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Abstract

Difference-of-Convex (DC) minimization, referring to the
problem of minimizing the difference of two convex func-
tions, has been found rich applications in statistical learning
and studied extensively for decades. However, existing meth-
ods are primarily based on multi-stage convex relaxation, only
leading to weak optimality of critical points. This paper pro-
poses a coordinate descent method for minimizing a class of
DC functions based on sequential nonconvex approximation.
Our approach iteratively solves a nonconvex one-dimensional
subproblem globally, and it is guaranteed to converge to a
coordinate-wise stationary point. We prove that this new opti-
mality condition is always stronger than the standard critical
point condition and directional point condition under a mild
locally bounded nonconvexity assumption. For comparisons,
we also include a naive variant of coordinate descent meth-
ods based on sequential convex approximation in our study.
When the objective function satisfies a globally bounded non-
convexity assumption and Luo-Tseng error bound assumption,
coordinate descent methods achieve Q-linear convergence rate.
Also, for many applications of interest, we show that the non-
convex one-dimensional subproblem can be computed exactly
and efficiently using a breakpoint searching method. Finally,
we have conducted extensive experiments on several statistical
learning tasks to show the superiority of our approach.

1 Introduction
This paper mainly focuses on the following DC minimization
problem (‘,’ means define):

x̄ ∈ arg min
x∈Rn

F (x) , f(x) + h(x)− g(x). (1)

Throughout this paper, we make the following assumptions
on Problem (1). (i) f(·) is convex and continuously differ-
entiable, and its gradient is coordinate-wise Lipschitz con-
tinuous with constant ci ≥ 0 that (Nesterov 2012; Beck and
Tetruashvili 2013):

f(x + ηei) ≤ f(x) + 〈∇f(x), ηei) +
ci
2
‖ηei‖22 (2)

∀x, η, i = 1, ..., n. Here c ∈ Rn, and ei ∈ Rn is an indicator
vector with one on the i-th entry and zero everywhere else.
(ii) h(·) is convex and coordinate-wise separable with h(x) =
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∑n
i=1 hi(xi). Typical examples of h(x) include the bound

constrained function and the `1 norm function. (iii) g(·) is
convex and its associated proximal operator:

min
η∈R

p(η) ,
a

2
η2 + bη + hi(x + ηei)− g(x + ηei), (3)

can be computed exactly and efficiently for given a ∈ R+,
b ∈ R and i ∈ {1, ..., n}. We remark that g(·) is nei-
ther necessarily differentiable nor coordinate-wise separa-
ble, and typical examples of g(x) are the `p norm func-
tion g(x) = ‖Ax‖p with p = {1, 2,∞}, the RELU func-
tion g(x) = ‖max(0,Ax)‖1, and the top-s norm function
g(x) =

∑s
i=1 |x[i]|. Here A ∈ Rm×n is an arbitrary given

matrix and x[i] denotes the ith largest component of x in
magnitude. (iv) F (x) only takes finite values.

DC programming. DC Programming/minimization is an
extension of convex maximization over a convex set (Tao
and An 1997; Thi and Dinh 2018). It is closely related to
the concave-convex procedure and alternating minimization
in the literature. The class of DC functions is very broad,
and it includes many important classes of nonconvex func-
tions, such as twice continuously differentiable function on
compact convex set and multivariate polynomial functions
(Ahmadi and Hall 2018). DC programs have been mainly
considered in global optimization and some algorithms have
been proposed to find global solutions to such problem (Horst
and Thoai 1999; Horst and Tuy 2013). Recent developments
on DC programming primarily focus on designing local solu-
tion methods for some specific DC programming problems.
For example, proximal bundle DC methods (Joki et al. 2017),
double bundle DC methods (Joki et al. 2018), inertial prox-
imal methods (Maingé and Moudafi 2008), and enhanced
proximal methods (Lu and Zhou 2019) have been proposed.
DC programming has been applied to solve a variety of statis-
tical learning tasks, such as sparse PCA (Sriperumbudur, Tor-
res, and Lanckriet 2007; Beck and Teboulle 2021), variable
selection (Gotoh, Takeda, and Tono 2018; Gong et al. 2013),
single source localization (Beck and Hallak 2020), positive-
unlabeled learning (Kiryo et al. 2017; Xu et al. 2019), and
deep Boltzmann machines (Nitanda and Suzuki 2017).

Coordinate descent methods. Coordinate Descent (CD)
is a popular method for solving large-scale optimization prob-
lems. Advantages of this method are that compared with the
full gradient descent method, it enjoys faster convergence
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(Tseng and Yun 2009; Xu and Yin 2013), avoids tricky pa-
rameters tuning, and allows for easy parallelization (Liu et al.
2015). It has been well studied for convex optimization such
as Lasso (Tseng and Yun 2009), support vector machines
(Hsieh et al. 2008), nonnegative matrix factorization (Hsieh
and Dhillon 2011), and the PageRank problem (Nesterov
2012). Its convergence and worst-case complexity are well
investigated for different coordinate selection rules such as
cyclic rule (Beck and Tetruashvili 2013), greedy rule (Hsieh
and Dhillon 2011), and random rule (Lu and Xiao 2015;
Richtárik and Takávc 2014). It has been extended to solve
many nonconvex problems such as penalized regression (Bre-
heny and Huang 2011; Deng and Lan 2020), eigenvalue com-
plementarity problem (Patrascu and Necoara 2015), `0 norm
minimization (Beck and Eldar 2013; Yuan, Shen, and Zheng
2020), resource allocation problem (Necoara 2013), leading
eigenvector computation (Li, Lu, and Wang 2019), and sparse
phase retrieval (Shechtman, Beck, and Eldar 2014).

