qr(Zesns) s

k=1

“

where dycr is a distance metric for action-values to be de-
tailed below, and Qr(Z:1, -) is the target value prediction
generated with a target head Q.

11072

Overall Objective. At the early stage of training, the value
estimation is not accurate and therefore sole VCR may not
provide good supervision signals for training the dynamics
model. SPR loss is introduced to help stabilize the training
of the dynamics model. Now, we are ready to present our
overall training objective as below:

Lo (0) = T (0) + AsprLspr(0) + AvcrLver (0), (5)

where 6 denotes all the model parameters used for computing
the above loss function, and Aspr, Avcr are the hyperparam-
eters to weight different losses. Specific values for hyperpa-
rameters are at the apped.

Value-Consistent Distance Metric. Here we develop our
distance metric dycg(-, -) and provide two different imple-
mentations for both discrete action and continuous settings.
It seems easy to come up with an idea for dycg(-,-). For
example, one can simply apply mean-squared loss to the
imagined g-values and the target q-values over all possible
actions: dwise = 147 2 aeal@(Zr, @) = Qr(Z, a)]*. Actually,
this can not work through because the target action-value
Q(Z¢, ay) for the real action a; keeps evolving as the training
proceeds. Based on 7 (6) in Eqn. (1), at each iteration, the Q
value Q(Z¢, at) (where Z; = f(s:)) for areal state-action pair
(st, at) will be updated towards a n-step target estimation

Gg"). If we still use dysg, it means that we are optimizing
Q(%:,a;) towards a sub-optimal point. Based on the above
observation, we propose the following distance function:

1 ,
dycr = Al Z [Q(":’t’a) - Q(%t,a)f
| | acA (6)
(3 _ G\ if a=ay,
where Q(,a) = { Q;(Et,a) if a# ai.

With above equations, we let the value prediction of a real
state-action pair (s¢, a;) align with a n-step target estimation

Gi"), while other pairs align with the corresponding target
action-value Q1(Z, a). To avoid the trivial solution prob-
lem(Grill et al. 2020), we stop the gradient of the target value
Q1(2¢, a). Additionally, the varying rewards introduced by

G§”> also disqualify the constant output as a solution.

Discrete Action Implementation. For discrete actions, the
@ network or head is implemented to directly generate |.A|
outputs representing the () values for the corresponding ac-
tions. We can simply enumerate all of them to calculate
the above distance in Eqn. (6). The above GE") is given
by G\™) = S T e + 4" max, Qg(Stgn, a), which
adopt the same form with n-step estimation of @)-learning
to mitigate possible gradient conflict in multi-task learn-
ing(Sener and Koltun 2018; Yu et al. 2020; Jean, Firat, and
Johnson 2019). As our method is based on Rainbow, each
value is divided into bins to build a distribution.

Continuous Action Implementation. For continuous ac-
tions, the @) network has a different implementation, which
usually takes both the state s and the action a and then
outputs a scalar as the () value Q(s, a). Note that SAC is
chosen to be our baseline algorithm, in which the target
@ value is estimated by one-step return. For the case that

action a is real action a;, the above G§”) is calculated by

G,E”) = 7t + VQp0ry (541, 00(5¢41)). We randomly sam-
ple a few actions as actions that are not equal to a;, which
together with a; constitute the set A. Considering soft @
values are used in SAC, we also employ soft ¢ values when
calculating the value-consistent loss.

4 Experiments

In this section, we first investigate the quality of dynamic
models given by SPR in terms of value estimation, and show
that VCR is able to improve it substantially. Further, we
empirically evaluate the performance of our VCR on boosting
data efficiency in Atari 100K (Bellemare et al. 2013; Kaiser
et al. 2020) and DeepMind Control Suite (Tassa et al. 2018).
We then conduct ablation studies to analyze the important
components in our method.

