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Abstract

The problem of covariate-shift generalization has attracted
intensive research attention. Previous stable learning algo-
rithms employ sample reweighting schemes to decorrelate
the covariates when there is no explicit domain information
about training data. However, with finite samples, it is dif-
ficult to achieve the desirable weights that ensure perfect
independence to get rid of the unstable variables. Besides,
decorrelating within stable variables may bring about high
variance of learned models because of the over-reduced ef-
fective sample size. A tremendous sample size is required
for these algorithms to work. In this paper, with theoreti-
cal justification, we propose SVI (Sparse Variable Indepen-
dence) for the covariate-shift generalization problem. We
introduce sparsity constraint to compensate for the imper-
fectness of sample reweighting under the finite-sample set-
ting in previous methods. Furthermore, we organically com-
bine independence-based sample reweighting and sparsity-
based variable selection in an iterative way to avoid decor-
relating within stable variables, increasing the effective sam-
ple size to alleviate variance inflation. Experiments on both
synthetic and real-world datasets demonstrate the improve-
ment of covariate-shift generalization performance brought
by SVI.

1 Introduction
Most of the current machine learning techniques rely on the
IID assumption, that the test and training data are indepen-
dent and identically distributed, which is too strong to stand
in wild environments (Koh et al. 2021). Test distribution of-
ten differs from training distribution especially if there is
data selection bias when collecting the training data (Heck-
man 1979; Young et al. 2009). Covariate shift is a common
type of distribution shift (Ioffe and Szegedy 2015; Tripu-
raneni, Adlam, and Pennington 2021), which assumes that
the marginal distribution of covariates (i.e. P (X)) may shift
between training and test data while the generation mech-
anism of the outcome variable (i.e. P (Y |X)) remains un-
changed (Shen et al. 2021). To address this problem, there
are some strands of works (Santurkar et al. 2018; Wilson
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and Cook 2020; Wang et al. 2021). When some information
about the test distribution is known apriori (Peng et al. 2019;
Yang and Soatto 2020), domain adaptation methods are pro-
posed based on feature space transformation or distribution
matching (Ben-David et al. 2010; Weiss, Khoshgoftaar, and
Wang 2016; Tzeng et al. 2017; Ganin and Lempitsky 2015;
Saito et al. 2018). If there exists explicit heterogeneity in the
training data, e.g. it is composed of multiple subpopulations
corresponding to different source domains (Blanchard et al.
2021; Gideon, McInnis, and Provost 2021), domain gener-
alization methods are proposed to learn a domain-agnostic
model or invariant representation (Muandet, Balduzzi, and
Schölkopf 2013; Li et al. 2017; Ganin et al. 2016; Li et al.
2018; Sun and Saenko 2016; He, Shen, and Cui 2021; Zhang
et al. 2022a,b). In many real applications, however, neither
the knowledge about test data nor explicit domain informa-
tion in training data is available.

Recently, stable learning algorithms (Shen et al. 2018,
2020a,b; Kuang et al. 2018, 2020; Zhang et al. 2021; Liu
et al. 2021a,b) are proposed to address a more realistic and
challenging setting, where the training data consists of latent
heterogeneity (without explicit domain information), and the
goal is to achieve a model with good generalization abil-
ity under agnostic covariate shift. They make a structural
assumption of covariates by splitting them into S (i.e. sta-
ble variables) and V (i.e. unstable variables), and suppose
P (Y |S) remains unchanged while P (Y |V ) may change un-
der covariate shift. They aim to learn a group of sample
weights to remove the correlations among covariates in ob-
servational data, and then optimize in the weighted distri-
bution to capture stable variables. It is theoretically proved
that, under the scenario of infinite samples, these models
only utilize the stable variables for prediction (i.e. the co-
efficients on unstable variables will be perfectly zero) if the
learned sample weights can strictly ensure the mutual inde-
pendence among all covariates (Xu et al. 2022). However,
with finite samples, it is almost impossible to learn weights
that satisfy complete independence. As a result, the predictor
cannot always get rid of the unstable variables (i.e. the unsta-
ble variables may have significantly non-zero coefficients).
In addition, (Shen et al. 2020a) pointed out that it is unnec-
essary to remove the inner correlations of stable variables.
The correlations inside stable variables could be very strong,
thus decorrelating them could sharply decrease the effective
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sample size, even leading to the variance inflation of learned
models. Taking these two factors together, the requirement
of a tremendous effective sample size severely restricts the
range of applications for these algorithms.

