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Abstract

Offline imitation learning (IL) promises the ability to learn
performant policies from pre-collected demonstrations with-
out interactions with the environment. However, imitating be-
haviors fully offline typically requires numerous expert data.
To tackle this issue, we study the setting where we have lim-
ited expert data and supplementary suboptimal data. In this
case, a well-known issue is the distribution shift between the
learned policy and the behavior policy that collects the of-
fline data. Prior works mitigate this issue by regularizing the
KL divergence between the stationary state-action distribu-
tions of the learned policy and the behavior policy. We ar-
gue that such constraints based on exact distribution matching
can be overly conservative and hamper policy learning, espe-
cially when the imperfect offline data is highly suboptimal.
To resolve this issue, we present RelaxDICE, which employs
an asymmetrically-relaxed f -divergence for explicit support
regularization. Specifically, instead of driving the learned pol-
icy to exactly match the behavior policy, we impose little
penalty whenever the density ratio between their stationary
state-action distributions is upper bounded by a constant.
Note that such formulation leads to a nested min-max opti-
mization problem, which causes instability in practice. Re-
laxDICE addresses this challenge by supporting a closed-
form solution for the inner maximization problem. Extensive
empirical study shows that our method significantly outper-
forms the best prior offline IL method in six standard contin-
uous control environments with over 30% performance gain
on average, across 22 settings where the imperfect dataset is
highly suboptimal.

Introduction
Imitation learning (IL) (Pomerleau 1988; Ho and Ermon
2016a; Ross, Gordon, and Bagnell 2011) studies the prob-
lem of programming agents directly with expert demon-
strations. However, successful IL usually demands a large
amount of optimal trajectories, and many adversarial IL
methods (Ho and Ermon 2016a; Fu, Luo, and Levine 2018;
Ke et al. 2020; Kostrikov et al. 2018) require online interac-
tions with the environment to get samples from intermediate
policies for policy improvement. Considering these limita-
tions, we focus on the setting of offline imitation learning
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with supplementary imperfect demonstrations (Kim et al.
2021), which holds the promise of addressing these chal-
lenges (i.e. no large collection of expert data and no online
interactions with the environment during training). Specif-
ically, we aim to learn a policy using a small amount of
expert demonstrations and a large collection of trajectories
with unknown level of optimality that are typically cheaper
to obtain.

As in prior offline reinforcement learning (RL) and of-
fline policy evaluation works, offline IL (Kim et al. 2021)
also has the distribution shift problem (Levine et al. 2020;
Kumar et al. 2019; Fujimoto, Meger, and Precup 2018): the
agent performs poorly during evaluation because the learned
policy deviates from the behavior policy used for collect-
ing the offline data. To mitigate this problem, prior works
based on distribution correction estimation (the “DICE”
family) (Nachum et al. 2019a,b; Lee et al. 2021; Kim et al.
2021; Kostrikov, Nachum, and Tompson 2020; Zhang et al.
2020; Zhang, Liu, and Whiteson 2020; Yang et al. 2020)
collectively use a distribution divergence measure (e.g. f -
divergence) to regularize the learned policy to be similar to
the behavior policy. However, such regularization schemes
based on exact distribution matching can be overly conserva-
tive. For example, in settings where the offline data is highly
suboptimal, such an approach will require careful tuning of
the regularization strength (denoted as α) in order to find
the delicate balance between policy optimization on limited
expert data and policy regularization to the behavior policy.
Otherwise, the resulting policy will either suffer from large
distribution shift because of small α or behave too similarly
to the suboptimal behavior policy due to large α. We argue
that a more appropriate regularization for offline imitation
learning with limited expert data and diverse supplementary
data is indispensable, which is the goal of this work.

Towards this end, we draw inspiration from domain adap-
tation theory (Wu et al. 2019a) and present RelaxDICE,
which employs an asymmetrically-relaxed f -divergence for
explicit support regularization instead of exact distribution
matching between the learned policy and the suboptimal be-
havior policy. On one hand, we still encourage the learned
policy to stay within the support of the pre-collected dataset
such that policy evaluation/improvement is stable and reli-
able. On the other hand, we will not drive the learned policy
to exactly match the behavior policy since the offline demon-
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Figure 1: Illustration of regularizations based on relaxed distribution alignment (left) and exact distribution matching (right).
The curves represent trajectories sampled from the expert policy (green), the behavior policy that collects the suboptimal data
(blue), and the learned policy (red and purple) under different kinds of regularization. Dashed lines represent the support of
these distributions.

strations have unknown level of optimality (see Figure 1 for
illustration). Different from (Wu, Tucker, and Nachum 2019;
Levine et al. 2020) which tried to directly regularize the
policies and observed little benefits in the context of offline
RL, we enforce such a regularization over stationary state-
action distributions to effectively reflect the diversity in both
states and actions (rather than enforce constraints only on
policies/action distributions). However, this leads to a nested
min-max optimization problem that causes instability during
training. We surprisingly found that our new formulation en-
joys a closed-form solution for the inner maximization prob-
lem, thus preserving the key advantage of previous state-of-
the-art DICE methods (Lee et al. 2021; Kim et al. 2021).
Furthermore, the stationary state-action distribution of the
suboptimal behavior policy can be potentially modified to be
closer to that of the expert policy, by leveraging an approxi-
mate density ratio obtained from expert and suboptimal data.
Thus we further propose RelaxDICE-DRC, an extension of
RelaxDICE by penalizing the relaxed f -divergence between
the stationary state-action distributions of the learned policy
and the density-ratio-corrected behavior policy. This method
also enjoys a desirable closed-form solution for the inner
maximization and a potential for better policy improvement.