4.1 Value of Imagined States

Intuitively, it’s a good property for a reasonable encoder and
transition model that the predicted representations contain
abundant information such that precise value estimation can
be made. We measure the absolute difference between the
values of imagined state 2, and true values, where Z; 1, is
given by Eqn. 2. Here we use the Monte-Carlo return as the
true value. For a complete evaluation trajectory of length 7',
the average error is as:

T K
1 .
i > > |QGiik arir) — Grgr| - Lsnr). ()
t=1 k=1

The timesteps that go beyond the terminal timestep are
masked. Out of implementation efficiency, we collect evalu-
ation trajectories of a total length of 1000 and test the error
every 1000 train steps. In finite-horizon Atari games, G is
calculated as the discounted return. DeepMind Control Suite
environments are infinite control problems with time limit
L = 1000, so G4, is derived by L — t — k step bootstrap
of Q(sr,ae(sr)). For a fair comparison, we set prediction
step K for SPR and VCR to be the same (K = 5 for Atari
100K, and K = 3 for DeepMind Control Suite).

Fig. 1 compares the average and shows the results in a
subset of Atari 100K and DeepMind Control Suite. For most
curves of SPR, as the policy immediately achieves high re-
turns at the beginning steps, the @) error of SPR grows rapidly
and then keeps high until the end. Instead, VCR consistently
reduces Q-error in all 6 tasks of DeepMind Control (only
show part of results in the figure). VCR achieves an average
of 36% reduction in 16 out of Atari games, and comparable Q-
error in other games. Note that we are using a high-variance
Monte-Carlo return estimator. The variance may dominate
the result. If we replace it with a low-variance N-step re-
turn, Q-error is reduced in all Atari games as shown in the
appendix. This clearly illustrates the effectiveness of VCR.

4.2 Setup for Empirical Evaluation

Environments. We benchmark VCR in environments
where the number of interactions is limited. Specifically, we

11073

choose Atari 100K for discrete control and DeepMind Con-
trol Suite for continuous control. For DeepMind Control
Suite, following Hafner et al. (2019) and Yarats, Kostrikov,
and Fergus (2021), we use six environments (i.e., ball-in-
cup, finger-spin, reacher-easy, cheetah-run, walker-walk, and
cartpole-swingup) for benchmarking with 100K and 500K
environment steps.

Baselines. For Arari 100K, we take SPR as a strong base-
line. Also, SimPLe (Chen et al. 2020), DER (van Has-
selt, Hessel, and Aslanides 2019), OTR (Kielak 2020),
CURL (Laskin, Srinivas, and Abbeel 2020), DrQ (Yarats,
Kostrikov, and Fergus 2021) are chosen as baselines because
all of them were state-of-the-arts in Atari 100K at their pub-
lications. PlayVirtual (Yu et al. 2021) is chosen as another
state-of-the-art baseline, which is also a representation learn-
ing method based on SPR requiring a little more computa-
tion and memory. For DeepMind Control Suite, we choose
Dreamer (Hafner et al. 2020), SAC+AE (Yarats et al. 2021),
SLAC (Lee et al. 2020), CURL, DrQ, SPR and Play Virtual
as our baselines. Since SPR is designed for discrete tasks, we
adopt a modified SPR based on SAC for continuous tasks'.
EfficientZero (Ye et al. 2021), a method based on Monte-
Carlo Tree Search, has achieved excellent performance on
both Atari 100K and DeepMind Control 100K. However,
considering the success comes at the cost of one order of
magnitude more GPU and CPU computation complexity, we
do not compare with EfficientZero here.

