The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

ODE-RSSM: Learning Stochastic Recurrent State Space Model from
Irregularly Sampled Data

Zhaolin Yuan ' , Xiaojuan Ban 23"

, Zixuan Zhang ' , Xiaorui Li ' , Hong-Ning Dai *

!'School of Intelligence Science and Technology, Beijing Key Laboratory of Knowledge Engineering for Materials Science,
University of Science and Technology Beijing, Beijing 100083, China.
2Beijing Advanced Innovation Center for Materials Genome Engineering,
University of Science and Technology Beijing.
3Key Laboratory of Intelligent Bionic Unmanned Systems, Ministry of Education,
University of Science and Technology Beijing, Beijing 100083, China
“Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
18810919727 @163.com, banxj@ustb.edu.cn, zhangzixuan1120@ 163.com, lixiaorui @xs.ustb.edu.cn, hndai @ieee.org

Abstract

For the complicated input-output systems with nonlinearity
and stochasticity, Deep State Space Models (SSMs) are effec-
tive for identifying systems in the latent state space, which
are of great significance for representation, forecasting, and
planning in online scenarios. However, most SSMs are de-
signed for discrete-time sequences and inapplicable when the
observations are irregular in time. To solve the problem, we
propose a novel continuous-time SSM named Ordinary Differ-
ential Equation Recurrent State Space Model (ODE-RSSM).
ODE-RSSM incorporates an ordinary differential equation
(ODE) network (ODE-Net) to model the continuous-time evo-
lution of latent states between adjacent time points. Inspired
from the equivalent linear transformation on integration limits,
we propose an efficient reparameterization method for solv-
ing batched ODEs with non-uniform time spans in parallel
for efficiently training the ODE-RSSM with irregularly sam-
pled sequences. We also conduct extensive experiments to
evaluate the proposed ODE-RSSM and the baselines on three
input-output datasets, one of which is a rollout of a private
industrial dataset with strong long-term delay and stochas-
ticity. The results demonstrate that the ODE-RSSM achieves
better performance than other baselines in open loop predic-
tion even if the time spans of predicted points are uneven and
the distribution of length is changeable. Code is availiable at
https://github.com/yuanzhaolin/ODE-RSSM.

Introduction

Deep learning-based dynamical system modeling, also named
deep system identification, exploits the advantages of deep
neural networks (DNN) to identify the dynamics of black-box
systems from offline input-output data. The learned model
is generally utilized for prediction, model prediction control
and model-based reinforcement learning (MBRL) (Moerland,
Broekens, and Jonker 2020).

However, there are several common challenges in mod-
eling real complicated systems. First, messy or irregular

“*Corresponding author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

11060

sampling data is ubiquitous in practical industrial applica-
tions (Kidger 2021). Most existing neural network-based
system identification models are discrete-time models de-
pending on the assumption of uniform sampling intervals.
These models are restricted in real-time industrial system
with irregularly sampling time points, especially in online
scenarios where offline interpolations are incapable. Second,
although some existing continuous-time system identifica-
tion models, such as Time-Aware Recurrent Neural Network
(RNN) (Demeester 2020), SNODE (Quaglino et al. 2020;
Yildiz, Heinonen, and Lihdesméki 2021) have tackled the
learning problem with irregularly sampled input-output data,
most of them only learn the system in the deterministic state
space. Deterministic models are not only inconvenient for
Monte-Carlo sampling, but are also incapable of learning
the systems that suffer from high stochasticity. Finally, the
identification model should be applicable to online mode
when handling continuous streaming data and predicting
the outputs with arbitrary prediction range (Liu et al. 2020).
This requirement further restricts the employment of end-
to-end encoder-decoder models, such as Latent ODE and
ODE2VAE (Rubanova, Chen, and Duvenaud 2019; Yildiz,
Heinonen, and Lahdesmiki 2019), while prefers choosing
the models with recurrent state updating.

Although previous studies have partially solved some of
the above issues, none of existing works can simultaneously
address all of them, to the best of our knowledge. In this
paper, we propose the Ordinary Differential Equation Recur-
rent State Space Model (ODE-RSSM), which is a stochastic
transition model defined in continuous-time (CT) domain.
The proposed ODE-RSSM incorporates an ODE-Net in the
state evolution to learn the dynamical systems with stochas-
ticity from irregularly sampled data. Under the setting of
irregularly sampling, in order to support parallel prediction
for accelerating the training of ODE-RSSM, a reparameteri-
zation method is proposed for solving the batched ODE-Nets
with non-uniform time spans in parallel.

In experiments, we use three black-box system identifi-
cation datasets to evaluate the performance of the proposed
model in multi-step open-loop prediction (Monte Carlo roll-

Online
prediction

Unevenly

Model .
sampling

Stochasticity

RNN
RSSM
Time-Aware RNN
ODE-RNN
Latent ODE
ODE-RSSM

NA%XXNX
CNNUX X
XSS

Table 1: Comparison of neural network-based system model-
ing methods

outs). One of the three datasets is a private real-world dataset
exported from an industrial paste thickening system. The
strong stochasticity and the time-delay put forward higher
requirements on models in learning long-term dependencies
and predicting long-time-delayed outputs. The results on
three datasets demonstrate that the ODE-RSSM outperforms
other baselines when the time spans of predicted points are
uneven and changeable. By examining the proposed reparam-
eterization method and other competitors in solving batched
ODEs with non-uniform time spans, we find that the pro-
posed method can solve the batched ODEs in parallel under
enough GPU memory.
The key contributions are highlighted as follows:

. We propose ODE-RSSM to identify input-output systems
with stochasticity from unevenly sampled sequences.