Iterative majorization minimization. Iterative majoriza-
tion / upper-bound minimization is becoming a standard prin-
ciple in developing nonlinear optimization algorithms. Many
surrogate functions such as Lipschitz gradient surrogate, prox-
imal gradient surrogate, DC programming surrogate, varia-
tional surrogate, saddle point surrogate, Jensen surrogate,
quadratic surrogate, cubic surrogate have been considered,
see (Mairal 2013; Razaviyayn, Hong, and Luo 2013). Re-
cent work extends this principle to the coordinate update,
incremental update, and stochastic update settings. However,
all the previous methods are mainly based on multiple-stage
convex relaxation, only leading to weak optimality of critical
points. In contrast, our method makes good use of sequential
nonconvex approximation to find stronger stationary points.
Thanks to the coordinate update strategy, we can solve the
one-dimensional nonconvex subproblem globally by using
a novel exhaustive breakpoint searching method even when
g(·) is non-separable and non-differentiable.

Theory for nonconvex optimization. We pay specific at-
tention to two contrasting approaches on the theory for non-
convex optimization. (i) Strong optimality. The first approach
is to achieve stronger optimality guarantees for nonconvex
problems. For smooth optimization, canonical gradient meth-
ods only converge to a first-order stationary point, recent
works aim at finding a second-order stationary point (Jin et al.
2017). For cardinality minimization, the work of (Beck and
Eldar 2013; Yuan, Shen, and Zheng 2020) introduces a new
optimality condition of (block) coordinate stationary point
which is stronger than that of the Lipschitz stationary point
(Yuan, Li, and Zhang 2017). (ii) Strong convergence. The
second approach is to provide convergence analysis for non-
convex problems. The work of (Jin et al. 2017) establishes
a global convergence rate for nonconvex matrix factoriza-
tion using a regularity condition. The work of (Attouch et al.
2010) establishes the convergence rate for general nonsmooth
problems by imposing Kurdyka-Łojasiewicz inequality as-
sumption of the objective function. The work of (Dong and
Tao 2021; Yue, Zhou, and So 2019) establish linear conver-
gence rates under the Luo-Tseng error bound assumption.
Inspired by these works, we prove that the proposed CD
method has strong optimality guarantees and convergence

guarantees.
Contributions. The contributions of this paper are as fol-

lows: (i) We propose a new CD method for minimizing D-
C functions based on sequential nonconvex approximation
(See Section 4). (ii) We prove that our method converge to
a coordinate-wise stationary point, which is always stronger
than the optimality of standard critical points and directional
points when the objective function satisfies a locally bound-
ed nonconvexity assumption. When the objective function
satisfies a globally bounded nonconvexity assumption and
Luo-Tseng error bound assumption, CD methods achieve
Q-linear convergence rate (See Section 5). (iii) We show
that, for many applications of interest, the one-dimensional
subproblem can be computed exactly and efficiently using a
breakpoint searching method (See Section 6). (iv) We have
conducted extensive experiments on some statistical learning
tasks to show the superiority of our approach (See Section
7).

Notations. Vectors are denoted by boldface lowercase let-
ters, and matrices by boldface uppercase letters. The Eu-
clidean inner product between x and y is denoted by 〈x,y〉
or xTy. We denote ‖x‖ = ‖x‖2 =

√
〈x,x〉. xi denotes the

i-th element of the vector x. E[·] represents the expectation of
a random variable. � and ÷ denote the element-wise multi-
plication and division between two vectors, respectively. For
any extended real-valued function h : Rn → (−∞,+∞],
the set of all subgradients of h at x is defined as ∂h(x) =
{g ∈ Rn : h(y) ≥ h(x)+〈g,y−x〉}, the conjugate of h(x)

is defined as h∗(x) , maxy{〈y,x〉 − h(y)}, and (∂h(x))i
denotes the subgradient of h(x) at x for the i-th componnet.
diag(c) is a diagonal matrix with c as the main diagonal en-
tries. We define ‖d‖2c =

∑
i cid

2
i . sign(·) is the signum func-

tion. I is the identity matrix of suitable size. The directional
derivative of F (·) at a point x in its domain along a direction
d is defined as: F ′(x;d) , limt↓0

1
t (F (x + td) − F (x)).

dist(Ω,Ω′) , infv∈Ω,v′∈Ω′ ‖v − v′‖ denotes the distance
between two sets.

2 Motivating Applications
A number of statistical learning models can be formulated as
Problem (1), which we present some instances below.
• Application I: `p Norm Generalized Eigenvalue Prob-
lem. Given arbitrary data matrices G ∈ Rm×n and Q ∈
Rn×n with Q � 0, it aims at solving the following problem:

v̄ ∈ arg max
v
‖Gv‖p, s.t. vTQv = 1. (4)

with p ≥ 1. Using the Lagrangian dual, we have the following
equivalent unconstrained problem:

x̄ ∈ arg min
x

α
2x

TQx− ‖Gx‖p, (5)

for any given α > 0. The optimal solution to Problem (4) can
be recovered as v̄ = ±x̄ · (x̄TQx̄)−

1
2 . Refer to the appendix

for a detailed discussion.
• Application II: Approximate Sparse/Binary Optimiza-
tion. Given a channel matrix G ∈ Rm×n, a structured signal
x is transmitted through a communication channel, and re-
ceived as y = Gx + v, where v is the Gaussian noise. If x
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has s-sparse or binary structure, one can recover x by solv-
ing the following optimization problem (Gotoh, Takeda, and
Tono 2018; Jr. 1972):

minx
1
2‖Gx− y‖22, s.t. ‖x‖0 ≤ s,

or minx
1
2‖Gx− y‖22, s.t. x ∈ {−1 + 1}n.