Implementation Details. For discrete action tasks, we base
our implementation of VCR on the official code? of SPR.
For () head, noisy parameters (Fortunato et al. 2018) are
reserved because we verify that the noisy g-value output does
not have any negative influence on Value-Consistent repre-
sentation learning (see the appendix). Different from SPR
which has an asymmetric prediction head at the end of the
online encoding branch, we validate that the removal of the
prediction head would not impair the performance (see the
appendix). Thus we directly build ¢ head following the encod-
ing branch. The prediction step is set K = 5. Q-learning loss
and Value-Consistent loss are optimized jointly by an Adam
Optimizer (Kingma and Ba 2015), where the batch size is 32.
For continuous control tasks, the modified SPR for continu-
ous control is chosen as our codebase. The prediction step is
set K = 3. Actor loss, critic loss, and Value-Consistent loss
are optimized separately by three Adam optimizers, where
the batch size for the actor-critic update is 512 and the batch
size for VCR update is 128. For more details, please refer to
the appendix. Code will be open-sourced upon acceptance.

Evaluation Metrics. According to Agarwal et al. (2021),
we choose interquartile mean (IQM) and optimality gap as
main evaluation indicator considering their good properties.
IQM computes the mean Human Normalized Score (HNS) of
the middle 50% runs over all games and seeds. The optimality
gap denotes the gap between algorithms and the target per-
formance. Higher IQM and lower optimality gap are better.
We also present performance profile curves. On Atari-100K

"Link: https://github.com/microsoft/Playvirtual, MIT License.
’Link: https://github.com/mila-iqia/spr, MIT License.

QM

VCR I

SPR I

DrQ

CURL & 1
OTRainbow |

DER I I

SimPLe mmmm i |

0.1 03 04 0.56 0.64 0.72 0.80
Human Normalized Score

Optimality Gap

0.2

Figure 3: Aggregate IQM and optimality gap of methods.
Higher IQM and lower optimality gap are better. The shaded
bar shows 95% stratified bootstrap confidence intervals (Agar-
wal et al. 2021). VCR runs 10 seeds over 26 games.

and DeepMind Control, we use 10 seeds for each game to
evaluate VCR. More explanation about the metrics can be
seen at the appendix.

4.3 Results of Empirical Evaluation

Atari-100K. As shown in Fig. 3, VCR achieves the best
performance on both IQM HNS and optimality gap. It can
be seen from the nonoverlapping confidence intervals that
our improvement over SPR is statistically significant. Fig. 4
reveals that VCR is nearly above baselines along the whole
axis, demonstrating consistent improvement over baselines.
The improvement is particularly noteworthy when focusing
on the HNS interval between 0.2 and 1.0. The numerical per-
formance of methods is presented in Table 1. By adding value
consistency constraint, our method gets a boost over the base-
line SPR by 6.0% IQM HNS, which is significant when con-
sidering the 5.7% IQM HNS improvement of SPR over DrQ
and 3.7% of PlayVirtual over SPR. Compared to PlayVirtual,
the other regularization method based on SPR architecture
by producing virtual cycle trajectories, VCR achieves better
performance (higher IQM HNS by 2.3%) with less computa-
tion and memory consumption (See the appendix). All scores
of individual games are shown in the appendix.

DeepMind Control Suite. Within very limited interactions
100K, VCR achieves the best performance on 3 out of 6 tasks,
as shown in Table 2. In addition, VCR achieves the best IQM
HNS and optimality gap. Compared with the baseline SPR,
VCR has a relatively 6.4% higher IQM and 15.5% lower
optimality gap. When 500K ineractions are allowed, VCR is
close to the perfect score in 4 environments, and achieves a
comparable median score with DrQ, SPR and Play Virtual.

4.4 Analysis

In this section, we conduct ablation studies with Atari 100K
to analyze the important components in VCR and the effec-
tiveness of VCR compared with other auxiliary losses.