. For improving the training speed under the irregular-
sampling settings, we propose a reparameterization
method to solve the batched ODE-Nets with non-uniform
time spans in parallel.

We provide a comprehensive and systematic evaluation
of the proposed model on three input/output datasets and
demonstrate the effectiveness of the proposed method.

Related Work

Learning system dynamics, also known as system identifi-
cation (Astrom and Eykhoff 1971), is a task that learns the
dynamics of an input-output system from offline data. It plays
an important role in diverse areas, such as system prediction
and model-based reinforcement learning (Ke et al. 2019).
This paper focuses on employing approximated parametric
neural networks (Wang 2017; Ogunmolu et al. 2016) to model
black-box systems where both of the functional forms and
parameters are unknown.

In many real-world systems, the sequential data are un-
evenly sampled from the identified system. Spectral Dis-
cretization of Neural ODEs (SNODE) (Quaglino et al. 2020)
introduces the spectral element method and gradient match-
ing for improving the training speed and accuracy of learned
Neural ODEs in system identification. Moreover, ODE-
Recurrent Neural Network (ODE-RNN) (Rubanova, Chen,
and Duvenaud 2019) inserts an ODE-Net module between
adjacent RNN updates for modeling the continuous-time
evolution of hidden states. In order to improve the long-
term prediction, previous studies such as (Demeester 2020;
Yuan et al. 2022) incorporate the advantages of recurrent

11061

neural networks and differential equations to tackle the unit
root problem and propose the Time-Aware RNN. The above-
mentioned models are capable of tackling the problem of
unevenly sampling though they still have limitations in mod-
eling stochastic systems because their internal states evolu-
tion is essentially deterministic.

In the perspective of modeling stochastic system, prob-
abilistic recurrent state-space models (PR-SSM) (Doerr
et al. 2018) and probabilistic inference for learning control
(PILCO) (Deisenroth and Rasmussen 2011) introduce non-
parametric Gaussian Processes to learn the probabilistic tran-
sition models of input/output systems. As parametric mod-
els, deep temporal generative models (Fraccaro et al. 2016;
Chung et al. 2015; Karl et al. 2017) extend the Variational
Auto-encoders (VAEs) (Kingma and Welling 2014) to se-
quential situations. These models are capable of learning the
stochasticity in the sequences by introducing stochastic latent
variables. Recurrent state space model (RSSM)(Hafner et al.
2019) mixes deterministic state evolution and stochastic state
evolution in the latent state space for identifying stochastic
systems. With the benefits of efficient Monte Carlo Sampling,
the learned generative models are employed in many applica-
tions, such as missing data imputation (Fraccaro et al. 2017),
open-loop prediction (Hafner et al. 2019) and model-based
reinforcement learning (RL) (Hafner et al. 2019).

Some previous studies also integrate the temporal vari-
ational inference framework and differential equation net-
works to learn a stochastic continuous-time process. Specif-
ically, LatentODE (Rubanova, Chen, and Duvenaud 2019),
ODE2VAE (Yildiz, Heinonen, and Lihdesméki 2019) infer
the posterior distribution of an initial latent state from the
irregular observed sequences. With a sampled initial state,
models can interpolate the missing positions and predict the
system outputs by solving the differential equation networks.
However, these models are typically offline since they have
to read the complete irregular time series for encoding be-
fore prediction and interpolation (Liu et al. 2020). In some
specific tasks, such as online control, the prediction model
is required to be working in an online mode for handling
streaming data (Lesort et al. 2018), similar to the recurrent
neural network, which recursively updates internal states.

In this paper, we propose a novel ODE-RSSM model,
which satisfies all the above requirements in practical indus-
trial applications, such as learning from irregular sampled
data, modeling stochasticity, and online prediction. Table 1
compares the proposed model with other neural network-
based modeling methods.

Model

Preliminary and notations

For an input-output system, we define the irregularly sampled
system trajectories as {Wk,¢,:ty, » Yk tritn, .. where K is
the number of sequences in the dataset, [V, is the length of the
k-th sequence, and the time subscript ¢; (i € [1,2,--- , Ni])
is the sampling time of the i-th position. Omitting the sub-
script k, the conditional generation of y, ., under u;, ¢, is

(b) ODE-RSSM

Figure 1: The overall structure of both generative process and
inference process in ODE-RSSM. Circles and squares are
stochastic variables and deterministic variables, respectively.
Solid lines and dashed lines denote the generative processes
and the inference processes, respectively.

assumed to be a Markov model with latent states s¢,:

p(ytlth [ty) = /p (ytlthzstlttN | Weyitn s Sto) A8ty

N
= /Hp (yt,; | Sti)p (sti | uti—17sti—l) dstyty -
=1

ey
We aim to identify a deep temporal VAE framework con-
sisting of (i) an inference model for inferring the sequential
latent states {s;, })¥ ; given both system inputs and outputs,
and (ii) a generative model for predicting the distribution of
{y,,}1L, given system inputs {u;, }1¥;.

Generative Model

As a conditional probabilistic model, the generative process
describes the joint probability distributions of latent states
and system outputs under given system inputs. Similar to
the RSSM model (Hafner et al. 2019), we define the latent
states as sy, = [hy,, z¢,] consisting of both deterministic
component h;, and stochastic component z,. Given an initial
st,, the conditional prior s;, is controlled by system inputs:

p (Sti | Sti—l”u’ti—l) :p(zii ‘ hii)p (htq' | st'i—l’ut'i—l))
(2)

where p (R, | 8¢,_,,us,_,) is a Dirac distribution. Since the
sampling interval ¢; — ¢;_1 for different positions ¢ are not
uniform in irregular settings, the common discrete-time se-
quential models are not applicable to modeling the evolution
of latent states. Inspired by the differential equation mod-
els (Chen et al. 2018; Rubanova, Chen, and Duvenaud 2019),
we aim to learn the CT evolution of deterministic latent states.