We empirically evaluate our method on a variety of con-
tinuous control tasks using environments and datasets from
the offline RL benchmark D4RL (Fu et al. 2020). We con-
struct datasets where there are a small amount of expert
demonstrations and a large collection of imperfect demon-
strations with different levels of optimality following the
design choice in (Kim et al. 2021). More importantly, for
each environment, we design up to four different settings
that are much more challenging than the ones in (Kim et al.
2021), in the sense that the supplementary imperfect data
are highly suboptimal. Extensive experimental results show
that our method outperforms the most competitive prior of-
fline IL method across all 22 tasks by an average margin
over 30%. Furthermore, RelaxDICE is much more perfor-
mant and robust with respect to hyperparameter changes
than prior works (Kim et al. 2021) in our challenging set-
tings, demonstrating the superiority of our relaxed distribu-
tion matching scheme for offline imitation learning.

Background
Markov Decision Process. A Markov decision process
(MDP) is defined by M = ⟨S,A, T, r, p0, γ⟩, where S is

a set of states; A is a set of actions; T : S × A → ∆(S)
is the transition distribution and T (st+1|st, at) specifies the
probability of transitioning from state st to state st+1 by ex-
ecuting action at; p0 ∈ ∆(S) is the initial state distribution;
R : S ×A → R is the reward function; and γ ∈ [0, 1] is the
discount factor. A policy π : S → ∆(A) maps from states to
distributions over actions, which together with the MDP M,
induces a stationary state-action distribution dπ(s, a) (also
called occupancy measure):

dπ(s, a) = (1− γ)

∞∑
t=0

γtPr(st = s, at = a|s0 ∼ p0,

at ∼ π(·|st), st+1 ∼ T (·|st, at)).

Here 1−γ is a normalization factor such that the occupancy
measure is a normalized distribution over S × A. Because
of the one-to-one correspondence described in the following
theorem, a policy optimization problem can be equivalently
formulated as an occupancy measure optimization problem.
Theorem 1 ((Feinberg and Shwartz 2012; Syed, Bowling,
and Schapire 2008)). Suppose d satisfies the following Bell-
man flow constraints:∑

a

d(s, a) = (1− γ)p0(s) + γ
∑
s′,a′

T (s|s′, a′)d(s′, a′), ∀s.

and d(s, a) ≥ 0, ∀s, a. (1)

Define πd(a|s) := d(s,a)∑
a′ d(s,a′)

. Then d is the occupancy
measure for πd. Conversely if π is a policy such that d is
its occupancy measure, then π = πd and d satisfies Eq. (1).

The Bellman flow constraints in Eq. (1) essentially char-
acterize all possible occupancy measures consistent with the
MDP, such that they can be induced by some policies. There-
fore it is necessary to enforce these constraints when we de-
sign optimization problems over occupancy measures.

IL with Expert Data. We can learn performant policies
via imitation learning when a set of expert demonstrations
DE is provided. The expert dataset DE = {(s, a, s′)} is
generated according to (s, a) ∼ dE , s′ ∼ T (·|s, a), where
dE is the occupancy measure of the expert policy. A classi-
cal IL approach is behavior cloning (BC), which optimizes
a policy π by minimizing the expected KL between πE(·|s)
and π(·|s) for s ∼ dE(s) (the state marginal of expert occu-
pancy measure):

argmin
π

EdE(s)

[
DKL

(
πE(·|s)∥π(·|s)

)]
=−EdE(s,a)[log π(a|s)].
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Alternatively, IL can be formulated as minimizing the f -
divergence between occupancy measures: mindDf (d∥dE)
(Ho and Ermon 2016b; Kostrikov, Nachum, and Tompson
2020; Ke et al. 2020; Ghasemipour, Zemel, and Gu 2020).
However, since estimating and minimizing f -divergence re-
quires the unknown density ratio d/dE , which can be ob-
tained only through variational estimation using samples
from dE and d (all intermediate policies), these IL methods
are not offline and have to use adversarial training.

Offline IL with Expert and Non-Expert Data. The stan-
dard IL setting above typically requires a large amount of
optimal demonstrations from experts, and sometimes require
online interactions with the MDP. To address these limita-
tions, researchers proposed to study offline IL with limited
expert data and supplementary imperfect data (Kim et al.
2021), a meaningful yet challenging setting where no inter-
action with the environment is allowed, and we only have
a small amount of expert demonstrations DE and an addi-
tional collection of suboptimal demonstrations DU with un-
known level of optimality. The pre-collected dataset DU =
{(s, a, s′)} is generated according to (s, a) ∼ dU , s′ ∼
T (·|s, a) with dU being the occupancy measure of some un-
known behavior policy. In this setting, the key is to study
how to leverage the additional imperfect dataset DU to
provide proper regularization to help the policy/occupancy
measure optimization on DE . Towards this end, DemoDICE
(Kim et al. 2021) extends the offline RL method OptiDICE
(Lee et al. 2021) and usesDKL(d∥dU ) to realize the regular-
ization. Moreover, we note that a key to their success is both
OptiDICE and DemoDICE avoid the nested min-max opti-
mization (Nachum et al. 2019b) by supporting a closed-form
solution for their inner maximization problem.