In this paper, we propose a novel algorithm named Sparse
Variable Independence (SVI) to help alleviate the rigorous
requirement of sample size. We integrate the sparsity con-
straint for variable selection and the sample reweighting pro-
cess for variable independence into a linear/nonlinear pre-
dictive model. We theoretically prove that even when the
data generation is nonlinear, the stable variables can surely
be selected with a sparsity constraint like ℓ1 penalty, if the
correlations between stable variables and unstable variables
are weak to some extent. Thus we do not require complete
independence among covariates. To further reduce the re-
quirement on sample size, we design an iterative procedure
between sparse variable selection and sample reweighting
to prevent attempts to decorrelate within stable variables.
The experiments on both synthetic and real-world datasets
clearly demonstrate the improvement of covariate-shift gen-
eralization performance brought by SVI.

The main contributions in this paper are listed below:
• We introduce the sparsity constraint to attain a more

pragmatic independence-based sample reweighting algo-
rithm which improves covariate-shift generalization abil-
ity with finite training samples. We theoretically prove
the benefit of this.

• We design an iterative procedure to avoid decorrelating
within stable variables, mitigating the problem of over-
reduced effective sample size.

• We conduct extensive experiments on various synthetic
and real-world datasets to verify the advantages of our
proposed method.

2 Problem Definition
Notations: Generally in this paper, a bold-type letter repre-
sents a matrix or a vector, while a normal letter represents
a scalar. Unless otherwise stated, X ∈ Rp denotes the co-
variates with dimension of p, Xd denotes the dth variable
in X , and Y ∈ R denotes the outcome variable. Training
data is drawn from the distribution P tr(X, Y ) while test
data is drawn from the unknown distribution P te(X, Y ). Let
X ,Xd,Y denote the support of X, Xd, Y respectively.
S ⊆ X implies S is a subset variables of X with dimen-

sion ps. We use A ⊥ B to denote that A and B are statis-
tically independent of each other. We use EQ(·)[·] to denote
expectation and EQ(·)[·|·] to denote conditional expectation
under distribution Q, which can be chosen as P tr, P te or
any other proper distributions.

In this work, we focus on the problem of covariate shift.
It is a typical and most common kind of distribution shift
considered in OOD literature.
Problem 1 (Covariate-Shift Generalization). Given the
samples {(Xi, Yi)}Ni=1 drawn from training distribution
P tr, the goal of covariate-shift generalization is to learn
a prediction model so that it performs stably on predict-
ing Y in agnostic test distribution where P te(X, Y ) =
P te(X)P tr(Y |X).

To address the covariate-shift generalization problem, we
define minimal stable variable set (Xu et al. 2022).
Definition 2.1 (Minimal stable variable set). A minimal sta-
ble variable set of predicting Y under training distribution
P tr is any subset S of X satisfying the following equation,
and none of its proper subsets satisfies it.

EP tr [Y |S] = EP tr [Y |X]. (1)

Under strictly positive density assumption, the minimal
stable variable set S is unique. In the setting of covariate
shift where P tr(X) ̸= P te(X), relationships between S
and X\S can arbitrarily change, resulting in the unstable
correlations between Y and X\S. Demonstrably, according
to (Xu et al. 2022), S is a minimal and optimal predictor
of Y under test distribution P te if and only if it is a minimal
stable variable set under P tr. Hence, in this paper, we intend
to capture the minimal stable variable set S for stable pre-
diction under covariate shift. Without ambiguity, we refer to
S as stable variables and V = X\S as unstable variables
in the rest of this paper.

3 Method
3.1 Independence-Based Sample Reweighting
First, we define the weighting function and the target distri-
bution that we want the training distribution to be reweighted
to.
Definition 3.1 (Weighting function). Let W be the set of
weighting functions that satisfy

W =
{
w : X → R+ | EP tr(X)[w(X)] = 1

}
. (2)

Then ∀w ∈ W , the corresponding weighted distribution is
P̃w(X, Y ) = w(X)P tr(X, Y ). P̃w is well defined with the
same support of P tr.

Since we expect that variables are decorrelated in the
weighted distribution, we denote W⊥ as the subset of W
in which X are mutually independent in the weighted dis-
tribution P̃w.