Value-Consistent Distance Metric. We find that the Value-
Consistent distance metric has a great influence on the per-
formance. We use a mixed target of n-step target estima-
tion Gﬁ”) and action-value Qr(Z¢, a), i.e., dycr (see Eqn. 6).
Here, we test two variants to validate the proposed Value-
Consistent distance metric. The first is to simply apply MSE

11074

Em simPLe DER I OTRainbow m CURL DrQ SPR

Score Distributions with Non Linear Scaling

g
o
=)

N

<
~
%

©
[0
o

o
N
%

Fraction of runs with score > T
o
o
o

0.0 0.1 0.2 05 1.0 2.0

Human Normalized Score (T)

Figure 4: Performance profiles based on score distributions
with linear and non-linear scaling on Atari 100K.

loss to the imagined g-values and the target g-values over real
state-action pairs: dyisg = [Q(2¢, a¢) — Q1(Z¢, at)]?. Further,
we can enforce value consistency over all possible actions:
dMSE-A = ﬁ ZaeA[Q(éh a) - QT(it, CL)]Q. Note that MSE
loss is replaced with a cross-entropy for distributional RL.

We evaluate these two variants on Atari 100K. dysg
achieves 30.9% IQM HNS and 60% optimality gap, while
dnmsk-a achieves 34.0% IQM HNS and 57.9% optimality gap.
Compared to dycr (39.7% IQM HNS and 54.4% optimal-
ity gap), two variants dysg and dysg-a have inferior perfor-
mance. Especially for dysg, it is lower than the baseline
(33.7% IQM HNS and 57.7% optimality gap). That may be
because, in these two variants, VCR loss has conflicting gra-
dients with policy learning loss (i.e., DQN loss), a common
issue in multi-task learning (Sener and Koltun 2018; Yu et al.
2020; Jean, Firat, and Johnson 2019). -learning loss pushes
the value function towards the value distribution under the
optimal policy while dysg and dysg.a aim to align with the
current value approximation. Intuitively, dyisg has bigger con-
flict than dysg-a because only real state-action pairs lead to
an explicit conflict, which are only 1/|.A| of state-action pairs
used in dysg.a, where |A| is the size of the action set. It may
explain why dysg has a larger drop in performance.

Comparison with Reward Loss. One may simply attribute
the improvement of VCR to the introduction of reward to

representation learning in égn). Here, we construct a base-
line by adding reward prediction based on SPR, where the
dynamics model outputs predicted reward and next state con-
ditioned on the current state and action. The predicted reward
is supervised by a real reward. We denote this baseline as
SPR with reward loss, which achieves 35.4% IQM HNS and
56.8% optimality gap. We see that although SPR with reward
achieves a little higher IQM HNS than baseline, it is still
far behind VCR. This implies that the effectiveness of our
method should be attributed to consistent value prediction
rather than involving additional reward prediction.

Comparison with Policy Learning Loss. Value-
Consistent loss and policy learning loss are similar in terms
of the formula form, both of which leverage @)-values to
update the encoder and (J-value head. For example, in

Game SimPLe DER OTR CURL DrQ SPR VCR | PlayVirtualt
IQM HNS (%) 13.0 183 11.7 11.3 28.0 337 39.7 374
Optimality Gap (%) 72.9 69.8 819 76.8 63.1 577 544 55.8

Table 1: Aggregated scores achieved by different methods on Atari-100k. § denotes using virtual trajectories.

100k Step Scores Dreamer SAC+AE SLAC CURL DrQ SPR VCR [PlayVirtual{
Finger, spin 341 £70 740 =64 693+ 141 T767+£56 901 104 840 4+ 143 795 + 157 683 + 189
Cartpole, swingup 326 + 27 311 £ 11 - 582+ 146 759+ 92 815 £ 48 815 + 47 812 + 66
Reacher, easy 314 £ 155 274+ 14 - 538 £233 601 =213 684+ 186 763 + 112 663 + 214
Cheetah, run 235+ 137 267 £24 319 + 56 299 + 48 361 £67 452+ 117 422 +54 510 + 38
Walker, walk 277 £ 12 394 £+ 22 361 + 73 403 +24 634+ 160 397 £220 650 + 143 499 + 161
Ballin cup, catch 246 £ 174 391 +82 512+ 110 769 £43 914 +£51 807+£165 8584385 939+ 20
IQM HNS - - - - 731 700 745 690
Optimality Gap 710 603 - 440 305 335 283 316
500k Step Scores