Concretely, the evolution of h;, between two adjacent time
points consists of two stages: In the first stage, we employ
a GRU network to model the influences from the system
input u;, , and z¢, , on the last state h;, , and produce an

intermediate variable ilt,i,l as follows:

i'ltifl = GRU(I:uti—17zti—1:| 7hti71)' 3)

Next, we introduce a parametric ODE-Net fy to model the
CT evolution of h;, and the updated state at the next time
point can be predicted by solving the ODE:

h;, = ODESolver(fy, ii’tq‘,—l o1, ;)

' b o)
= h’ti,1 +/ f@(htautifl)dta
ti—1

11062

where the system input w;, , is regarded as a piecewise
constant signal, which keeps unchanged until w;, is given.
This setting is consistent with the online scenarios. With the
solved hy,, the prior Gaussian distribution of 2z, is predicted
as follows:

prior
ti

hti) = N(zti ‘ uglor , O)7 @)
where pf"” and o} are estimated from a Multilayer per-
ceptron (MLP) with deterministic latent states h;, as input.

An intuitive explanation of the designed generative model
is that the equation (4) tackles the problem of uneven time
spans and predicts the latent state h;, at time ¢; before per-
ceiving the information brought from w,,. The equation (3)
models the stochasticity by incorporating the stochastic infor-
mation from z,, and producing the new latent state h;,. The
ODE-RSSM is analogous to the combination of ODE-RNN
and RSSM, which is a sophisticated and rational choice for
modeling stochastic systems under irregular setting.

A decoder module is introduced to determine the predicted
Gaussian distribution of system outputs y,, under specific
latent states:

Do (Zti

p (ytL | hti) Zti) = N(ytL Nttiiec 70'(151?‘:)7 (6)
where the distribution parameters u?fc, a'gfc depend on both
deterministic and stochastic latent states.

Given sequential system inputs, the sequential latent states
can be predicted by repeatedly sampling the states s;, from
the predicted distribution of single step and feeding the sam-
ples into the generative model. We can further predict the
open loop system outputs by feeding the sampled latent states
into the decoder module.

Inferencing and Learning

In order to train the parameters 6 in the generative model, we
need to maximize the log likelihood of system outputs £ =
Zf\;l log py (‘ytl‘:tN | Wity) A regular way is to introduce
a variational distribution ¢ to infer the approximate posterior
distribution of the stochastic latent state as follows:

N
o (2t1:ty | ytl:tN:utlttN) = Hq¢(zt1, | htwyti)
@)

enc
t;

=1

N
= [INVGe B o),

=1
where the variational distribution ¢, (zy, |-) is a Gaussian dis-
tribution whose parameters p;'¢ and oy are estimated from
the encoder module, built as an MLP. Since solving h;, by
(3) and (4) requires the previous stochastic latent states z;, ,,
the generative process and inference process are alternating
for inferring the sequential posterior gg (24, :¢,). Ideally, the
predicted prior distribution p(z4, |h,) in (5) has more en-
tropy than q(z;,) in (7) because y,, is unknown. The prior
p is enforced to be as close to ¢ as possible by minimizing
KL divergence. Figure 1 illustrates the differences between
the ODE-RSSM and RSSM in terms of the structures of
generative model and inference model.

In order to improve multi-step predictions, we introduce
the latent overshooting technique (Hafner et al. 2019) in

training, through which the parameters ¢ and 6 are trained to
maximize the multi-step evidence lower bound (ELBO) of
the observed system outputs:

lnpd (ytlitN) 2 Efl(stl:tN) [lnp (ytlitN | stl;tN)]
—% *x KL-D

®)

where KL-D is given by

KL-D:%XD:E[

KL [q (Sti+dg Hp (St'H»d ‘ sti+d—1)]]
i=1d=1 p(titd—1 i) q st')
N
Z Sr NQ(St) P(3r7+1 by p— 1\3t) Zkl i + d)
i=1 d=1
(€))
where kl(s + d) is the abbreviation of

KL [q (st;,0) 1P (Stiya | 8t:40 1)]s 8i, is sampled from
the approximate posterior distribution, and 8;,,,.¢,, , , are
sampled by ancestral sampling, i.e., iteratively sampling
the states from one-step predicted distribution and feeding
the samples as inputs for predicting a new one. Figure 2
illustrates the process of sampling states and calculating
the KL divergence. Because the predictive distribution p(-)
implicitly contains GRU and ODE-Net, all parameters are
trained end-to-end by maximizing ELBO.

Besides the approximation of the posterior distribution
for training generative model, the inference model is also
a temporal encoder model for representation. As an recur-
rent encoder-decoder framework, the ODE-RSSM consists
of an encoder for inference and a generative model for predic-
tion. Both these components are iteratively invoked in some
tasks with online streaming data. For example, in the model-
prediction control, the inference model is utilized to infer
the latent states given monitored system outputs and the gen-
erative model predicts the system outputs under optimized
control inputs.