Here, ‖ · ‖0 is the number of non-zero components. Using the
equivalent variational reformulation of the `0 (pseudo) norm
‖x‖0 ≤ s ⇔ ‖x‖1 =

∑s
i=1 |x[i]| and the binary constraint

{−1,+1}n ⇔ {x| − 1 ≤ x ≤ 1, ‖x‖22 = n}, one can
solve the following approximate sparse/binary optimization
problem (Gotoh, Takeda, and Tono 2018; Yuan and Ghanem
2017, 2016):

minx
1
2‖Gx− y‖22 + ρ(‖x‖1 −

∑s
i=1 |x[i]|) (6)

min‖x‖∞≤1
1
2‖Gx− y‖22 + ρ(

√
n− ‖x‖). (7)

• Application III: Generalized Linear Regression. Given
a sensing matrix G ∈ Rm×n and measurements y ∈ Rm, it
deals with the problem of recovering a signal x by solv-
ing x̄ = arg minx∈Rn

1
2‖σ(Gx) − y‖22. When σ(z) =

max(0, z) or σ(z) = |z|, this problem reduces to the one-
hidden-layer ReLU networks (Zhang et al. 2019) or the
amplitude-base phase retrieval problem (Candès, Li, and
Soltanolkotabi 2015). When y ≥ 0, we have the following
equivalent DC program:

min
x∈Rn

1
2‖σ(Gx)‖22 − 〈1, σ(diag(y)G)x)〉+ 1

2‖y‖
2
2. (8)

3 Related Work
We now present some related DC minimization algorithms.

(i) Multi-Stage Convex Relaxation (MSCR)(Zhang 2010;
Bi, Liu, and Pan 2014). It solves Problem (1) by generating a
sequence {xt} as:

xt+1 ∈ arg min
x

f(x) + h(x)− 〈x− xt, gt〉 (9)

where gt ∈ ∂g(xt). Note that Problem (9) is convex and
can be solved via standard proximal gradient method. The
computational cost of MSCR could be expensive for large-
scale problems, since it is K times that of solving Problem
(9) with K being the number of outer iterations.

(ii) Proximal DC algorithm (PDCA) (Gotoh, Takeda,
and Tono 2018). To alleviate the computational issue of
solving Problem (9), PDCA exploits the structure of f(·)
and solves Problem (1) by generating a sequence {xt} as:
xt+1 = arg minx Q(x,xt) + h(x) − 〈x − xt, gt〉, where
Q(x,xt) , f(xt) + 〈∇f(xt), x− xt〉+ L

2 ‖x− xt‖22, and
L is the Lipschitz constant of∇f(·).

(iii) Toland’s duality method (Toland 1979; Beck and
Teboulle 2021). Assuming g(x) has the following structure
g(x) = ḡ(Ax) = maxy{〈Ax,y〉 − ḡ∗(y)}. This approach
rewrites Problem (1) as the following equivalent problem
using the conjugate of g(x): minx miny f(x) + h(x) −
〈y,Ax〉 + ḡ∗(y). Exchanging the order of minimization
yields the equivalent problem: miny minx f(x) + h(x) −
〈y,Ax〉 + ḡ∗(y). The set of minimizers of the inner prob-
lem with respect to x is ∂h∗(ATy) +∇f∗(ATy), and the

minimal value is −f∗(ATy)− h∗(ATy) + ḡ∗(y). We have
the Toland-dual problem which is also a DC program:

min
y
ḡ∗(y)− f∗(ATy)− h∗(ATy) (10)

This method is only applicable when the minimization prob-
lem with respect to x is simple so that it has an analytical
solution. Toland’s duality method could be useful if one of
the subproblems is easier to solve than the other.

(iv) Subgradient descent method (SubGrad). It uses the
iteration xt+1 = P(xt − ηtgt), where gt ∈ ∂F (xt), ηt
is the step size, and P is the projection operation on some
convex set. This method has received much attention recently
due to its simplicity (Zhang et al. 2019; Davis et al. 2018;
Davis and Grimmer 2019; Li et al. 2021).

4 Coordinate Descent Methods for DC
Minimization

This section presents a new Coordinate Descent (CD) method
for solving Problem (1), which is based on Sequential Non-
Convex Approximation (SNCA). For comparisons, we also
include a naive variant of CD methods based on Sequential
Convex Approximation (SCA) in our study. These two meth-
ods are denoted as CD-SNCA and CD-SCA, respectively.