Finger, spin 796 + 183 884 + 128 673 £92 926 £45 938 £103 924+ 132 972 +25 963 + 40
Cartpole, swingup 762 £ 27 735 £ 63 - 841 + 45 868 + 10 870 + 12 854 £+ 26 865 + 11
Reacher, easy 793 £ 164 627 £ 58 - 929 + 44 942 + 71 925+ 179 938 + 37 942 + 66
Cheetah, run 570 £253 550 £ 34 640 £ 19 518 £28 660 + 96 716 £ 47 661 + 32 719 £+ 51
Walker, walk 897 + 49 847 + 48 842 + 51 902 + 43 921 +45 916 +£ 75 930 + 18 928 + 30
Ball in cup, catch 879 + 87 794 £ 58 852 + 71 959 +27 963 £ 9 963 + 8 958 +£4 967 £ 5
Median Score 794.5 764.5 757.5 914.0 929.5 920.0 9340 | 935.0

Table 2: Scores (mean and standard deviation) achieved by different methods on the DeepMind Control. We run VCR with 10
seeds. On 500K steps, single run scores of SPR and PlayVirtual are missing to calculate IQM, so we follow Yu et al. (2021) to
report median scores to profile the overall performance. ¥ denotes using virtual trajectories.

the discrete setting, both Lycr and Lpgn align predicted
QQ-values to n-step estimation, while Lycg is computed over
K times of state-action pairs, where K is prediction steps.
Thus a possible concern is that the boost of our method
comes from more state-action pairs to update the (Q-value
head. Here we replace Lycr on imagined state-action pairs
with Lpgn, equivalent to increasing the mini-batch size
of Lpon. SPR-L achieves 27.2% IQM HNS and 61.5%
optimality gap, while SPR-XL achieves 17.6% IQM HNS
and 70.1% optimality gap. Two variants display performance
drop, which implies VCR helps train the ()-value head but
the main gain comes from its regularization on representation
learning of the encoder and transition model.

Influence of Prediction Steps K. We increase the number
of prediction steps from 5 to 9 to test if more improvement
can be obtained. K = 9 achieves 39.7% IQM HNS and
54.3% optimality gap, which is roughly comparable to K =
5. That means increasing prediction steps in a range would
not change the overall performance although the performance
on a subset of games increases much (see the appendix), at
the cost of more computation and memory.

5 Conclusion and Limitation

To boost the sample efficiency of value-based reinforcement
learning algorithms, we propose a novel Value-Consistent
Representation Learning (VCR) method. The intuition be-
hind VCR is that an agent should be capable of making an

11075

imagination of future states from its behaviors and obtain-
ing correct value predictions based on the imagined states.
The property becomes more demanding when the environ-
ment is stochastic and learning a precise transition model is
impossible. Some previous works have validated the effec-
tiveness of this idea with search-based methods. We develop
a value-consistent metric for () values and introduce it into
value-based RL algorithms for the first time. We further show
that the method is compatible with any value-based meth-
ods by providing two implementations dealing with both
discrete and continuous actions. We evaluate our method on
two benchmarks including Atari 100K for discrete control
and DeepMind Control 100K for continuous control. The
results clearly show that VCR can improve sample efficiency
significantly and achieve new state-of-the-arts on both tasks.
However, there are still some limitations to our method. In
RL, except jointly optimizing network with RL loss, represen-
tation learning can also be used to pre-train the encoder (Lee
et al. 2020). Considering VCR relies on value estimation,
VCR may need a proxy value network or work with value-
based offline RL methods to enable pre-training. Besides, we
derive the value-consistent distance metric by simply employ-
ing MSE, which might not be robust enough. We leave these
investigations as future work.