Solving Batched ODEs with Non-uniform Time
Spans

Networks are typically trained in batches to take advantage of
efficient data-parallel GPU operations. For the multi-step pre-
dictions p(8;,., ,:t,. p_, | 8¢,) inall positions 1 < ¢ < N, itis
difficult to solve the ODE:s at all positions in parallel because
their integrating limits are non-uniform when the sequence
is unevenly sampled. Most existing differential-equation li-
braries assume that the solved time points are identical for all
the sequences in the given batch and do not support batching
over different regions of integration (Kidger 2021). In order
to synchronously solve all ODEs in a minibatch, previous
time series models based on ODE-nets (Yildiz, Heinonen, and
Lahdesmaki 2021; Rubanova, Chen, and Duvenaud 2019)
solve the solutions at the union of all the time points in the
batch; this process is still time-consuming in practical appli-
cations.

To address this issue, we reparameterize the original ODE-
Net to accelerate the solving process of the batched ODEs
in the training phase. From a general perspective, we as-
sume that the ODE-Net is solved from an initial batched

11063

states Hy = [hy , - ,htII} at batched time points T' =
[t1,- - ,t7] to a terminal states H 7+ at batched time points
T =[t},- -+ ,t7], where I is the size of batched states. For
example, when we solve the multi-step predictions stated in
(9), the terminal state H 1 can be solved by concatenating
the solutions of I ODEs, each of which has different initial
states and integrating timespans:
hi1 / fe ht

#
ODESolver(fo, hi,, t1,t7) = he, +/ fo(h{)dt
tr

(10)
To solve I ODEs in parallel, we give a theorem to describe
the property of linear transformation on integration limits.

ODESolver(fo, ht1 b, th

H

Theorem 1 The invariance of linearly changing the in-
tegration limits. For an arbitrary scalar function f (), whose
integration defined on limits [a, b] satisfies with:

b 1
/ f(t)dt:/ Frb—a) +a)b—a)dr. (1)
a 0

This theorem can be easily proven by substitution of variables
with 7 = i:—Z(Wikipedia 2022). It inspires us to reparameter-
ize the ODEs for normalizing the I time spans as an identical
integration limit. Based on the original ODEs, we define an
auxiliary initial value problem (IVP) given the derivative of
R(7) with respect to the scalar time step 7 and the initial

state R(0):

W) gy (R(r),7) = fol B o (T -T),
R(O) = HT;

where o is the point-wise production. The solution of the
auxiliary IVP at 7 = 1 is equal to the concatenated solutions
of the original I ODE:s as follows,

H = R(1) = ODESolver(gg, R(0),0,1). (13)
The equation reveals that the regions of integration in batched
ODE:s are changeable. It is easy to solve the auxiliary IVP in
parallel because of the uniform timespan [0, 1] in the batch.

Thereafter, we can efficiently solve the original batched
ODEs.

Experimental Results

In this section, we evaluate the ODE-RSSM and representa-
tive baselines including discrete-time and continuous-time
models on three input/output datasets. We investigate three
research questions:

* RQ1: Does the ODE-RSSM outperform the existing
discrete-time and continuous-time state space models on
identifying unevenly sampled systems?

* RQ2: Does the ODE-RSSM generalize enough for the
prediction tasks where the distribution of time spans is
different from that of the training dataset.

* RQ3: Does the proposed reparameterization method ef-
ficiently solve the batched ODEs with non-uniform time
spans?

(a) CSTR dataset

25% (uneven) 25% (even) 50% (uneven) 50% (even) 100%
RRSE RMSE RRSE RMSE RRSE RMSE RRSE RMSE | RRSE RMSE
VAE-RNN 0.3118 0.2224 0.203 0.1407 0.1977 0.1372 0.1791 0.1238 | 0.1607 0.1099
STORN 0.3198 0.2235 0.1993 0.1379 0.2372 0.1664 0.1628 0.1115 | 0.155 0.1054
RSSM 0.3155 0.2158 0.1457 0.1026 0.2017 0.1447 0.0811 0.0594 | 0.0684 0.0499
RSSM-O 0.3114 0.2127 0.1507 0.1103 0.151 0.11 0.0872 0.0648 | 0.0797 0.0596
ODE-RNN 0.2627*% 0.1791 0.14%* 0.0996* | 0.1466* 0.1047* | 0.0784* 0.057* | 0.0668* (0.0489*

Time-Aware 0.3134 0.2138 0.1581 0.1131 0.1965 0.1411 0.136 0.0991 | 0.108 0.0786
Latent-ODE 0.2595 0.1797* | 0.1982 0.1407 0.1672 0.1194 0.1591 0.1149 | 0.1427 0.1016
Latent-SDE 0.3019 0.2046 0.1587 0.1127 0.1633 0.1171 0.0971 0.071 0.0827 0.0604
ODE-RSSM 0.2979 0.1987 0.1376 0.0975 0.1486 0.1059 0.0798 0.0593 | 0.0739 0.0517
ODE-RSSM-O | 0.2807 0.1913 0.1411 0.1003 0.1336 0.0956 0.0654 0.0477 | 0.0659 0.0474

(b) Winding dataset
25% (uneven) 25% (even) 50% (uneven) 50% (even) 100%
RRSE RMSE RRSE RMSE RRSE RMSE RRSE RMSE RRSE RMSE
VAE-RNN 0.5242 0.5186 0.4276 0.4346 0.4708 0.4706 0.4521 0.4589 0.4192 0.4167
STORN 0.5282 0.5251 0.4151 0.4231 0.4799 0.4786 0.4058 0.4111 0.384 0.3807
RSSM 0.5667 0.5593 0.4155 0.4234 0.4932 0.4918 0.4013 0.4066 0.4011 0.3976
RSSM-O 0.5366 0.5313 0.4124 0.4202 0.5236 0.523 0.4098 0.415 0.3911 0.3876
ODE-RNN 0.5018* 0.4953* | 0.402 0.4079 0.4247* 0.4208* | 0.3852 0.3891 0.3808 0.3751