Coordinate descent is an iterative algorithm that sequen-
tially minimizes the objective function along coordinate di-
rections. In the t-th iteration, we minimize F (·) with respect
to the it variable while keeping the remaining (n− 1) vari-
ables {xtj}j 6=it fixed. This is equivalent to performing the
following one-dimensional search along the it-th coordinate:
η̄t ∈ arg minη∈R f(xt+ηeit)+h(xt+ηeit)−g(xt+ηeit).
Then xt is updated via: xt+1 = xt+ η̄teit . However, the one-
dimensional problem above could be still hard to solve when
f(·) and/or g(·) is complicated. One can consider replacing
f(·) and g(·) with their majorization function:

f(xt + ηeit) ≤ Sit(xt, η)

with Si(x, η) , f(x) + 〈∇f(x), ηei〉+
ci
2
η2, (11)

− g(xt + ηeit) ≤ Git(xt, η)

with Gi(x, η) , −g(x)− 〈∂g(x), (x + ηei)− x〉. (12)

I Choosing the Majorization Function
1. Sequential NonConvex Approximation Strategy. If we

replace f(xt + ηeit) with its upper bound Sit(xt, η) as
in (11) while keep the remaining two terms unchanged,
we have the resulting subproblem as in (13), which is a
nonconvex problem. It reduces to the proximal operator
computation as in (3) with a = cit + θ and b = ∇itf(xt).
Setting the subgradient with respect to η of the objective
function in (13) to zero, we have the following necessary
but not sufficient optimality condition for (13):

0 ∈ [∇f(xt) + ∂h(xt+1)− ∂g(xt+1)]it + (cit + θ)η̄t.

2. Sequential Convex Approximation Strategy. If we re-
place f(xt+ηeit) and−g(xt+ηeit) with their respective
upper bounds Sit(xt, η) and Git(xt, η) as in (11) and (12),
while keep the term h(xt + ηeit) unchanged, we have
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Algorithm 1: Coordinate Descent Methods for Minimiz-
ing DC functions using SNCA or SCA strategy.

Input: an initial feasible solution x0, θ > 0. Set t = 0.
while not converge do

(S1) Use some strategy to find a coordinate it ∈
{1, ..., n} for the t-th iteration.
(S2) Solve the following nonconvex or convex subprob-
lem globally and exactly.
• Option I: Sequential NonConvex Approximation (S-
NCA) strategy.

η̄t ∈ M̄it(x
t) , arg min

η
Mit(x

t, η) (13)

withMi(x, η) , Si(x, η) + hi(x + ηei)

−g(x + ηei) + θ
2‖(x + ηei)− x‖22

• Option II: Sequential Convex Approximation (SCA)
strategy.

η̄t ∈ P̄it(xt) , arg min
η
Pit(xt, η) (14)

Pi(x, η) , Si(x, η) + hi(x + ηei)

+Gi(x, η) + θ
2‖(x + ηei)− x‖22

(S3) xt+1 = xt + η̄t · eit (⇔ xt+1
it = xtit + η̄t)

(S4) Increment t by 1.
end while

the resulting subproblem as in (14), which is a convex
problem. We have the following necessary and sufficient
optimality condition for (14):

0 ∈ [∇f(xt) + ∂h(xt+1)− ∂g(xt)]it + (cit + θ)η̄t.

ISelecting the Coordinate to Update
There are several fashions to decide which coordinate

to update in the literature (Tseng and Yun 2009). (i) Ran-
dom rule. it is randomly selected from {1, ..., n} with e-
qual probability. (ii) Cyclic rule. it takes all coordinates in
cyclic order 1 → 2 → ... → n → 1. (iii) Greedy rule.
Assume that ∇f(x) is Lipschitz continuous with constan-
t L. The index it is chosen as it = arg maxj |dtj | where
dt = arg mind h(xt+d)+L

2 ‖d‖
2
2+〈∇f(xt)−∂g(xt)),d〉.

Note that dt = 0 implies that xt is a critical point.
We summarize CD-SNCA and CD-SCA in Algorithm 1.
Remarks. (i) We use a proximal term for the subproblems
in (13) and (14) with θ being the proximal point parameter.
This is to guarantee sufficient descent condition and global
convergence for Algorithm 1. As can be seen in Theorem
5.10 and Theorem 5.12, the parameter θ is critical for CD-
SNCA. (ii) Problem (13) can be viewed as globally solving
the following nonconvex problem which has a bilinear struc-
ture: (η̄t,y) = arg minη,y Sit(xt, η)+ θ

2η
2+h(xt+ηeit)−

〈y,xt+ηeit〉+g∗(y). (iii) While we apply CD to the primal,
one may apply to the dual as in Problem (10). (iv) The non-
convex majorization function used in CD-SNCA is always
a lower bound of the convex majorization function used in
CD-SCA, i.e.,Mi(x, η) ≤ Pi(x, η), ∀i,x, η.

5 Theoretical Analysis
This section provides a novel optimality analysis and a novel
convergence analysis for Algorithm 1. Due to space limit, all
proofs are placed in the appendix.

We introduce the following useful definition.

Definition 5.1. (Globally or Locally Bounded Nonconvex-
ity) (a) A function z(x) is called to be globally ρ-bounded
nonconvex if: ∀x,y, z(x) ≤ z(y) + 〈x − y, ∂z(x)〉 +
ρ
2‖x − y‖22 with ρ < +∞. (b) In particular, z(x) is locally
ρ-bounded nonconvex if x is restricted to some point ẍ with
x = ẍ.

Remarks. (i) Globally ρ-bounded nonconvexity of z(x) is
equivalent to z(x) + ρ

2‖x‖
2
2 is convex, and this notation is

also referred as semi-convex, approximate convex, or weakly-
convex in the literature (cf. (Böhm and Wright 2021; Davis
et al. 2018; Li et al. 2021)). (ii) Many nonconvex functions
in the robust statistics literature are globally ρ-bounded non-
convex, examples of which includes the minimax concave
penalty, the fractional penalty, the smoothly clipped absolute
deviation, and the Cauchy loss (c.f. (Böhm and Wright 2021)).
(iii) Any globally ρ-bounded nonconvex function z(x) can be
rewritten as a DC function that z(x) = ρ

2‖x‖
2−g(x), where

g(x) = ρ
2‖x‖

2 − z(x) is convex and (−g(x)) is globally
(2ρ)-bounded nonconvex.