References

Agarwal, R.; Schwarzer, M.; Castro, P. S.; Courville, A. C.;
and Bellemare, M. 2021. Deep reinforcement learning at the
edge of the statistical precipice. NeurlPS.

Badia, A. P.; Piot, B.; Kapturowski, S.; Sprechmann, P.;
Vitvitskyi, A.; Guo, Z. D.; and Blundell, C. 2020. Agent57:
Outperforming the Atari human benchmark. In ICML.

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47: 253-279.

Chen, T.; Kornblith, S.; Norouzi, M.; and Hinton, G. 2020.
A simple framework for contrastive learning of visual repre-
sentations. In /CML.

Farahmand, A.-m. 2018. Iterative value-aware model learn-
ing. NeurlPS.

Farahmand, A.-m.; Barreto, A.; and Nikovski, D. 2017.
Value-aware loss function for model-based reinforcement
learning. In Artificial Intelligence and Statistics.

Farquhar, G.; Baumli, K.; Marinho, Z.; Filos, A.; Hessel,
M.; van Hasselt, H. P.; and Silver, D. 2021. Self-Consistent
Models and Values. NeurIPS.

Fortunato, M.; Azar, M. G.; Piot, B.; Menick, J.; Osband, I.;
Graves, A.; Mnih, V.; Munos, R.; Hassabis, D.; Pietquin, O.;
et al. 2018. Noisy networks for exploration. In /CLR.

Grill, J.-B.; Strub, F.; Altché, F.; Tallec, C.; Richemond,
P.; Buchatskaya, E.; Doersch, C.; Avila Pires, B.; Guo, Z.;
Gheshlaghi Azar, M.; et al. 2020. Bootstrap your own latent-a
new approach to self-supervised learning. NeurIPS.

Grimm, C.; Barreto, A.; Singh, S.; and Silver, D. 2020. The
value equivalence principle for model-based reinforcement
learning. NeurIPS.

Haarnoja, T.; Zhou, A.; Hartikainen, K.; Tucker, G.; Ha, S.;
Tan, J.; Kumar, V.; Zhu, H.; Gupta, A.; Abbeel, P.; et al. 2018.
Soft actor-critic algorithms and applications. arXiv preprint
arXiv:1812.05905.

Hafner, D.; Lillicrap, T.; Ba, J.; and Norouzi, M. 2020. Dream
to Control: Learning Behaviors by Latent Imagination. In
ICLR.

Hafner, D.; Lillicrap, T.; Fischer, L.; Villegas, R.; Ha, D.; Lee,
H.; and Davidson, J. 2019. Learning latent dynamics for
planning from pixels. In ICML.

Hessel, M.; Danihelka, 1.; Viola, F.; Guez, A.; Schmitt, S.;
Sifre, L.; Weber, T.; Silver, D.; and Van Hasselt, H. 2021.
Muesli: Combining improvements in policy optimization. In
ICML.

Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostro-
vski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; and
Silver, D. 2018. Rainbow: Combining improvements in deep
reinforcement learning. In AAAL

Jaderberg, M.; Mnih, V.; Czarnecki, W. M.; Schaul, T.; Leibo,
J. Z.; Silver, D.; and Kavukcuoglu, K. 2016. Reinforcement
learning with unsupervised auxiliary tasks. In ICLR.

Jean, S.; Firat, O.; and Johnson, M. 2019. Adaptive schedul-
ing for multi-task learning. arXiv preprint arXiv:1909.06434.

11076

Kaiser, L.; Babaeizadeh, M.; Mitos, P.; Osinski, B.; Campbell,
R. H.; Czechowski, K.; Erhan, D.; Finn, C.; Kozakowski,
P.; Levine, S.; Mohiuddin, A.; Sepassi, R.; Tucker, G.; and
Michalewski, H. 2020. Model Based Reinforcement Learning
for Atari. In ICLR.

Kielak, K. P. 2020. Do recent advancements in model-based
deep reinforcement learning really improve data efficiency?