Under the infinite-sample setting, it is proved that if con-
ducting weighted least squares using the weighting function
in W⊥, almost surely there will be non-zero coefficients only
on stable variables, no matter whether the data generation
function is linear or nonlinear (Xu et al. 2022). However,
the condition for this to hold is too strict and ideal. Under the
finite-sample setting, we can hardly learn the sample weights
corresponding to the weighting function in W⊥.

We now take a look at two specific techniques of sample
reweighting, which will be incorporated into our algorithms.

DWR (Kuang et al. 2020) aims to remove linear correla-
tions between each two variables, i.e.,

ŵ(X) = arg min
w(X)

∑
1≤i,j≤p,i̸=j

(Cov(Xi, Xj ;w))2 , (3)

where Cov(Xi, Xj ;w) represents the covariance of Xi and
Xj after being reweighted by P̃w. DWR is well fitted for the
case where the data generation process is dominated by a
linear function, since it focuses on linear decorrelation only.
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SRDO (Shen et al. 2020b) conducts sample reweighting
by density ratio estimation. It simulates the target distri-
bution P̃ by means of random resampling on each covari-
ate so that P̃ (X1, X2, . . . , Xp) =

∏p
i=1 P

tr(Xi). Then the
weighting function can be estimated by

ŵ(X) =
P̃ (X)

P tr(X)
=

P tr(X1)P
tr(X2) . . . P

tr(Xp)

P tr(X1, X2, . . . , Xp)
. (4)

To estimate such density ratio, SRDO learns an MLP classi-
fier to differentiate whether a sample belongs to the original
distribution P tr or the mutually independent target distri-
bution P̃ . Unlike DWR, this method can not only decrease
linear correlations among covariates, but it can weaken non-
linear dependence among them.

Under the finite-sample setting, for DWR, if the scale of
sample size is not significantly greater than that of covari-
ates dimension, it is difficult for Equation 3 to be optimized
close to zero. For SRDO, P̃ is generated by a rough process
of resampling, further resulting in the inaccurate estimation
of density ratio. In addition, both methods suffer from the
over-reduced effective sample size when strong correlations
exist inside stable variables, since they decorrelate variables
globally. Therefore, they both require an enormous sample
size to work.

3.2 Sample Reweighting with Sparsity Constraint
Motivation and general idea By introducing sparsity
constraint, we can loose the demand for the perfectness of
independence achieved by sample reweighting under the
finite-sample setting, reducing the requirement on sample
size. Inspired by (Zhao and Yu 2006), we theoretically prove
the benefit of this.

Theorem 3.1. Set X(n) = [S(n),V (n)],β =

(
βs
βv

)
. For

data generated by: Y (n) = X(n)β + g(n)(S) + ϵ(n) =

S(n)βs+V (n)βv+g(n)(S)+ϵ(n), where ϵ(n) is a vector of
i.i.d. random variables with mean 0 and variance σ2, Y (n)

is n×1 outcome, S(n) and V (n) are n×ps and n×pv data
matrix respectively, g(n)(S) is n×1 nonlinear term, which is
linearly uncorrelated with the linear part. βs is regression
coefficients for ps stable variables whose elements are all
non-zero, while βv = 0.

Assume S and V are normalized to zero mean with fi-
nite second-order moment, and both the covariates and the
nonlinear term are bounded, i.e. almost surely ||X||2 ≤
B, g(S) ≤ δ. If there exists a positive constant vector η
such that:

|Cov(n)(V ,S)Cov(n)(S)−1sign(βs)| ≤ 1− η (5)

where Cov(n) represents sample covariance, sign represents
element-wise sign function.

Then there exists a positive constant M which can be
written as h(δ,B,Cov(X)) unrelated to n for the follow-
ing inequality to stand: ∀λn satisfying λn = o(n) and

λn = ω
(
n

1+c
2

)
with 0 ≤ c ≤ 1:

Figure 1: Diagram of SVI.

P (β̂(λn) =s β) ≥ 1− o

(
n− c

2 e
−

min
pv
i=1

{ηi}
2

8M2 nc

)
(6)

where “=s” means equal after applying sign function,
β̂(λn) is the optimal solution of Lasso with regularizer co-
efficient λn.