Globally bounded nonconvexity could be a strong defini-
tion; one may use a weaker definition of locally bounded
nonconvexity instead. The following lemma shows that some
nonconvex functions are locally bounded nonconvex.

Lemma 5.2. The function z(x) , −‖x‖p with p ∈ [1,∞)
is concave and locally ρ-bounded nonconvex with ρ < +∞.

Remarks. By Lemma 5.2, we have that the functions
z(x) = −‖Gx‖p in (5) and z(x) = −ρ‖x‖ in (7) are lo-
cally ρ-bounded nonconvex. Using similar strategies, one
can conclude that the functions z(x) = −

∑s
i=1 |x[i]| and

z(x) = −〈1, σ(diag(y)G)x)〉 as in (6) and (8) are locally
ρ-bounded nonconvex.

We assume that the random-coordinate selection rule is
used. After t iterations, Algorithm 1 generates a random
output xt, which depends on the observed realization of the
random variable: ξt−1 , {i0, i1, ..., it−1}.

5.1 Optimality Analysis
We now provide an optimality analysis of our method. S-
ince the coordinate-wise optimality condition is novel in this
paper, we clarify its relations with existing optimality condi-
tions formally.

Definition 5.3. (Critical Point) A solution x̌ is called a criti-
cal point if (Toland 1979): 0 ∈ ∇f(x̌) + ∂h(x̌)− ∂g(x̌).

Remarks. (i) The expression above is equivalent to (f(x̌) +
∂h(x̌)) ∩ ∂g(x̌) 6= ∅. The sub-differential is always non-
empty on convex functions; that is why we assume that F (·)
can be repressed as the difference of two convex functions.
(ii) Existing methods such as MSCR, PDCA, and SubGrad
as shown in Section (3) are only guaranteed to find critical
points of Problem (1).
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Definition 5.4. (Directional Point) A solution x̀ is called a
directional point if (Pang, Razaviyayn, and Alvarado 2017):
F ′(x̀;y − x̀) ≥ 0, ∀y ∈ dom(F ) , {x : |F (x)| < +∞}.
Remarks. The work of (Pang, Razaviyayn, and Alvarado
2017) characterizes different types of stationary points, and
proposes an enhanced DC algorithm that subsequently con-
verges to a directional point. However, they only consider the
case g(x) = maxi∈I gi(x) where each gi(x) is continuously
differentiable and convex and I is a finite index set.
Definition 5.5. (Coordinate-Wise Stationary Point) A so-
lution ẍ is called a coordinate-wise stationary point if the
following holds: 0 ∈ arg minηMi(ẍ, η) for all i = 1, ..., n,
whereMi(x, η) , f(x) + 〈∇f(x), ηei〉+ ci

2 η
2 + hi(x +

ηei)− g(x + ηei) + θ
2η

2, and θ ≥ 0 is a constant.
Remarks. (i) Coordinate-wise stationary point states that if
we minimize the majorization function Mi(x, η), we can
not improve the objective function value forMi(x, η) for
all i ∈ {1, ..., n}. (ii) For any coordinate-wise stationary
point ẍ, we have the following necessary but not sufficient
condition: ∀i ∈ {1, ..., n}, 0 ∈ ∂Mi(ẍ, η) , (ci + θ)η +
[∇f(ẍ) + ∂h(ẍ + ηei)− ∂h(ẍ + ηei)]i with η = 0, which
coincides with the critical point condition. Therefore, any
coordinate-wise stationary point is a critical point.

The following lemma reveals a quadratic growth condition
for any coordinate-wise stationary point.
Lemma 5.6. Let ẍ be any coordinate-wise stationary point.
Assume that z(x) , −g(x) is locally ρ-bounded noncon-
vex at the point ẍ. We have: ∀d, F (ẍ) − F (ẍ + d) ≤
1
2‖d‖

2
(c+θ+ρ).

Remarks. Recall that a solution ẋ is said to be a local minima
if F (ẋ) ≤ F (ẋ + d) for a sufficiently small constant δ that
‖d‖ ≤ δ. The coordinate-wise optimality condition does not
have any restriction on d with ‖d‖ ≤ +∞. Thus, neither the
optimality condition of coordinate-wise stationary point nor
that of the local minima is stronger than the other.

We use x̌, x̀, ẍ, and x̄ to denote any critical point, direction-
al point, coordinate-wise stationary point, and optimal point,
respectively. The following theorem establishes the relations
between different types of stationary points list above.
Theorem 5.7. (Optimality Hierarchy between the Optimal-
ity Conditions). Assume that the assumption made in Lemma

5.6 holds, we have: {x̄}
(a)
⊆ {ẍ}

(b)
⊆ {x̀}

(c)
⊆ {x̌}.

Remarks. (i) The coordinate-wise optimality condition is
stronger than the critical point condition (Gotoh, Takeda, and
Tono 2018; Zhang 2010; Bi, Liu, and Pan 2014) and the direc-
tional point condition (Pang, Razaviyayn, and Alvarado 2017)
when the function (−g(x)) is locally ρ-bounded nonconvex.
(ii) Our optimality analysis can be also applied to the equiv-
alent dual problem which is also a DC program as in (10).
(iii) We explain the optimality of coordinate-wise stationary
point is stronger than that of previous definitions using the
following one-dimensional example: minx

1
2 (x− 1)2 − 3|x|.