Time-Aware 0.6009 0.5961 0.4653 0.4748 0.4615 0.4613 0.431 0.4369 0.4017 0.398
Latent-ODE 0.5314 0.5224 0.4716 0.4796 0.4779 0.4725 0.4558 0.4629 0.4515 0.4511
Latent-SDE 0.6610 0.6561 04674 0.4771 0.4577 0.4562 0.3690* 0.3723 0.3287 0.3248
ODE-RSSM 0.5389 0.5327 0.4648 0.4738 0.4444 0.4429 0.3837 0.3880 0.3683 0.3633
ODE-RSSM-O | 0.4768 0.4709 0.4169* 0.4244* | 0.4045 0.4029 0.3689 0.3726% | 0.3324* 0.3283*

(c) Thickening dataset

25% (uneven) 25% (even) 50% (uneven) 50% (even) 100%

RRSE RMSE RRSE RMSE RRSE RMSE RRSE RMSE RRSE RMSE
VAE-RNN 16.255 0.4696 14.471 0.4589 14.779 0.4361 13.915 0.4319 13.163 0.4065
STORN 11.336 0.3249 8.6047 0.2765 7.9986 0.2463 7.7936 0.2473 6.8105 0.2184
RSSM 1.619 0.0553 1.5165 0.0561 1.5808 0.0534 1.439 0.0532 1.5001 0.0548
RSSM-O 1.3725% 0.0529 1.375 0.0517 1.4275 0.0519 1.4214 0.0518 1.4153 0.0522
ODE-RNN 1.4789 0.0507* | 1.2927 0.0494* | 1.6023 0.0566 1.3138*% 0.0489 1.3193 0.0487
Time-Aware 3.302 0.11 1.7698 0.0636 1.4732 0.0531 1.3882 0.0509 1.4108 0.0516

Latent-ODE 6.8852 0.225 6.7402 0.228 4.7758 0.1479 4.7416 0.1546 3.3587 0.1157
Latent-SDE 43114 0.1441 3.2254 0.1116 2.4136 0.0823 2.1839 0.0763 2.1006 0.0734
ODE-RSSM 1.5349 0.0558 1.4791 0.0549 1.4174*% 0.0522% | 1.4625 0.0544 1.5856 0.0577
ODE-RSSM-O | 1.3678 0.0504 1.2947* 0.0493 1.3064 0.0487 1.3082 0.0493* | 1.3302* 0.05*

Table 2: Main results on three Input/output datasets. In each experimental group, the best results are bolded and the second-best
results are marked with **’. The models with suffix ‘-O’ are trained with latent overshooting.

11064

p(szlstl)‘”

» Sampling KL
—_ Prediction g "8ty (@=3)
P(St;\sm)"? p(8t,]81,)* .
. i g KL
» KL divergence l GRUTODENet]
— - (d=2)
i St, i Sty
P(St;|3t1)‘ P(stg,\stz)‘ P(5t4|5t3)‘ KL
[_ GRU+ODE-Net —] (d=1)
""""" "8t Sty St,

q(3t2)
+

l Inferring the approximate posterior distribution l

Figure 2: The process of solving KL-D in latent overshooting
with k =4 and D = 3.

Datasets

We use three input/output datasets for conducting the experi-
ments. Two of them, CSTR (one in two out) and Winding (five
in two out), are public datasets (Demeester 2020). The third
one is the rollout of the provided paste thickening dataset
(four in one out), which is derived from a realistic running
paste thickener. This paste thickener is manufactured by the
FLSmidth company and utilized in a copper mining paste
backfilling station for producing high concentrated slurry.
There are four main monitoring items in the thickening sys-
tem: feed concentration, feed flow rate, underflow concentra-
tion and underflow rate are defined as the system inputs for
predicting the mud pressure, which is the single system out-
put. Because the thickening system is incompletely observed
and the feedback delay of controlling is extremely long, this
dataset raises higher requirements on representing stochastic
dynamics and predicting long-time delay system.

Experimental Setup

Each dataset is split to three partitions for training (the fore-
most 60%), validation (the middle 20%), and test (the last
20%). We further move a sliding window on each partition
to generate data batches, each of which is a tensor with the
shape B x N x K, where B is the batch size, IV denotes the
length of the sequence, and K is the sum of the dimensions
of both system inputs and system outputs.

In the training phase, the sequence with length IV is totally
fed to the model and the multi-step ELBO is maximized. In
the phases for validation and test, each sequence is further
split into two sequences: an encoding sequence with length
M and a generative sequence with length L. The encoding
sequence including the system inputs and outputs is fed into
the inference encoder to infer latent state s;,, at the M-th
position. Next, as an initial latent state, state s;,, is fed to the
generative model to predict system outputs given sequential
system inputs in the generative sequence with length L. The
predicted sequence is compared with the true system outputs
in the generative sequence to evaluate the prediction accuracy.
The root mean squared error (RMSE) and the root relative
squared error (RRSE) are chosen as metrics.

The basic time difference |t; 11 — t;| between any adjacent
sampling points is uniformly defined as 0.1 for all datasets.
To unevenly construct sampling datasets, we randomly sub-
sample 25%, 50% data points from each dataset respectively.

11065

Meanwhile, we also generate two evenly sampled datasets as
control groups by subsampling 25%, 50% points with even
time spans.

Baselines

Because the ODE-RSSM is a continuous-time state space
model with stochastic hidden states, we choose three kinds
of models as baselines:

* VAE-based discrete-time models having stochastic
latent states, include VAE-RNN (Fraccaro 2018),
STORN (Bayer and Osendorfer 2014), and RSSM (Hafner
et al. 2019).