Density Ratio Estimation via Classification. Thanks to
the connection between density ratio estimation and classi-
fication (Menon and Ong 2016; Yu, Jin, and Ermon 2021),
given samples from two distributions p and q, we can use
any strictly proper scoring rule and a link function ψdr to re-
cover the density ratio p/q. For example, we can use logistic
regression to approximately recover dE/dU :

c∗ = argmax
c:S×A→(0,1)

EdE(s,a)[log c(s, a)]+

EdU (s,a)[log(1− c(s, a))] (2)

Since c∗(s, a) = dE(s,a)
dE(s,a)+dU (s,a)

, the optimal density ratio
can be recovered as:

r∗(s, a) = ψdr(c
∗(s, a)) =

c∗(s, a)

1− c∗(s, a)
=
dE(s, a)

dU (s, a)
(3)

Offline IL with Suboptimal Demonstrations
via RelaxDICE

In this section, we present RelaxDICE, a novel method for
offline imitation learning with expert and supplementary
non-expert demonstrations. A key question to study in this
meaningful yet challenging setting is how to derive offline
algorithms with appropriate regularization Ω(d, dU ) to ef-
fectively leverage the additional imperfect dataset DU . For-
mally, we begin with the following constrained optimization

problem over the occupancy measure:

max
d≥0

−DKL(d∥dE)− αΩ(d, dU ) (4)

s.t.
∑
a

d(s, a) = (1− γ)p0(s)+

γ
∑
s′,a′

T (s|s′, a′)d(s′, a′), ∀s ∈ S. (5)

where Eq. (5) is the Bellman flow constraints introduced in
Theorem 1 that any valid occupancy measure must satisfy,
and α > 0 is a weight factor balancing between minimizing
KL divergence with dE (estimated with the limited expert
data) and preventing deviation from dU . For example, a pop-
ular regularization choice in prior offline IL and offline RL
works is the f -divergence Df (d∥dE), which was originally
designed for exact distribution matching between a model
distribution and a target distribution (Nowozin, Cseke, and
Tomioka 2016). Although this choice can indeed enforce d
to be close to dU , we think that divergences or distances for
exact distribution matching can be overly conservative and
may lead to undesired effects when dU is highly subopti-
mal. In this case, even the true optimal occupancy measure
(corresponding to the true optimal policy) will incur a high
penalty from Ω(d, dU ). Although we can reduce α to mit-
igate the negative effect, we cannot remove the bias unless
α approaches zero, which will then leave us at risk of ex-
ploring out-of-support state-actions because of a too small
regularization strength. Moreover, prior theoretical work on
offline RL (Zhan et al. 2022) also suggests that a smaller α
will lead to a worse sample complexity and a higher error
floor. Proofs for this section can be found in the appendix.

An Optimistic Fix to the Pessimistic Regularization
To ensure the suboptimal dataset contains useful informa-
tion about the optimal policy π∗, theoretical studies typi-
cally make some assumptions about DU . As a motivating ex-
ample, a minimal assumption adopted in (Zhan et al. 2022)
is the following π∗-concentrability1 (where d∗ is the occu-
pancy measure of π∗):
Assumption 1. dU (s, a) > 0 and there exists a constant B
such that d∗(s, a)/dU (s, a) ≤ B, ∀s, a.

Under this assumption, we argue that an ideal regulariza-
tion Ω(d, dU ) would aim to bound the density ratio d/dU
by a constant, instead of driving towards d ≡ dU . In other
words, we still want to regularize d to stay in the support
of dU so that policy evaluation/improvement is stable and
reliable under a small distribution shift, but different from
a divergence like Df (d∥dU ), we will impose little penalty
on d if d/dU ≤ B, so that we will not enforce d to exactly
match dU and the optimal policy can be preserved under the
regularization (i.e., d∗ ∈ argmind Ω(d, d

U )).
Towards this end, we draw inspiration from domain adap-

tation theory (Wu et al. 2019a) and propose to use the fol-
lowing relaxed f -divergence to realize Ω(d, dU ):

1This assumption is much weaker than the all-policy concen-
trability in prior theoretical works (Munos and Szepesvári 2008;
Farahmand, Szepesvári, and Munos 2010; Chen and Jiang 2019)
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Definition 1 (Asymmetrically-relaxed f -divergence).
Given a constant β > 1 and a strictly convex and con-
tinuous function f : R+ → R satisfying f(1) = 0,
the asymmetrically-relaxed f -divergence between two
distributions p and q (defined over domain X ) is defined as:

Df̃β
(p∥q) =

∫
X
q(x)f̃β

(
p(x)

q(x)

)
dx, (6)

where f̃β is a partially linearized function of f defined as:

f̃β(u) =

{
f(u) + Cf,β if u ≥ β

f ′(β)u− f ′(β) if u < β
(7)

where the constant Cf,β := −f(β) + f ′(β)(β − 1).