The term Cov(n)(V ,S) measures the dependency be-
tween stable variables and unstable variables. Thus Theorem
3.1 implies that if correlations between S and V are weak-
ened to some extent, the probability of perfectly selecting
stable variables S approaches 1 at an exponential rate. This
confirms that adding sparsity constraint to independence-
based sample reweighting may loose the requirement for in-
dependence among covariates, even when the data genera-
tion is nonlinear.

Motivated by Theorem 3.1, we propose the novel Sparse
Variable Independence (SVI) method. The algorithm mainly
consists of two modules: the frontend for sample reweight-
ing, and the backend for sparse learning under reweighted
distribution. We then combine the two modules in an itera-
tive way as shown in Figure 1. Details are provided as fol-
lows.

Frontend implementation We employ different tech-
niques under different settings. For the case where data gen-
eration is dominated by a linear function, we employ DWR,
namely Equation 3 as loss function to be optimized using
gradient descent. For the case where data generation is to-
tally governed by nonlinear function, we employ SRDO,
namely Equation 4 to conduct density ratio estimation for
reweighting.

Backend implementation As for the backend sparse
learning module, in order to take the nonlinear setting into
account, we implement the sparsity constraint following
(Yamada et al. 2020) instead of Lasso. Typical for variable
selection, we begin with an ℓ0 constraint which is equiva-
lent to multiplying the covariates X with a hard mask M =
[m1,m2, ...,mp]

T whose elements are either one or zero.
We approximate the elements in M using clipped Gaussian
random variables parametrized by µ = [µ1, µ2, ..., µp]

T :

md = max{0,min{1, µd + ϵd}} (7)

where ϵd is drawn from zero-mean Gaussian distribution
N (0, σ2).
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The standard ℓ0 constraint for a general function f
parametrized by θ can be written as:

L(θ,µ) = EP (X,Y )EM [l(f(M ⊙X;θ), Y ) + λ||M ||0]. (8)

In Equation 8, with the help of continuous probabilistic
approximation, we can derive the ℓ0 norm of the mask as:
EM ||M ||0 =

∑p
d=1 P (md > 0) =

∑p
d=1 Φ(

µd

σ ), where
Φ is the cumulative distribution function of standard Gaus-
sian. After learning sample weights corresponding to ŵ(X),
and combining them with the sparsity constraint, we rewrite
Equation 8 as below:

L(θ,µ) = EP (X,Y )[ŵ(X)EM [l(f(M ⊙X;θ), Y )

+λ

p∑
d=1

Φ(
µd

σ
)]]

(9)

As a result, the optimization of Equation 9 outputs model
parameters θ, and soft masks µ which are continuous vari-
ables in the range [0, 1]. Therefore, µd can be viewed as the
probability of selecting Xd as a stable variable. We may set
a threshold to conduct variable selection, and then retrain a
model only using selected variables for better covariate-shift
generalization.

Iterative procedure As mentioned before, global decorre-
lation between each pair of covariates could be too aggres-
sive to accomplish. In reality, correlations inside stable vari-
ables could be strong. Global decorrelation may give rise to
the shrinkage of effective sample size, causing inflated vari-
ance. It is worth noting that outputs of the backend module
can be interpreted as P (Xd ∈ S), namely the probability
of each variable belonging to stable variables. They contain
information on the covariate structure. Therefore, when us-
ing DWR as the frontend, we propose an approach to taking
advantage of this information as feedback for the frontend
module to mitigate the decrease in effective sample size.

We first denote A ∈ [0, 1]p×p as the covariance matrix
mask, where Aij represents the strength of decorrelation for
Xi and Xj . Obviously, since we hope to preserve correla-
tion inside stable variables S, when the pair of variables is
more likely to belong to S, they should be less likely to be
decorrelated. Thus the elements in A can be calculated as:
Aij = 1 − P (Xi ∈ S)P (Xj ∈ S) = 1 − µiµj . We incor-
porate this term into the loss function of DWR in Equation
3, revising it as:

L(w) =
∑

1≤i,j≤p,i̸=j

(AijCov(Xi, Xj ;w))2 . (10)

Through Equation 10, we implement SVI in an iterative
way by combining sample reweighting and sparse learning.
The details of this algorithm are described in Algorithm 1.
We also present a diagram to illustrate it in Figure 1.

As we can see, when initialized, the frontend module
Mreweight learns a group of sample weights correspond-
ing to the weighting function ŵ(X). Given such sam-
ple weights, the backend module Msparse conducts sparse
learning in a way of soft variable selection under the
reweighted distribution, outputting the probability P (Xd ∈
S) for each variable Xd to be in the stable variable set.