» Continuous-time models having deterministic hidden
states, include ODE-RNN (Rubanova, Chen, and Duve-
naud 2019) and Time-Aware RNN (Demeester 2020).

* Continuous-time models having stochastic latent states,
including Latent ODE(Rubanova, Chen, and Duvenaud
2019) and Latent SDE(Li et al. 2020).

For the ODE-RSSM and the discrete-time models with
stochastic states transitions, we repeatedly predict 7,j = 32
trajectories in parallel from the generative model and measure
the mean prediction error between the sampled trajectories
and the ground-truth. For the ODE-RNN and the Time-Aware
RNN, we introduce two RNN modules as the encoder and
the decoder to separately infer the deterministic latent states
and predict outputs. To evaluate the discrete-time models on
unevenly sampled dataset, we incorporate the time difference
|t;+1 — t;| as an extra input variable into the system inputs
u,,. Because the Latent ODE and SDE are time series mod-
els instead of controlled identification model. We embed the
system inputs u(t), interpolated by zero order spline interpola-
tion, in solving ODE and SDE, just as (4). All of the models
are trained by the Adam optimizer where the learning rate
is 5e-4. The training does not stop until the validation loss
increases for 100 epochs.

RQ1: ODE-RSSM vs. Unevenly Sampling Baselines

Table 2 illustrates the evaluations of the ODE-RSSM and the
baselines on three datasets. The two continuous-time mod-
els outperform the discrete-time models when the dataset is
unevenly downsampled. Specially, for the unevenly down-
sampled datasets with sampling ratios 0.25 and 0.5, the pre-
diction error of the discrete-time models on unevenly sampled
dataset is significantly higher than the results on evenly sam-
pled dataset. By contrast, the degradation of the continuous-
time models is less serious. As an approximation of pure
NODE, Time-Aware performs worse than ours.

ODE-RNN sometimes outperform the ODE-RSSM When
latent overshooting is not used. ODE-RNN is trained with
backpropagation through time (BPTT) which is vital for im-
proving long-term prediction. Latent overshooting is analo-
gous to BPTT in training temporal generative models, such as
ODE-RSSM and RSSM. Without latent overshooting, ODE-
RSSM is only trained by the loss in single step predictions. It
is more fair to compare with ODE-RNN and ODE-RSSM-O.
In most cases, the ODE-RSSM trained with latent overshoot-
ing has a lower error than ODE-RNN.

24 24
/N noomr A | GO -
Tme Pl BPN T o BB EPR
c [o\ |+ c) N % | |
g —— Prediction . "'u‘ 'é —— Prediction |\ | K - ;\‘
g 01 95% [g 01 95% [
1 | \ | E=1 | 1
- Time points | \\;/PA' Time points | \\,/P4
U ’ M U
6 5‘0 160 15‘10 260 6 5‘0 160 lf;O 260
Time(s) Time(s)
(2) ODE-RSSM-O (RRSE = 0.2937) (b) ODE-RSSM (RRSE = 0.3080)
24 24
N P12 3 A P 2 B2
1l History O A \, I\ 4 |) Y\ 1= History e w\, 1\ 4) N
2 Real S ‘,A’ =1 I} Z Real ~ r-z N =t |1
2 —— Prediction \ '1[“'\‘ 2 —— Prediction \ K -k‘
§ o] 95% - § 01 95% 1 HRW
Time points [\\\;/P4 « Time points “ \\“lq:]4
] L N L

100 150 200

Time(s)

50

(c) RSSM-O (RRSE = 0.3345)

50 100 200

Time(s)

150

(d) RSSM (RRSE = 0.3926)

Figure 3: This figure illustrates the system outputs of Winding dataset predicted by four models in open loop. ODE-RSSM trained

with latent overshooting outperforms the other three ones.

The Latent SDE and ODE also perform well in CSTR
and Winding dataset, but their accuracies degrade obviously
in the third dataset. The main reason is that the decoders
of Latent ODE/SDE are pure differential equations which
cannot handle the long-time delay in thickening dataset well
in comparison to the GRU in ODE-RSSM.

In Figure 3, we visualize the predicted system outputs
of ODE-RSSM and RSSM on the Winding test dataset. At
the positions P1 and P4, the models trained by latent over-
shooting (a and c) outperform the ones without trained by
latent overshooting (b and d). It demonstrates that training
the generative model with multi-step KL-term improves the
open-loop predictions. Furthermore, the two ODE-RSSMs
significantly outperform the discrete-time RSSMs at P2 and
P3, where the distances between adjacent time points are rela-
tively longer. Although the long spacing [¢;1 — t;| leads to a
considerable information loss, the increased prediction error
of the ODE-RSSM model are smaller than the increments of
RSSM. This result is consistent with the previous findings
that ODE-Nets are good at extracting temporal feature from
sparse time series (Quaglino et al. 2020). It can be concluded
that it is more effective to handle irregular time steps by learn-
ing the system evolution in the continuous-time domain with
a differential equation network, in contrast to adding the time
delta as an extra input variable.

RQ2: Studying the Generalization Ability of
ODE-RSSM in Varying Sampling Intervals

For studying RQ2, we first train the ODE-RSSM and RSSM
models with the Winding dataset and the random sampling
ratios are set to 0.25 and 0.5. For simplicity, the trained
four models are named as ODE-RSSM (25%) ODE-RSSM
(50%), RSSM (25%) and RSSM (50%). The percentages
in parentheses represent the random sampling ratios of the

11066

training dataset. Next, we evaluate the four trained models
on the test datasets where the random sampling ratios are
changed to 25%, 50%, and 100% respectively and the results
are shown in Table 3. The values in parentheses represent the
rise or the decline of the prediction error compared with the
error evaluated on training sampling ratio.