It is worth noting that f̃β is also continuous, convex (but
not strictly convex) and satisfies f̃β(1) = 0. More impor-
tantly, Df̃β

(p∥q) = 0 if and only if p(x)/q(x) ≤ β, ∀x ∈ X
(proof can be found in the appendix). This property is valu-
able for IL with suboptimal demonstrations:
Proposition 1. Under Assumption 1, for any strictly convex
function f , let Ω1(d, d

U ) = Df (d∥dU ) and Ω2(d, d
U ) =

Df̃β
(d∥dU ) with β = B. When the behavior policy is not

optimal (dU ̸= d∗), then Ω1 is biased while Ω2 preserves
the optimal policy (i.e. d∗ /∈ argmind Ω1(d, d

U ) and d∗ ∈
argmind Ω2(d, d

U ))
Thus we propose to use the relaxed f -divergence to re-

alize the regularization. Let Ω(d, dU ) = Df̃β
(d∥dU ) and

we aim to solve the constrained optimization problem in
Eq. (4)-(5) in an offline fashion. Apply a change of variable
ω(s, a) = d(s,a)

dU (s,a)
to the Lagrangian of above constrained

optimization, we can get the following optimization prob-
lem over ω and v (with v(s) being the Lagrange multipliers)
(derivations can be found in the appendix):
max
ω≥0

min
v

Lα,β(ω, v) := (1− γ)Ep0(s)[v(s)]+ (8)

EdU (s,a)

[
ω(s, a)ev(s, a)− ω(s, a) log(ω(s, a))− αf̃β(ω(s, a))

]
Here, ev(s, a) := log dE(s,a)

dU (s,a)
+ γ(T v)(s, a)− v(s), where

the density ratio dE/dU can be estimated via Eq. (2)-(3) and
(T v)(s, a) :=

∑
s′ T (s

′|s, a)v(s′). Note that Eq. (8) can be
estimated only using offline datasets DE and DU (assuming
DU contains a set of initial states sampled from p0).

However, the nested min-max optimization in Eq. (8) usu-
ally results in unstable training in practice. To avoid this
issue, we follow (Lee et al. 2021; Kim et al. 2021) to as-
sume that every state s ∈ S is reachable for the given
MDP M and thus there exists a strictly feasible ω such
that ω(s, a) = d(s, a)/dU (s, a) > 0, ∀s, a. Since Eq. (8)
is a convex optimization problem with strict feasibility, due
to strong duality via Slater’s condition (Boyd and Vanden-
berghe 2004), we know that:

max
ω≥0

min
v

Lα,β(ω, v) = min
v

max
ω≥0

Lα,β(ω, v) (9)

By changing the max-min problem to min-max problem and
using a particular convex function to instantiate the relaxed
f -divergence, we can obtain the following closed-form so-
lution for the inner maximization problem:

Theorem 2. Let Df̃β
be the relaxed f -divergence in Def-

inition 1, with the associated convex function defined as
f(u) = u log u. Then the closed-form solution ω∗

v(s, a) =
argmaxω≥0 Lα,β(ω, v) is:

ω∗
v(s, a) = (10)exp

(
ev(s, a)

1 + α
− 1

)
if A(s, a)

exp (ev(s, a)− 1− α(log β + 1)) otherwise

where A(s, a) denotes the event: ev(s,a)
α+1 > log β + 1. De-

fine h(ω(s, a)) := ω(s, a)ev(s, a) − ω(s, a) log(ω(s, a)) −
αf̃β(ω(s, a)) such thatLα,β(ω, v) = EdU (s,a)[h(ω(s, a))]+
(1− γ)Ep0(s)[v(s)]. Then we have:

h(ω∗
v(s, a)) =(1 + α) exp

(
ev(s, a)

1 + α
− 1

)
+ C1 if A(s, a)

exp (ev(s, a)− 1− α(log β + 1)) + C2 otherwise

where C1 = −αCf,β and C2 = α(log β + 1) are constants
w.r.t. ω and v.

Based on Theorem 2, RelaxDICE solves v̂∗ =
argminv Lα,β(v) = Lα,β(ω

∗
v , v), which provides us a

tractable way to leverage a less conservative support regu-
larization to effectively learn from potentially highly subop-
timal offline data.

RelaxDICE with Density Ratio Correction
As discussed before, given datasets DE and DU , we can
obtain an approximate density ratio r̂(s, a) ≈ dE(s,a)

dU (s,a)
. Al-

though we should not expect such an approximate density
ratio to be accurate given limited samples, it is likely that the
density-ratio-corrected occupancy measure r̂ · dU is closer
to the expert occupancy measure dE than dU . Thus another
rational choice for realizing the regularization Ω(d, dU ) in
Eq. (4) is the relaxed f -divergence between d and r̂ · dU .
With this goal, we derive an extension of our method, Re-
laxDICE with Density Ratio Correction (RelaxDICE-DRC).