This problem contains three critical points {−2, 0, 4}, two
directional points / local minima {−2, 4}, and a unique
coordinate-wise stationary point {4}. This unique coordinate-
wise stationary point can be found using a clever breakpoint

Critical Points

Coordinate

Coordinate-Wise Points

Directional Points

Optimal Points

-5 0 5 10
-8

-6

-4

-2

0

2

4

Figure 1: Left: optimality hierarchy. Right: one dimensional
example: minx

1
2 (x− 1)2 − 3|x|.

searching method (discussed later in Section 6). Figure 1
demonstrates the optimality hierarchy between different op-
timality conditions and the geometric interpretation for this
one-dimensional example.

5.2 Convergence Analysis
We provide a convergence analysis for CD-SNCA and CD-
SCA. First, we define the approximate critical point and ap-
proximate coordinate-wise stationary point as follows.
Definition 5.8. (Approximate Critical Point) Given any con-
stant ε > 0, a point x̌ is called a ε-approximate critical point
if: dist(∇f(x̌), ∂g(x̌)− ∂h(x̌))2 ≤ ε.
Definition 5.9. (Approximate Coordinate-Wise Station-
ary Point) Given any constant ε > 0, a point ẍ is
called a ε-approximate coordinate-wise stationary point if:
1
n

∑n
i=1 dist(0, arg minηMi(ẍ, η))2 ≤ ε, whereMi(x, η)

is defined in Definition 5.5.
Theorem 5.10. We have the following results. (a) For CD-
SNCA, it holds that F (xt+1)− F (xt) ≤ − θ2‖x

t+1 − xt‖2.
Algorithm 1 finds an ε-approximate coordinate-wise sta-
tionary point of Problem (1) in at most T iterations in
the sense of expectation, where T ≤ d 2n(F (x0)−F (x̄))

θε e =

O(ε−1). (b) For CD-SCA, it holds that F (xt+1)− F (xt) ≤
−β2 ‖x

t+1 − xt‖2 with β , min(c) + 2θ. Algorithm 1
finds an ε-approximate critical point of Problem (1) in at
most T iterations in the sense of expectation, where T ≤
d 2n(F (x0)−F (x̄))

βε e = O(ε−1).

Remarks. While existing methods only find critical points or
directional points of Problem (1), CD-SNCA is guaranteed
to find a coordinate-wise stationary point which has stronger
optimality guarantees (See Theorem 5.7).

To achieve stronger convergence result for Algorithm 1,
we make the following Luo-Tseng error bound assumption,
which has been extensively used in all aspects of mathemat-
ical optimization (cf. (Dong and Tao 2021; Yue, Zhou, and
So 2019)).
Assumption 5.11. (Luo-Tseng Error Bound (Luo and T-
seng 1993; Tseng and Yun 2009)) We define a residual
function as R(x) = 1

n

∑n
i=1 |dist(0,M̄i(x))| or R(x) =

1
n

∑n
i=1 |dist(0, P̄i(x))|, where M̄i(x) and P̄i(x) are re-

spectively defined in (13) and (14). For any ς ≥ minx F (x),
there exist scalars δ > 0 and % > 0 such that:

∀x, dist(x,X ) ≤ δR(x), whenever F (x) ≤ ς,R(x) ≤ %.
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Here, X is the set of stationary points satisfyingR(x) = 0.

We have the following theorems regarding to the conver-
gence rate of CD-SNCA and CD-SCA.

Theorem 5.12. (Convergence Rate for CD-SNCA). Let ẍ
be any coordinate-wise stationary point. We define q̈t ,
F (xt) − F (ẍ), r̈t , 1

2‖x
t − ẍ‖2c̄, c̄ , c + θ, ρ̄ = ρ

min(c̄) ,

γ , 1 + ρ
θ , and $ , 1 − ρ̄. Assume that z(x) , −g(x)

is globally ρ-bounded non-convex. (a) We have $E[r̈t+1] +
γE[q̈t+1] ≤ ($ + ρ̄

n )r̈t + (γ − 1
n )q̈t. (b) If θ is sufficiently

large such that $ ≥ 0,Mit(x
t, η) in (13) is convex w.r.t. η

for all t, and it holds that: E[q̈t+1] ≤ (
κ1− 1

n

κ1
)t+1q̈0, where

κ0 , max(c̄) δ
2

θ and κ1 , nκ0($ + ρ̄
n ) + γ.

Theorem 5.13. (Convergence Rate for CD-SCA). Let x̌ be
any critical point. We define q̌t , F (xt) − F (x̌), řt ,
1
2‖x

t − x̌‖2c̄, c̄ , c + θ, and ρ̄ = ρ
min(c̄) . Assume that

z(x) , −g(x) is globally ρ-bounded non-convex. (a) We
have E[řt+1] + E[q̌t+1] ≤ (1 + ρ̄

n )řt + (1 − 1
n )q̌t. (b) It

holds that: E[q̌t+1] ≤ (
κ2− 1

n

κ2
)t+1q̌0, where κ0 , max(c̄) δ

2

θ

and κ2 = nκ0(1 + ρ̄
n ) + 1.

Remarks. (i) Under the Luo-Tseng error bound assumption,
CD-SNCA (or CD-SCA) converges to the coordinate-wise
stationary point (or critical point) Q-linearly. (ii) Note that
the convergence rate κ1 of CD-SNCA and κ2 of CD-SCA
depend on the same coefficients κ0. When n is large, the
terms nκ0($ + ρ̄

n ) and nκ0(1 + ρ̄
n ) respectively dominate

the value of κ1 and κ2. If we choose 0 ≤ $ < 1 for CD-
SNCA, we have κ1 � κ2. Thus, the convergence rate of
CD-SNCA could be much faster than that of CD-SCA for
high-dimensional problems.