We first find that raising the sampling ratio of the test
dataset from 25% to 50% leads to a decline of prediction er-
ror and the improvements on ODE-RSSMs are more obvious
than RSSM models. When the sampling ratio in test dataset
is lower than the ratio in training dataset, for instance, evalu-
ating ODE-RSSM (50%) and RSSM (50%) under test dataset
with 25% sampling ratio, the prediction error increases ob-
viously and the increments of both ODE-RSSM (50%) and
RSSM (50%) are closed to each other. Because lower sam-
pling ratio increases the overall distance between adjacent
sampling points, the time ranges for solving ODE-Net greatly
exceed the overall distances of time intervals in training. The
performance of ODE-RSSM is not guaranteed in such ex-
trapolated predictions, but it is still better than discrete-time
RSSM. Overall, the ODE-RSSMs show good generalization
on the changeable sampling intervals.

RQ3: Evaluating the Time Efficiency of the Parallel
Batched ODE Solver

We compare the proposed parallel ODE solver and com-
petitors by evaluating their time consumption in solving
I = N x B ODEs during training, where B is the con-
stant batch size and N is the sequential length in solving
KL-D as in (9).

In Figure 4, the lines marked with ‘Parallel’ denote employ-
ing the reparameterization method (13) for solving the ODEs
in parallel. The ones marked with ‘Union’ solve the batched
ODEs on the ordered union set of the time points (Rubanova,

Model 25% (uneven) 50% (uneven) 100%
RRSE RMSE RRSE RMSE RRSE RMSE
RSSM (25%) 0.5366 0) 0.5313 0) 04621 (-0.0745) 0.4617 (-0.0696) | 0.4596 (-0.077) 0.4588 (-0.0725)
RSSM (50%) 0.6149 (0.149) 0.6069 (0.1449) | 0.4659 0) 0.462 0) 0.4598 (-0.0061) 0.4583 (-0.0037)
ODE-RSSM (25%) | 0.4934 0) 0.4878 0) 0.3976 (-0.0958) 0.3962 (-0.0916) | 0.3861 (-0.1073) 0.3837 (-0.1041)
ODE-RSSM (50%) | 0.5754 (0.1545) 0.5696 (0.1498) | 0.4209 0) 0.4198 0) 0.3794 (-0.0415) 0.3771 (-0.0427)

Table 3: The results of evaluating ODE-RSSM and RSSM when the sampling ratio is different from the ratio in training dataset.

Chen, and Duvenaud 2019). Rk4 and dopri5 are two classical
numerical approximate solvers (Chen et al. 2018). When the
solver rk4 is used, the number of evaluations of the derivative
net fp between any two adjacent time points is four, and the
number of dopri5 is adaptive to ensure the approximation
error be restricted in a given tolerance.

We first find that the time consumption of two methods
marked with ‘Union’ increases linearly with I. In particular,
the solution ‘Union+rk4’ consumes much more time than
the solution ‘Union+dopri5’. For the ordered union set, the
distances between adjacent time points are small. When the
adaptive dopri5 is used, the average number of ODE-Net
evaluations between adjacent time points is less than four.

In comparison with solving the ODEs on the union set of
time points, the two solutions marked with ‘Parallel’ are more
time-efficient. For the choice ‘Parallel+dopri5’, the model
has to guarantee the constraint from the given tolerances
and it requires more time to evaluate the ODE-nets with
the increase of length N. For ‘Parallel+rk4’, the number of
evaluations is only four and the time consumption is irrelevant
to the sequence length N and batch size B, which provides a
solution for solving batched ODEs with approximate constant
time complexity.

In most cases, the sequence length N is large, we therefore
tend to employ the combination of reparameterization method
and RK4 in the training stage. On the assumption of infinite
GPU memory and taking full advantage of CUDA paralleliza-
tion, the actual time consumption of estimating the multi-step
ELBO for training is approximated to O(N + D), where the
time consumption of sequential posterior inference is O(N)
and the time of estimating KL-D is only O(D) because Par-
allel+rk4 consumes O(1) time in solving single-step batched
ODEs.

1.0
—— Parallel + dopri5
0.8 Parallel + rk4
—— Union + dopri5
= 0.61 — Union + rk4
g
= 0.4+
0.2
0.0
0 200 400 600 800 1000
N*B

Figure 4: Efficiency of solving batched ODEs with different
solvers.

11067

Conclusion

This paper focuses on identifying input/outputs system with
stochasticity from unevenly-spaced observations. We design
a novel ODE-RSSM model, which introduces an ODE-Net
to model the CT evolution of deterministic path between ad-
jacent observed time points. The proposed model supports
online inferring and prediction. Relying on the equivalence
of linearly changing the integration limits, we further pro-
pose an efficient reparameterization method for solving the
batched ODEs with non-uniform time spans. The method ac-
celerates the model training by solving multi-step predictions
at different positions in parallel. The experiments conducted
on three input/output system datasets evaluate the proposed
ODE-RSSM and other baseline models under the impact of
randomly irregular downsampling. The results indicate that
the ODE-RSSM model shows great accuracy in irregular set-
tings and the proposed reparameterization method is quite
time-efficient.

Acknowledgments

The authors acknowledge financial support from the National
Natural Science Foundation of China (No. 61873299, No.
61902022, No. 61972028), the Departmental Start-up Fund
of the Department of Computer Science in HKBU, Scientific
and Technological Innovation Foundation of Shunde Gradu-
ate School, USTB(No.BK21BF002), and the Fundamental
Research Funds for the Central Universities of China (FRF-
TP-20-061A1Z). The computing work is partly supported by
USTB MatCom of Beijing Advanced Innovation Center for
Materials Genome Engineering.