Let Ω(d, dU ) = Df̃β
(d∥r̂ · dU ). Similar to the deriva-

tion of RelaxDICE, we apply a change of variable ω(s, a) =
d(s,a)
dU (s,a)

to the Lagrangian of the constrained optimization
problem in Eq.(4)-(5) and with strong duality, we can obtain
the following min-max optimization problem (derivations in
the appendix):

min
v

max
ω≥0

L†
α,β(ω, v) := (1− γ)Ep0(s)[v(s)]+ (11)

EdU (s,a)

[
ω(s, a) (ev(s, a)−log(ω(s, a)))−αr̂(s, a)f̃β

(
ω(s, a)

r̂(s, a)

)]
where v(s) is the Lagrange multiplier and ev(s, a) is defined
same as before.

Similar to RelaxDICE, we then introduce the following
theorem to characterize the closed-form solution of the inner
maximization problem in Eq. (11) to avoid nested min-max
optimization:
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Theorem 3. Let Df̃β
be the relaxed f -divergence in Defini-

tion 1, with f(u) = u log u. Then the closed-form solution
ω∗
v(s, a) = argmaxω≥0 L

†
α,β(ω, v) is:

ω∗
v(s, a) = (12)exp

(
ev(s, a) + α log r̂(s, a)

1 + α
− 1

)
if B(s, a)

exp (ev(s, a)− 1− α(log β + 1)) otherwise

where B(s, a) denotes the event: ev(s,a)−log r̂(s,a)
α+1 >

log β + 1. Define h†(ω(s, a)) := ω(s, a)ev(s, a) −
ω(s, a) log(ω(s, a)) − αr̂(s, a)f̃β

(
ω(s,a)
r̂(s,a)

)
such that

L†
α,β(ω, v) = EdU (s,a)[h

†(ω(s, a))] + (1 − γ)Ep0(s)[v(s)].
Then we have:

h†(ω∗
v(s, a)) =(1 + α) exp

(
ev(s, a) + α log r̂(s, a)

1 + α
− 1

)
+ C3 if B(s, a)

exp (ev(s, a)− 1− α(log β + 1)) + C4 otherwise

where C3 = −αCf,β r̂(s, a) and C4 = α(log β + 1)r̂(s, a)
are constants w.r.t. ω and v.

Based on Theorem 3, RelaxDICE-DRC solves v̂∗ =
argminv L

†
α,β(v) = L†

α,β(ω
∗
v , v), which has the potential

for better policy learning because of a more well-behaved
regularization.

Policy Extraction
Given v∗, the corresponding density ratio ω̂∗ can be recov-
ered according to Eq. (10) (for RelaxDICE) and Eq. (12)
(for RelaxDICE-DRC) respectively. We can then use the fol-
lowing weighted BC objective (importance sampling or self-
normalized importance sampling) for policy extraction:

max
π

EdU (s,a)[ω̂
∗(s, a) log π(a|s)] or (13)

max
π

EdU (s,a)[ω̂
∗(s, a) log π(a|s)]

EdU (s,a)[ω̂∗(s, a)]

In practice, we use samples from DU to estimate the ex-
pectations and we find that the latter one (using the self-
normalized weight) tends to perform better, which we em-
ploy in our experiments.

Practical Considerations
Since we only have samples (s, a, s′) from the dataset DU ,
similar to (Kostrikov, Nachum, and Tompson 2020; Lee
et al. 2021; Kim et al. 2021), we have to use a single-point
estimation êv(s, a, s

′) = log dE(s,a)
dU (s,a)

+ γv(s′) − v(s) for
ev(s, a). This estimation is generally biased (when the MDP
is stochastic) due to the non-linear exponential function out-
side of ev . However, similar to the observation in (Kostrikov,
Nachum, and Tompson 2020), we found this simple ap-
proach was enough to achieve good empirical performance
on the standard benchmark domains we considered, thus we

do not further use the Fenchel conjugate to remove the bias
(Nachum et al. 2019a).

We use multilayer perceptron (MLP) networks to
parametrize the classifier cθ in Eq. (2), the Lagrange mul-
tiplier vϕ, and the policy πψ in Eq. (13). Since the objec-
tivesLα,β(v) andL†

α,β(v) contain exponential terms, we use
gradient penalty (Gulrajani et al. 2017) to enforce Lipschitz
constraints on networks cθ and vϕ, which can effectively sta-
bilize the training. The required density ratio dE/dU in êv
will be estimated via Eq. (3) as r̂θ = cθ

1−cθ .
Regarding the hyperparameter β, in RelaxDICE, since

ideally β should be around the upper bound of dE/dU , we
can automatically set it using the approximate density ratio
r̂θ (e.g., by setting β to be the running average of the max-
imum estimated density ratio of each minibatch); while in
RelaxDICE-DRC, β should characterize the upper bound of
the density ratio dE/(r̂θ · dU ), which we expect to be small
(e.g.1.5 or 2) as r̂θ · dU is a density-ratio-corrected occu-
pancy measure. In summary, RelaxDICE does not introduce
new hyperparameter that requires tuning by automatically
setting β according to the data, while RelaxDICE-DRC has
the potential for better policy learning with the requirement
of manually specifying β. More details of the practical im-
plementations can be found in the appendix.