Algorithm 1: Sparse Variable Independence (SVI)

Input: Dataset [X,Y ], sparse learning regularizer coeffi-
cient λ, number of loops T , period of moving average for
soft mask Tm, maximum number of iterations for learn-
ing weights Tw, maximum number of iterations for sparse
learning Tθ, selection threshold γ.
Output: Selected variable set S′.
Initialize A with Aij = 1, ∀1 ≤ i, j ≤ p
Initialize U as empty list.
for t = 1 to T do

while not convergence or reach Tw do
Update sample weights w to minimize L(w) in
Equation 10.

end while
while not convergence or reach Tθ do

Update model parameters θ and soft mask probabil-
ity µ to minimize L(θ,µ) in Equation 9.

end while
Delete first element of U if its length is greater than
Tm.
Append current µ to the end of U .
Calculate the moving average µ′ from U .
Calculate Aij = 1− µ′

iµ
′
j , ∀1 ≤ i, j ≤ p.

end for
Calculate S′ = {Xd | µd ≥ γ}
return: S′

Such structural information can be utilized by Mreweight to
learn better sample weights, since some of the correlations
inside stable variables will be preserved. Therefore, sample
reweighting and sparse learning modules benefit each other
through such a loop of iteration and feedback. The iterative
procedure and its convergence are hard to be analyzed theo-
retically, like in previous works (Liu et al. 2021a; Zhou et al.
2022), so we illustrate them through empirical experiments
in Figure 3(c) and in appendix.

We denote Algorithm 1 as SVI which applies to the lin-
ear setting since its frontend is DWR. For nonlinear settings
where DWR cannot address, we employ SRDO as the fron-
tend module, denoted as NonlinearSVI. We do not imple-
ment it iteratively because it is hard for the resampling pro-
cess of SRDO to incorporate the feedback of structural infor-
mation from the backend module, which we leave for future
extensions. For both settings, unlike previous methods that
directly learn a prediction model by optimizing the weighted
loss, we first apply our algorithm to select the expected sta-
ble variables, then we retrain a model using these variables
for prediction under covariate shift.

4 Experiments
4.1 Baselines
We compare SVI with the following methods. We tune the
hyperparameters by grid search and validation on data from
the environment corresponding to rtrain.

• OLS (Ordinary Least Squares): For linear settings.
• MLP (Multi-Layer Perceptron): For nonlinear settings.
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(b) RMSE of the linear setting with bias rate
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(c) RMSE of the nonlinear setting with bias
rate rtrain = 1.8 and sample size n = 25000.

Figure 2: Detailed results of experiments on synthetic data under linear and nonlinear settings.

Scenario 1: Varying sample size n(r = 2.5)

n n = 1000 n = 1500 n = 2000

Methods Mean Error Std Error Max Error Mean Error Std Error Max Error Mean Error Std Error Max Error

OLS 0.435 0.084 0.572 0.411 0.072 0.531 0.428 0.084 0.554
STG 0.498 0.133 0.694 0.435 0.090 0.579 0.471 0.116 0.635
DWR 0.586 0.043 0.676 0.565 0.044 0.666 0.421 0.027 0.475
SRDO 0.601 0.040 0.698 0.611 0.045 0.690 0.433 0.035 0.499

SVId 0.374 0.023 0.413 0.388 0.043 0.465 0.380 0.038 0.445
SVI 0.356 0.020 0.415 0.369 0.030 0.430 0.357 0.013 0.380

Scenario 2: Varying bias rate r(n = 1500)

r r = 2.0 r = 2.5 r = 3.0

Methods Mean Error Std Error Max Error Mean Error Std Error Max Error Mean Error Std Error Max Error

OLS 0.374 0.039 0.453 0.411 0.072 0.531 0.443 0.100 0.589
STG 0.395 0.047 0.475 0.435 0.090 0.579 0.526 0.165 0.749
DWR 0.431 0.031 0.499 0.565 0.044 0.666 0.576 0.038 0.655
SRDO 0.457 0.058 0.511 0.611 0.045 0.690 0.592 0.037 0.643

SVId 0.356 0.017 0.395 0.388 0.043 0.465 0.364 0.015 0.393
SVI 0.345 0.015 0.380 0.369 0.030 0.430 0.330 0.014 0.377

Table 1: Results of the linear setting under varying sample size n and train data bias rate r.