References

Astrom, K. J.; and Eykhoff, P. 1971. System identification—a
survey. Automatica, 7(2): 123-162.

Bayer, J.; and Osendorfer, C. 2014. Learning stochastic
recurrent networks. arXiv preprint arXiv:1411.7610.

Chen, R. T. Q.; Rubanova, Y.; Bettencourt, J.; and Duvenaud,
D. 2018. Neural Ordinary Differential Equations. Advances
in Neural Information Processing Systems.

Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A.;
and Bengio, Y. 2015. A recurrent latent variable model for
sequential data. Advances in Neural Information Processing
Systems, 2015-Janua: 2980-2988.

Deisenroth, M.; and Rasmussen, C. E. 2011. PILCO: A
model-based and data-efficient approach to policy search. In

Proceedings of the 28th International Conference on machine
learning (ICML-11), 465-472.

Demeester, T. 2020. System identification with time-aware
neural sequence models. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 34, 3757-3764.
Doerr, A.; Daniel, C.; Schiegg, M.; Duy, N.-T.; Schaal, S.;
Toussaint, M.; and Sebastian, T. 2018. Probabilistic recurrent
state-space models. In International Conference on Machine
Learning, 1280-1289. PMLR.

Fraccaro, M. 2018. Deep latent variable models for sequen-
tial data. Ph.D. thesis, Technical University of Denmark.

Fraccaro, M.; Kamronn, S.; Paquet, U.; and Winther, O. 2017.
A disentangled recognition and nonlinear dynamics model
for unsupervised learning. Advances in Neural Information
Processing Systems, 2017-Decem(section 5): 3602-3611.

Fraccaro, M.; Sgnderby, S. K.; Paquet, U.; and Winther,
0. 2016. Sequential neural models with stochastic layers.
Advances in Neural Information Processing Systems, 2207—
2215.

Hafner, D.; Lillicrap, T.; Fischer, I.; Villegas, R.; Ha, D.;
Lee, H.; and Davidson, J. 2019. Learning latent dynamics
for planning from pixels. 36th International Conference on
Machine Learning, ICML 2019, 2019-June: 4528—4547.

Karl, M.; Soelch, M.; Bayer, J.; and van der Smagt, P. 2017.
Deep Variational Bayes Filters: Unsupervised Learning of
State Space Models from Raw Data. In 5th International
Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings.
OpenReview.net.

Ke, N. R.; Singh, A.; Touati, A.; Goyal, A.; Bengio, Y.;
Parikh, D.; and Batra, D. 2019. Modeling the Long Term
Future in Model-Based Reinforcement Learning. In Interna-
tional Conference on Learning Representations.

Kidger, P. 2021. On Neural Differential Equations. Ph.D.
thesis, University of Oxford.

Kingma, D. P.; and Welling, M. 2014. Auto-Encoding Vari-
ational Bayes. In Bengio, Y.; and LeCun, Y., eds., 2nd In-
ternational Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings.

Lesort, T.; Diaz-Rodriguez, N.; Goudou, J.-F.; and Filliat, D.
2018. State representation learning for control: An overview.
Neural Networks, 108: 379-392.

Li, X.; Wong, T.-K. L.; Chen, R. T.; and Duvenaud, D. 2020.
Scalable gradients for stochastic differential equations. In
International Conference on Artificial Intelligence and Statis-
tics, 3870-3882. PMLR.

Liu, Y.; Wang, X.; Xing, Y.; Jin, D.; Yang, X.; and Shi, J.
2020. Learning continuous-time dynamics by Stochastic
Differential Networks. arXiv, 1-13.

Moerland, T. M.; Broekens, J.; and Jonker, C. M. 2020.
Model-based reinforcement learning: A survey. arXiv
preprint arXiv:2006.16712.

Ogunmolu, O.; Gu, X.; Jiang, S.; and Gans, N. 2016. Non-
linear systems identification using deep dynamic neural net-
works. arXiv preprint arXiv:1610.01439.

Quaglino, A.; Gallieri, M.; Masci, J.; and Koutnik, J. 2020.
SNODE: Spectral Discretization of Neural ODEs for System

11068

Identification. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020.

Rubanova, Y.; Chen, R. T.; and Duvenaud, D. 2019. La-
tent ODEs for irregularly-sampled time series. Advances in
Neural Information Processing Systems, 32(NeurIPS).

Wang, Y. 2017. A new concept using Istm neural networks
for dynamic system identification. In 2017 American control
conference (ACC), 5324-5329. IEEE.

Wikipedia. 2022. Integration by substitution — Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/w/index.
php?title=Integration_by_substitution&oldid=1107237458.
Accessed: 2022-12-01.

Yildiz, C.; Heinonen, M.; and Lihdesmiki, H. 2019.
ODE2VAE: Deep generative second order ODEs with
Bayesian neural networks. Advances in Neural Information
Processing Systems, 32(NeurIPS).

Yildiz, C.; Heinonen, M.; and Lihdesmiki, H. 2021.
Continuous-time Model-based Reinforcement Learning. In
International Conference on Machine Learning, 12009—
12018. PMLR.

Yuan, Z.; Li, X.; Wu, D.; Ban, X.; Wu, N.; Dai, H.-n.; and
Wang, H. 2022. Continuous-Time Prediction of Industrial
Paste Thickener System With Differential ODE-Net. IEEE/-
CAA Journal of Automatica Sinica, 9(4): 686—698.