Related Work
Learning from imperfect demonstrations. Imitation
learning (Pomerleau 1988; Ross, Gordon, and Bagnell 2011;
Ho and Ermon 2016a; Spencer et al. 2021) typically re-
quires many optimal demonstrations, which could be expen-
sive and time-consuming to collect. To address this limita-
tion, imitation learning from imperfect demonstrations (Wu
et al. 2019b; Brown et al. 2019; Brown, Goo, and Niekum
2020; Brantley, Sun, and Henaff 2019; Tangkaratt et al.
2020; Wang et al. 2018) arises as a promising alternative.

To do so, prior works assume that the imperfect demon-
strations consist of a mixture of expert data and subopti-
mal data and have considered two-step importance weighted
IL (Wu et al. 2019b), learning imperfect demonstrations
with adversarial training (Wu et al. 2019b; Wang et al. 2021)
and training an ensemble of policies with weighted BC ob-
jectives (Sasaki and Yamashina 2020). Note that (Wu et al.
2019b) assumes the access to the optimality labels in the
imperfect demonstrations whereas (Wang et al. 2021) and
(Sasaki and Yamashina 2020) remove this strong assump-
tion, which is followed in our work. Moreover, (Wu et al.
2019b) and (Wang et al. 2021) require online data collection
for policy improvement while our work focuses on learning
from offline data.

The closest work to our setting is DemoDICE (Kim et al.
2021), which performs offline imitation learning with a KL
constraint to regularize the learned policy to stay close to
the behavior policy. Such constraint can mitigate the distri-
bution shift issue when learning from offline data (Levine
et al. 2020; Kumar et al. 2019; Fujimoto, Meger, and Pre-
cup 2018), but could be overly conservative due to the ex-
act distribution matching regularization especially when the
imperfect data is highly suboptimal (see Proposition 1). Our
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method mitigates this issue by instead using a support reg-
ularization. Although (Wu, Tucker, and Nachum 2019) dis-
cussed a brief empirical exploration that using support regu-
larization over policies offers little benefits, we instead for-
mulate it as a constrained optimization over occupancy mea-
sures to take into consideration the diversity in both states
and actions and observed clear practical benefits. Moreover,
we surprisingly found that the increased complexity in min-
imax optimization can be resolved by the convenient closed-
form solutions of the inner maximization problems.

Offline learning with stationary distribution correction.
Prior works in offline RL / IL have used distribution cor-
rection to mitigate distribtuion shift. AlgaeDICE (Nachum
et al. 2019b) leverages a dual formulation of f -divergence
(Nachum et al. 2019a) to regularize the stationary distribu-
tion besides the policy improvement objective in offline RL.
ValueDICE (Kostrikov, Nachum, and Tompson 2020) uses a
similar formulation to AlgaeDICE for off-policy distribution
matching with expert demonstrations. However, both Val-
ueDICE and AlgaeDICE need to solve the nested min-max
optimization problem, which is usually unstable in practice.
OptiDICE (Lee et al. 2021) and DemoDICE (Kim et al.
2021) resolve this issue via deriving a closed-form solution
of their inner optimization problem. Our method also enjoys
the same desired property while using an asymmetrically-
relaxed f -divergence (Wu et al. 2019a) as a more appropri-
ate regularization in face of highly suboptimal offline data.

Experiments
In our experiments, we aim to answer the following three
questions: (1) how do RelaxDICE and RelaxDICE-DRC
compare to prior works on standard continuous-control tasks
using limited expert data and suboptimal offline data? (2)
can RelaxDICE remain superior performance compared to
prior methods as the quality of the suboptimal offline dataset
decreases? (3) can RelaxDICE behave more robustly with
respect to different hyperparameter choices compared to
prior methods?

Environments, Datasets and Task Construction. In or-
der to answer these questions, we consider offline datasets
of four MuJoCo (Todorov, Erez, and Tassa 2012) locomo-
tion environments (hopper, halfcheetah, walker2d
and ant) and two Adroit robotic manipulation environ-
ments (hammer and relocate) from the standard of-
fline RL benchmark D4RL (Fu et al. 2020). To construct
settings where we have varying data quality of the subop-
timal offline dataset, for MuJoCo tasks, we use 1 trajec-
tory from the expert-v2 datasets as DE for each en-
vironment and create the suboptimal offline data DU by
mixing NE transitions from expert-v2 datasets and NR

transitions from random-v2 datasets with 4 different ra-
tios. We denote these settings as L1 (Level 1), L2 (Level
2), L3 (Level 3) and L4 (Level 4), which correspond to
NE

NR ≈ 0.2, 0.15, 0.1, 0.05 respectively. The higher the level,
the more challenging the setting is. Note that all of the
four settings are of much more suboptimal data composi-
tion compared to the data configuration used for DU adopted

in (Kim et al. 2021), where DU in the most imperfect set-
ting can have NE

NR > 10.0, e.g. on walker2d. The ra-
tionale of constructing such challenging datasets is that in
practice, it is much cheaper to generate suboptimal and even
random data and therefore a successful offline IL method
should be equipped with the capacity of tackling these sub-
optimal offline datasets. In order to excel at L1, L2, L3 and
L4, a successful algorithm must effectively leverage DU to
provide proper regularization for policy optimization. For
Adroit tasks, following similar design choice, we construct
three levels of data compositions, i.e. L1, L2 and L3. Please
see the appendix for details.