6 A Breakpoint Searching Method for
Proximal Operator Computation

This section presents a new breakpoint searching method to
solve Problem (3) exactly and efficiently for different h(·)
and g(·). This method first identifies all the possible critical
points / breakpoints Θ for minη∈R p(η) as in Problem (3),
and then picks the solution that leads to the lowest value as
the optimal solution. We denote A ∈ Rm×n be an arbitrary
matrix, and define g = Aei ∈ Rm,d = Ax ∈ Rm.

6.1 When g(y) = ‖Ay‖1 and hi(·) , 0

Consider the problem: minη
a
2η

2+bη−‖A(x+ηei)‖1. It can
be rewritten as: minη p(η) , a

2η
2 + bη−‖gη+d‖1. Setting

the gradient of p(·) to zero yields: 0 = aη + b− 〈sign(ηg +
d),g〉 = aη + b − 〈sign(η + d ÷ |g|),g〉, where we use:
∀ρ > 0, sign(x) = sign(ρx). We assume gi 6= 0. If this does
not hold and there exists gj = 0 for some j, then {gj ,dj}
can be removed since it does not affect the minimizer of
the problem. We define z , {+d1

g1
,−d1

g1
, ...,+dm

gm
,−dm

gm
} ∈

R2m×1, and assume z has been sorted in ascending order. The
domain p(η) can be divided into 2m+ 1 intervals: (−∞, z1),
(z1, z2),..., and (z2m,+∞). There are 2m + 1 breakpoints
η ∈ R(2m+1)×1. In each interval, the sign of (η+d÷|g|) can

be determined. Thus, the i-th breakpoints for the i-th interval
can be computed as ηi = (〈sign(η + d ÷ |g|),g〉 − b)/a.
Therefore, Problem (3) contains 2m + 1 breakpoints Θ =
{η1,η2, ...,η(2m+1)} for this example.

6.2 When g(y) =
∑s

i=1 |y[i]| and hi(y) , |yi|
Consider the problem: minη

a
2η

2+bη+|xi+η|−
∑s
i=1 |(x+

ηei)[i]|. Since the variable η only affects the value of xi,
we consider two cases for xi + η. (i) xi + η belongs to
the top-s subset. This problem reduces to minη

a
2η

2 + bη,
which contains one unique breakpoint: {−b/a}. (ii) xi + η
does not belong to the top-s subset. This problem reduces to
minη

a
2η

2 + bt+ |xi + η|, which contains three breakpoints
{−xi, (−1− b)/a, (1− b)/a}. Therefore, Problem (3) con-
tains 4 breakpoints Θ = {−b/a,−xi, (−1 − b)/a, (1 −
b)/a} for this example.

When we have found the breakpoint set Θ, we pick the
solution that results in the lowest value as the global optimal
solution η̄, i.e., η̄ = arg minη p(η), s.t. η ∈ Θ. Note that
the coordinate-wise separable function hi(·) does not bring
much difficulty for solving Problem (3).

7 Experiments
This section demonstrates the effectiveness and efficiency of
Algorithm 1 on the `p norm generalized eigenvalue problem.
For more experiment results, please refer to the full version
of this paper (Yuan 2023).

7.1 Experimental Settings
We consider the following four types of data sets for the
sensing/channel matrix G ∈ Rm×n. (i) ‘randn-m-n’: G =
randn(m,n). (ii) ‘e2006-m-n’: G = X. (iii) ‘randn-m-n-C’:
G = N (randn(m,n)). (iv) ‘e2006-m-n-C’: G = N (X).
Here, randn(m,n) is a function that returns a standard Gaus-
sian random matrix of sizem×n. X is generated by sampling
from the original real-world data set ‘e2006-tfidf’. N (G) is
defined as: [N (G)]I = 100 ·GI , [N (G)]Ī = GĪ , where I
is a random subset of {1, ...,mn}, Ī = {1, ...,mn} \ I , and
|I| = 0.1 ·mn. The last two types of data sets are designed
to verify the robustness of the algorithms.

All methods are implemented in MATLAB on an Intel 2.6
GHz CPU with 32 GB RAM. Only our breakpoint searching
procedure is developed in C and wrapped into the MATLAB
code, since it requires elementwise loops that are less efficient
in native MATLAB. We keep a record of the relative changes
of the objective by zt = [F (xt)− F (xt+1)]/F (xt), and let
all algorithms run up to T seconds and stop them at iteration
t if mean([zt−min(t,υ)+1, zt−min(t,υ)+2, ..., zt]) ≤ ε. The de-
fault value (θ, ε, υ, T ) = (10−6, 10−10, 500, 60) is used. All
methods are executed 10 times and the average performance
is reported. Some Matlab code can be found in the authors’
research webpages.