Scenario 1: Varying sample size n(r = 2.0)

n n=15000 n = 20000 n = 25000

Methods Mean Error Std Error Max Error Mean Error Std Error Max Error Mean Error Std Error Max Error

MLP 0.221 0.080 0.331 0.262 0.113 0.416 0.249 0.104 0.389
STG 0.177 0.049 0.243 0.176 0.048 0.241 0.176 0.048 0.243

SRDO 0.244 0.123 0.380 0.288 0.133 0.469 0.231 0.090 0.373

NonlinearSVI 0.130 0.002 0.133 0.125 0.001 0.128 0.126 0.002 0.129
Scenario 2: Varying bias rate r(n = 25000)

r r = 1.8 r = 2.0 r = 2.2

Methods Mean Error Std Error Max Error Mean Error Std Error Max Error Mean Error Std Error Max Error

MLP 0.188 0.051 0.259 0.249 0.104 0.389 0.498 0.312 0.901
STG 0.150 0.026 0.186 0.176 0.048 0.243 0.208 0.076 0.308

SRDO 0.200 0.071 0.297 0.236 0.089 0.353 0.469 0.203 0.717

NonlinearSVI 0.132 0.007 0.144 0.126 0.002 0.129 0.126 0.002 0.129

Table 2: Results of the nonlinear setting under varying sample size n and train data bias rate r.
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Figure 3: Additional results for illustrating effectiveness of SVI, when fixing rtrain = 2.5.

• STG (Stochastic Gates) (Yamada et al. 2020): Directly
optimizing Equation 9 without sample reweighting.

• DWR (Kuang et al. 2020): Optimizing Equation 3 and
conducting Weighted Least Squares (for linear settings).

• SRDO (Shen et al. 2020b): Conducting density ratio es-
timation through Equation 4.

• SVId: A degenerated version of SVI by running only one
iteration for ablation study to demonstrate the benefit of
iterative procedure under linear settings.

4.2 Evaluation Metrics
To evaluate the covariate-shift generalization performance
and stability, we assess the algorithms on test data from mul-
tiple different environments, thus we adopt the following
metrics: Mean Error = 1

|εte|
∑

e∈εte
Le; Std Error =√

1
|εte|−1

∑
e∈εte

(Le −Mean Error)2; Max Error =

maxe∈εte Le; εte denotes the testing environments, Le de-
notes the empirical loss in the test environment e.

4.3 Experiments on Synthetic Data
Dataset We generate X = {S,V } from a multivariate
Gaussian distribution X ∼ N(0,Σ). In this way, we can
simulate different correlation structures of X through the
control of covariance matrix Σ. In our experiments, we tend
to make the correlations inside stable variables strong.

For linear and nonlinear settings, we employ different data
generation functions. It is worth noting that a certain degree
of model misspecification is needed, otherwise the model
will be able to directly learn the true stable variables simply
using OLS or MLP.

For the linear setting, we introduce the model misspecifi-
cation error by adding an extra polynomial term to the dom-
inated linear term, and later use a linear model to fit the data.
The generation function is as follows:
Y = f(S) + ϵ = [S,V ] · [βs,βv]

T + S·,1S·,2S·,3 + ϵ (11)

For the nonlinear setting, we generate data in a totally
nonlinear fashion. We employ random initialized MLP as
the data generation function.

Y = f(S) + ϵ = MLP (S) + ϵ (12)

Later we use MLP with a smaller capacity to fit the data.
More details are included in appendix.

Generating Various Environments To simulate the sce-
nario of covariate shift and test not only the prediction ac-
curacy but prediction stability, we generate a set of envi-
ronments each with a distinct distribution. Specifically, fol-
lowing (Shen et al. 2020a), we generate different environ-
ments in our experiments through changing P (V |S), fur-
ther leading to the change of P (Y |V ). Among all the unsta-
ble variables V , we simulate unstable correlation P (V b|S)
on a subset V b ∈ V . We vary P (V b|S) through different
strengths of selection bias with a bias rate r ∈ [−3,−1) ∪
(1, 3]. For each sample, we select it with probability Pr =
ΠVi∈V b

|r|−5Di , where Di = |f(S)− sign(r)Vi|, sign de-
notes sign function. In our experiments, we set pvb

= 0.1∗p.