Comparisons. To answer these questions, we first con-
sider the following prior approaches. We compare Re-
laxDICE to DemoDICE (Kim et al. 2021), which per-
forms offline imitation learning with supplementary im-
perfect demonstrations via applying a KL constraint be-
tween the occupancy measure of the learned policy and that
of the behavior policy. We also consider BCND (Sasaki
and Yamashina 2020) as a baseline, which learns an en-
semble of policies via a weighted BC objective on noisy
demonstrations. Moreover, we compare to BC(η) (Kim
et al. 2021), where η ∈ {0, 0.5, 1.0} corresponds to a
weight factor that balances between minimizing the neg-
ative log-likelihood on expert data DE and minimizing
the negative log-likelihood on suboptimal offline data DU :
minπ LBC(η)(π) := −η 1

|DE |
∑

(s,a)∈DE log π(a|s) − (1 −
η) 1

|DU |
∑

(s,a)∈DU log π(a|s).
Finally, we consider the importance-weighted BC(η) de-

noted as BC-DRC(η), i.e. BC with density ratio cor-
rection, where we train a classifier to approximate the
density ratio dE/dU as r̂ via Eq. (2)-(3), and per-
form weighted BC(η) using r̂ as the importance weights:
minπ LBC-DRC(η)(π) := −η 1

|DE |
∑

(s,a)∈DE log π(a|s) −
(1− η) 1

|DU |
∑

(s,a)∈DU r̂(s, a) log π(a|s).
For all the tasks, we use α = 0.2 for RelaxDICE and

use α = 0.05 for DemoDICE as suggested in (Kim et al.
2021), which is also verified in our experiments. We pick α
and β for RelaxDICE-DRC via grid search, which we will
discuss in the appendix. For more details of the experiment
set-ups, evaluation protocols, hyperparameters and practical
implementations, please see the appendix.

Results of Empirical Evaluations
To answer question (1) and (2), we evaluate RelaxDICE,
RelaxDICE-DRC and other approaches discussed above on
6 D4RL environments (4 MuJoCo locomotion tasks and 2
Adroit robotic manipulation tasks) with 22 different settings
in total. We present the full results in Table 1.

As shown in Table 1, RelaxDICE-DRC achieves the best
performance in 18 out of 22 tasks whereas RelaxDICE
excels in the remaining 4 settings. It is also worth not-
ing that RelaxDICE outperforms the strongest baseline De-
moDICE in 20 out of 22 settings, without requiring tuning
two hyperparameters as in RelaxDICE-DRC. Overall, we
observe that the best performing method (either RelaxDICE
or RelaxDICE-DRC) achieves over 30% performance im-
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BC-DRC BC
Envs Tasks RelaxDICE RelaxDICE-DRC DemoDICE BCND η = 0.0 η = 0.5 η = 0.0 η = 0.5 η = 1.0

L1 74.6±9.1 73.6±6.3 70.9±9.0 6.6±2.9 1.4±1.1 2.9±3.9 1.8±1.2 7.6±8.0 17.8±11.7
L2 64.2±8.7 70.0±13.7 54.4±6.4 4.8±4.2 2.4±1.2 4.9 ± 2.7 2.9±2.1 1.6±1.5 17.8±11.7

hopper L3 36.2±5.6 41.5±4.3 31.4±9.7 2.3±2.3 1.8±0.5 1.5 ± 0.6 5.0±3.3 1.4±0.9 17.8±11.7
L4 38.7±8.2 40.2±6.9 34.9±5.6 0.9±0.3 0.7±0.2 1.5±0.7 0.8±0.4 0.8±0.3 17.8±11.7

L1 59.1±8.6 66.7±5.1 58.6±8.0 2.5±0.1 2.6 ±0.0 2.6±0.0 2.6±0.0 2.6±0.0 0.9 ± 1.1
L2 49.3±4.7 52.1±2.0 48.3±3.9 2.5±0.1 2.6 ±0.0 2.6±0.0 2.6±0.0 2.6±0.0 0.9 ± 1.1

halfcheetah L3 35.0±6.6 37.9±4.0 32.9±2.1 2.5±0.0 2.6 ±0.0 2.6±0.0 2.6±0.0 2.6±0.0 0.9 ± 1.1
L4 13.3±2.1 16.1±4.1 10.5±0.5 2.6±0.0 2.6 ±0.0 2.6±0.0 2.6±0.0 2.6±0.0 0.9 ± 1.1

L1 92.6±7.6 99.4±1.9 98.8±1.6 3.0±3.9 0.6±0.6 0.3±0.2 2.2±1.1 0.2±0.0 8.5±3.6
L2 69.7±20.3 57.7±12.5 42.1±23.9 0.1±0.2 0.2±0.0 0.5±0.3 0.2±0.0 0.3±0.1 8.5±3.6

walker2d L3 41.9±23.1 56.7±26.2 23.4±20.6 0.7±0.6 0.8±1.1 0.4±0.2 0.2±0.0 0.3±0.1 8.5±3.6
L4 26.3±17.2 49.5±17.4 39.8±22.4 0.2±0.2 0.2±0.1 0.5±0.4 0.2±0.1 0.2±0.1 8.5±3.6