7.2 `p Norm Generalized Eigenvalue Problem
We consider Problem (4) with p = 1 and Q = I. We have
the following problem: minx

α
2 ‖x‖

2
2 − ‖Gx‖1. It is consis-

tent with Problem (1) with f(x) , α
2 ‖x‖

2
2, h(x) , 0, and
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MSCR PDCA T-DUAL CD-SCA CD-SNCA
randn-256-1024 -1.329 ± 0.038 -1.329 ± 0.038 -1.329 ± 0.038 -1.426 ± 0.056 -1.447 ± 0.053
randn-256-2048 -1.132 ± 0.021 -1.132 ± 0.021 -1.132 ± 0.021 -1.192 ± 0.019 -1.202 ± 0.016
randn-1024-256 -5.751 ± 0.163 -5.751 ± 0.163 -5.664 ± 0.173 -5.755 ± 0.108 -5.817 ± 0.129
randn-2048-256 -9.364 ± 0.183 -9.364 ± 0.183 -9.161 ± 0.101 -9.405 ± 0.182 -9.408 ± 0.164
e2006-256-1024 -28.031 ± 37.894 -28.031 ± 37.894 -27.996 ± 37.912 -27.880 ± 37.980 -28.167 ± 37.826
e2006-256-2048 -22.282 ± 24.007 -22.282 ± 24.007 -22.282 ± 24.007 -22.113 ± 23.941 -22.448 ± 23.908
e2006-1024-256 -43.516 ± 77.232 -43.516 ± 77.232 -43.364 ± 77.265 -43.283 ± 77.297 -44.269 ± 76.977
e2006-2048-256 -44.705 ± 47.806 -44.705 ± 47.806 -44.705 ± 47.806 -44.633 ± 47.789 -45.176 ± 47.493

randn-256-1024-C -1.332 ± 0.019 -1.332 ± 0.019 -1.332 ± 0.019 -1.417 ± 0.027 -1.444 ± 0.029
randn-256-2048-C -1.161 ± 0.024 -1.161 ± 0.024 -1.161 ± 0.024 -1.212 ± 0.022 -1.219 ± 0.023
randn-1024-256-C -5.650 ± 0.141 -5.650 ± 0.141 -5.591 ± 0.145 -5.716 ± 0.159 -5.808 ± 0.134
randn-2048-256-C -9.236 ± 0.125 -9.236 ± 0.125 -9.067 ± 0.137 -9.243 ± 0.145 -9.377 ± 0.233
e2006-256-1024-C -4.841 ± 6.410 -4.841 ± 6.410 -4.840 ± 6.410 -4.837 ± 6.411 -5.027 ± 6.363
e2006-256-2048-C -4.297 ± 2.825 -4.297 ± 2.825 -4.297 ± 2.823 -4.259 ± 2.827 -4.394 ± 2.814
e2006-1024-256-C -6.469 ± 3.663 -6.469 ± 3.663 -6.469 ± 3.663 -6.470 ± 3.663 -6.881 ± 3.987
e2006-2048-256-C -31.291 ± 60.597 -31.291 ± 60.597 -31.291 ± 60.597 -31.284 ± 60.599 -32.026 ± 60.393

Table 1: Comparisons of objective values of all the methods for solving the `1 norm PCA problem. The best results are bolded.
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Figure 2: The convergence curve of the compared methods for solving the `p norm generalized eigenvalue problem on different
data sets.

g(x) , ‖Gx‖1. The subgradient of g(x) at xt can be com-
puted as gt , GT sign(Gxt). ∇f(x) is L-Lipschitz with
L = 1 and coordinate-wise Lipschitz with c = 1. We set
α = 1.

We compare with the following methods. (i) Multi-Stage
Convex Relaxation (MSCR). It generates the new iter-
ate using: xt+1 = arg minx f(x) − 〈x − xt,gt〉. (ii)
Toland’s dual method (T-DUAL). It rewrite the problem as:
min−1≤y≤1 minx f(x) − 〈Gx,y〉. Setting the gradient of
x to zero, we have: αx −GTy = 0, leading to the follow-
ing dual problem: min−1≤y≤1− 1

2αy
TGGTy. Toland’s du-

al method uses the iteration: yt+1 = sign(GGTyt), and
recovers the primal solution via x = 1

αG
Ty. Note that

the method in (Kim and Klabjan 2019) is essentially the
Toland’s duality method and they consider a constrained
problem: min‖x‖=1−‖Gx‖1. (iii) Subgradient method (Sub-
Grad). It generates the new iterate via: xt+1 = xt − 0.1

t ·
(∇f(xt) − gt). (iv) CD-SCA solves a convex problem:
η̄t = arg minη

ci+θ
2 η2 + (∇itf(xt) − gtit)η and update

xt via xt+1
it = xtit + η̄t. (v) CD-SNCA computes the non-

convex proximal operator of `1 norm (see Section 6.1) as:
η̄t = arg minη

ci+θ
2 η2 +∇itf(xt)η − ‖G(x + ηei)‖1 and

update xt via xt+1
it = xtit + η̄t.

As can be seen from Table 1, the proposed method CD-

SNCA consistently gives the best performance. Such result-
s are not surprising since CD-SNCA is guaranteed to find
stronger stationary points than the other methods (while CD-
SNCA finds a coordinate-wise stationary point, all the other
methods only find critical points).

7.3 Computational Efficiency
Figure 2 shows the convergence curve for solving the `p norm
generalized eigenvalue problem. All methods take about 30
seconds to converge. CD-SNCA generally takes a little more
time to converge than the other methods. However, we argue
that the computational time is acceptable and pays off as
CD-SNCA generally achieves higher accuracy.

8 Conclusions
We present CD methods for solving DC functions using se-
quential nonconvex approximation and sequential convex
approximation. A novel optimality analysis and a novel con-
vergence analysis for the CD methods are provided. The
proposed CD-SNCA exploits specific structures of the DC
function to escape bad local minima and finds stronger sta-
tionary points. It has shown superior performance than other
existing methods both theoretically and experimentally.
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