Kingma, D. P,; and Ba, J. 2015. Adam: A method for stochas-
tic optimization. In /CLR.

Laskin, M.; Lee, K.; Stooke, A.; Pinto, L.; Abbeel, P.; and
Srinivas, A. 2020. Reinforcement learning with augmented
data. NeurlPS.

Laskin, M.; Srinivas, A.; and Abbeel, P. 2020. Curl: Con-
trastive unsupervised representations for reinforcement learn-
ing. In ICML.

Lee, A. X.; Nagabandi, A.; Abbeel, P.; and Levine, S. 2020.
Stochastic latent actor-critic: Deep reinforcement learning
with a latent variable model. NeurIPS.

Lerman, S.; Bi, J.; and Xu, C. 2021. rQdia: Regularizing Q-
Value Distributions With Image Augmentation. OpenReview.

Long, A.; Blair, A.; and van Hoof, H. 2022. Fast and
Data Efficient Reinforcement Learning from Pixels via Non-
Parametric Value Approximation. AAAI.

Mclnroe, T.; Schifer, L.; and Albrecht, S. V. 2021. Learning
Temporally-Consistent Representations for Data-Efficient
Reinforcement Learning. arXiv preprint arXiv:2110.04935.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; et al. 2015. Human-level control through
deep reinforcement learning. Nature, 518(7540): 529-533.

Oh, J.; Singh, S.; and Lee, H. 2017. Value prediction network.
NeurlPS.

Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; et al. 2020. Mastering atari, go, chess and shogi
by planning with a learned model. Nature, 588(7839): 604—
609.

Schwarzer, M.; Anand, A.; Goel, R.; Hjelm, R. D.; Courville,
A.; and Bachman, P. 2021. Data-Efficient Reinforcement
Learning with Self-Predictive Representations. In ICLR.
Sener, O.; and Koltun, V. 2018. Multi-task learning as multi-
objective optimization. NeurIPS.

Silver, D.; Hasselt, H.; Hessel, M.; Schaul, T.; Guez, A.;
Harley, T.; Dulac-Arnold, G.; Reichert, D.; Rabinowitz, N.;
Barreto, A.; et al. 2017. The Predictron: End-to-end learning
and planning. In ICML.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning:
An introduction. MIT press.

Tamar, A.; Wu, Y.; Thomas, G.; Levine, S.; and Abbeel, P.
2016. Value iteration networks. NeurIPS.

Tassa, Y.; Doron, Y.; Muldal, A.; Erez, T.; Li, Y.; Casas, D.
d. L.; Budden, D.; Abdolmaleki, A.; Merel, J.; Lefrancq,

A.; et al. 2018. DeepMind control suite. arXiv preprint
arXiv:1801.00690.

van Hasselt, H. P.; Hessel, M.; and Aslanides, J. 2019.
When to use parametric models in reinforcement learning?
NeurIPS.

Yarats, D.; Kostrikov, I.; and Fergus, R. 2021. Image Aug-
mentation Is All You Need: Regularizing Deep Reinforce-
ment Learning from Pixels. In ICLR.

Yarats, D.; Zhang, A.; Kostrikov, I.; Amos, B.; Pineau, J.; and
Fergus, R. 2021. Improving sample efficiency in model-free
reinforcement learning from images. AAAI.

Ye, W.; Liu, S.; Kurutach, T.; Abbeel, P.; and Gao, Y. 2021.
Mastering atari games with limited data. NeurIPS.

Yu, T.; Kumar, S.; Gupta, A.; Levine, S.; Hausman, K.; and
Finn, C. 2020. Gradient surgery for multi-task learning.
NeurIPS.

Yu, T.; Lan, C.; Zeng, W.; Feng, M.; Zhang, Z.; and Chen,
Z.2021. Playvirtual: Augmenting cycle-consistent virtual
trajectories for reinforcement learning. NeurIPS.

11077