L1 91.9±3.6 89.0±5.3 77.9±8.7 12.2±2.4 61.7±4.9 21.3±1.2 66.2±11.2 21.3±1.1 -8.3±4.3
L2 75.2±5.8 82.1±7.1 70.5±4.2 15.6±2.3 50.8±6.1 20.6±1.8 54.4±4.9 19.9±1.6 -8.3±4.3

ant L3 58.7±7.1 59.6±9.0 49.9±2.9 17.0±0.9 38.1±5.2 18.8±4.7 37.6±3.0 22.6±0.1 -8.3±4.3
L4 43.2±7.2 41.3±4.0 -5.3±41.4 13.6±1.7 29.0±3.9 22.4±0.2 28.0±3.1 22.3±0.3 -8.3±4.3

L1 24.2±17.6 27.3±13.9 4.1±3.6 0.2±0.0 0.4±0.1 0.3±0.0 0.4±0.0 0.3±0.0 4.8±2.9
hammer L2 18.3±12.0 18.4±13.6 17.3±8.9 0.2±0.0 0.3±0.0 0.5±0.4 0.3±0.1 0.3±0.0 4.8±2.9

L3 19.5±15.5 20.6±12.8 14.1±10.2 0.2±0.0 0.4±0.0 0.3±0.0 0.4±0.0 0.3±0.0 4.8±2.9

L1 48.0±2.3 50.9±5.3 40.9±13.7 -0.1±0.0 -0.2±0.0 6.4±2.0 -0.2±0.0 7.3±2.2 0.2±0.3
relocate L2 45.1±5.7 52.4±7.7 43.0±8.2 -0.2±0.0 5.0±2.4 -0.2±0.0 -0.2±0.0 4.5±2.1 0.2±0.3

L3 39.0±4.5 43.3±7.8 27.1±6.9 -0.2±0.0 -0.2±0.0 2.9±1.9 -0.2±0.0 3.3±3.0 0.2±0.3

Table 1: Results for four MuJoCo environments halfcheetah, hopper, walker2d and ant and two Adroit environ-
ments hammer and relocate from D4RL (Fu et al. 2020). Numbers are averaged across 5 seeds, ± the 95%-confidence
interval. We bold the top 2 highest performances. Either RelaxDICE or RelaxDICE-DRC achieves the best performance in each
of 22 settings and outperforms the strongest baseline DemoDICE by a large margin in L3 and L4 settings where the offline
data is highly suboptimal, suggesting the importance of using a relaxed distribution matching regularization.

provement on average over DemoDICE. Moreover, in set-
tings where the offline data is highly suboptimal, e.g. L3 and
L4, both RelaxDICE and RelaxDICE-DRC can significantly
outperform DemoDICE except on walker2d-L4 where
RelaxDICE is a bit worse than DemoDICE but RelaxDICE-
DRC prevails. In particular, on high-dimensional locomo-
tion tasks such as ant and complex manipulation tasks such
as hammer, RelaxDICE and RelaxDICE-DRC outperform
DemoDICE by a significant margin on hard datasets such
as L3 and L4. These suggest that using a less conservative
support regularization can be crucial in cases with extremely
low-quality offline data, supporting our theoretical analysis.

Sensitivity of Hyperparameters
To answer question (3), we perform an ablation study
on the sensitivity of the hyperparameter α in RelaxDICE
and DemoDICE (Kim et al. 2021), which controls the
strength of the regularization between the learned policy
and the behavior policy. We pick two continuous-control
tasks halfcheetah and walker2d and evaluate the
performance of RelaxDICE and DemoDICE using α ∈
{0.05, 0.1, 0.2, 0.3, 0.4, 0.5} on all four settings in each of
the two tasks. As shown in Figure 2 in the appendix, Re-
laxDICE is much more robust w.r.t. α compared to De-
moDICE in all of the 8 scenarios as RelaxDICE remains
roughly a flat line in all eight plots and the performance
of DemoDICE drops significantly as α increases. We think
the reason is that DemoDICE employs a conservative exact
distribution matching constraint and therefore requires dif-

ferent values of α on datasets with different data quality to
find the delicate balance between policy optimization based
on limited DE and regularization from suboptimal DU , e.g.
higher α when the data quality is high and lower α when the
data is highly suboptimal. In contrast, RelaxDICE imposes
a relaxed support regularization, which is less conservative
and therefore less sensitive w.r.t. data quality. Since tuning
hyperparameters for offline IL / RL in a fully offline man-
ner remains an open problem and often requires expensive
online samples (Monier et al. 2020; Kumar et al. 2021; Yu
et al. 2021; Kurenkov and Kolesnikov 2021), we believe Re-
laxDICE’s robustness w.r.t. the hyperparameters should sig-
nificantly benefit practitioners.

Conclusion and Discussion

We present RelaxDICE, a novel offline imitation learning
methods for learning policies from limited expert data and
supplementary imperfect data. Different from prior works
using regularizations originally designed for exact distri-
bution matching, we employ an asymmetrically relaxed f -
divergence as a more forgiving regularization that proves ef-
fective even for settings where the imperfect data is highly
suboptimal. Both RelaxDICE and its extension RelaxDICE-
DRC can avoid unstable min-max optimization of the reg-
ularized stationary state-action distribution matching prob-
lem by supporting a closed-form solution of the inner maxi-
mization problem, and show superior performance to strong
baselines in our extensive empirical study.
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