Experimental settings We train our models on data from
one single environment generated with a bias rate rtrain and
test on data from multiple environments with bias rates rtest
ranging in [−3,−1)∪ (1, 3]. Each model is trained 10 times
independently with different training datasets from the same
bias rate rtrain. Similarly, for each rtest, we generate 10
different test datasets. The metrics we report are the mean
results of these 10 times.

Results Results are shown in Table 1 and 2 when vary-
ing sample size n and training data bias rate rtrain. Detailed
results for two specific settings are illustrated in Figure 2(b)
and 2(c). In addition to prediction performance, we illustrate
the effectiveness of our algorithm in weakening residual cor-
relations and increasing effective sample size in Figure 3(a)
and 3(b). Analysis of the results is as follows:

• From Table 1 and 2, for almost every setting, SVI
consistently outperforms other baselines in Mean Error,
Std Error, and Max Error, indicating its superior
covariate-shift generalization ability and stability. From
Figure 2(b) and 2(c), when rtest < −1, i.e. the corre-
lation between V and Y reverses in test data compared
with that in training data, other baselines fail significantly
while SVI remains stable against such challenging distri-
bution shift.
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Figure 4: Detailed results of experiments on real-world data.

• From Figure 2(a), we find that there is a sharp rise of pre-
diction error for DWR and SRDO with the decrease of
sample size, confirming the severity of the over-reduced
effective sample size. Meanwhile, SVI maintains great
performance and generally outperforms SVId, demon-
strating the superiority of the iteration procedure which
avoids aggressive decorrelation within S.

• In Figure 3(a), we calculate ||βv||1 to measure the resid-
ual correlations between unstable variables V and the
outcome Y . DWR always preserves significant non-zero
coefficients on unstable variables especially when the
sample size gets smaller, while SVI truncates the scale
of residual correlations by one or two orders of magni-
tude sometimes. This strongly illustrates that SVI indeed
helps alleviate the imperfectness of variable decorrela-
tion in previous independence-based sample reweighting
methods.

• In Figure 3(b), we calculate neff =
(
∑n

i=1 wi)
2∑n

i=1 w2
i

as ef-
fective sample size following (Kish 2011). It is evident
that SVI greatly boosts the effective sample size com-
pared with global decorrelation schemes like DWR, since
there are strong correlations inside stable variables. The
shrinkage of neff compared with the original sample
size n becomes rather severe for DWR when n is rela-
tively small, even reaching 1/10.

• In Figure 3(c) we plot the change of ||βv||1 with the in-
creasing number of iterations of SVI. We can observe that
the residual correlations decline as the algorithm evolves.
This proves the benefit brought by our iterative proce-
dure. Also, this demonstrates the numerical convergence
of SVI since coefficients of unstable variables V grad-
ually approach zero with the iterative process. More ex-
periments for analyzing the iterative process and conver-
gence are included in appendix.

4.4 Experiments on Real-World Data

House Price Prediction It is a regression task for predict-
ing house price, splitting data into 6 environments, 1 for
training and 5 for testing, according to the time period that
the house was built. In 4 out of 5 test environments, SVI
and SVId outperform other baselines, especially in the last
3 environments. The gap significantly increases along the
time axis, which represents a longer time span between test
data and training data. This implies that a severer distribu-
tion shift may embody the superiority of our algorithm. Be-
sides, overall SVI performs slightly better than SVId, fur-
ther demonstrating the benefit of iterative procedure on real-
world data.

People Income Prediction It is a binary classification task
for income prediction where 10 environments are generated
by the combination of race and sex. We train the models on
the first environment (White, Female) and test on the other
9 environments to simulate distribution shift.

For the first 4 environments where people’s gender re-
mains the same as that in training data, i.e. both are female,
these methods make little difference in prediction. However,
for the last 5 environments, when the sex category is male,
performance drops for every method with varying degrees.
We can see that SVI methods are the most stable ones, whose
performance is affected much less than other baselines in
the presence of distribution shift. Moreover, SVI still out-
performs SVId slightly, indicating the practical use of the
iteration procedure again.

5 Conclusion
In this paper, we combined sample reweighting and sparsity
constraint to compensate for the deficiency of independence-
based sample reweighting when there is a residual depen-
dency between stable and unstable variables, and the vari-
ance inflation caused by removing strong correlations inside
stable variables.
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