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Abstract

Although multi-view clustering (MVC) has achieved remark-
able performance by integrating the complementary infor-
mation of views, it is inefficient when facing scalable data.
Proverbially, anchor strategy can mitigate such a challenge
a certain extent. However, the unsupervised dynamic strat-
egy usually cannot obtain the optimal anchors for MVC. The
main reasons are that it does not consider the fairness of
different views and lacks the priori supervised guidance. To
completely solve these problems, we first propose the priori
anchor graph regularization (PAGG) for scalable multi-view
bipartite graph clustering, dubbed as SMGC method. Specif-
ically, SMGC learns a few representative consensus anchors
to simulate the numerous view data well, and constructs a bi-
partite graph to bridge the affinities between the anchors and
original data points. In order to largely improve the quality
of anchors, PAGG predefines prior anchor labels to constrain
the anchors with discriminative cluster structure and fair view
allocation, such that a better bipartite graph can be obtained
for fast clustering. Experimentally, abundant of experiments
are accomplished on six scalable benchmark datasets, and the
experimental results fully demonstrate the effectiveness and
efficiency of our SMGC.

Introduction
Multi-view clustering (MVC) has been widely researched,
because it can integrate the diversity and complementary in-
formation between views. In previous studies, researchers
have proposed abundant MVC methods, among which sub-
space learning is one of the most attractive research topics.
MVC methods based on subspace learning usually divide
into two steps, i.e., first learn the self-representation ma-
trix, and then perform spectral clustering. For the first step,
if there are n samples from k clusters, the existing meth-
ods construct an affinity graph (i.e., Z ∈ Rn×n) by learn-
ing the similarity relationship between sample pairs. How-
ever, the computational complexity of optimizing Z usually
costs O(n3) (Wang and Wu 2018; Wang et al. 2019; Zhang
et al. 2020). For the second step, they perform the singular
value decomposition (SVD) on the Laplacian matrix of Z
to obtain the clustering indicator, which costs high compu-
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Figure 1: The schematic of different graphs. The first one is
the affinity graph Z ∈ Rn×n of n samples used in the tra-
ditional MVC methods, costing O(n3) computational com-
plexity; the second one is the bipartite graph Z ∈ Rn×m
between n samples and m (m << n) anchors used in tra-
ditional MVC methods for handling scalable data; and the
third one is the anchor graph Z ∈ Rm×m of m anchors pro-
posed in our SMGC.

tational complexity of O(n3). Hence, most of the existing
MVC methods are not suitable for scalable datasets.

To address this issue, MVC methods based on anchor
are proposed in recent years, which first choose a few an-
chors, and then learn a bipartite graph, as shown in Fig. 1.
For producing anchors, existing anchor strategies can be di-
vided into static selection and dynamic learning. In the ex-
isting literature, the commonly used static selection strategy
includes random sampling and k-means selection, which
are performed independently before clustering (Yang et al.
2022a; Qiang et al. 2021; Yang et al. 2022b). Although the
above methods can alleviate the problem of computational
complexity, however anchors may not be able to simulate
the original data points well. In order to improve the quality
of the anchors, dynamic anchor learning is proposed, which
makes the anchors with flexibility and presentation (Ou et al.
2020; Zhou et al. 2021; You et al. 2022). However, dynamic
anchor learning is unsupervised, which does not consider
the fairness and uniformity of anchors, resulting in non-
uniform sampling (NUS) problem. That is, these anchors
learning strategies may result in a non-uniform number of
anchors selected in each cluster, or even no anchors selected
in some clusters. As we know, anchors are the key to learn
bipartite graph for fast clustering. Therefore, the NUS prob-
lem will affect the quality of the bipartite graph, resulting in
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Figure 2: The schematic of the proposed SMGC, which aims
to use optimal supervised anchors to handle scalable multi-
view datasets. PAGG uses the prior anchor labels (PAL) to
directly supervise anchor graph, and then backpropagate to
the consensus anchor. Based on this, we constrain the anchor
with discriminative cluster structure and fair view allocation,
and then obtain a better bipartite graph for fast clustering.

suboptimal clustering performance.
In order to solve the above problem, we propose a novel

multi-view bipartite graph clustering (SMGC) method,
which aims to learn optimal anchors relying on the proposed
the priori anchor graph regularization (PAGG). As shown
in Fig. 2, firstly, we innovatively proposed the prior anchor
graph regularization (PAGG), which utilizes the priori an-
chor labels (PAL) to constrain anchors have fairer and more
discriminative cluster structure. To be detail, we use PAL
to directly constrain the anchor graph to have clear cluster
structure, and then indirectly guide the anchors with uni-
form distribution. Based on this, we learn the similarity re-
lationship between the learned anchors and the original data
points, so that we can achieve a high quality bipartite graph.
Finally, the clustering indicator is obtained by singular value
decomposition (SVD) on the bipartite graph, and then it is
discretized by k-means algorithm. Compared to previous
MVC methods based on anchor, the main contributions of
our SMGC are summarized as follows:
• The priori anchor graph regularization (PAGG) is innova-

tively proposed, which effectively solve the NUS prob-
lem. In detail, PAGG utilizes prior anchor labels (PAL)
to constrain the anchors with discriminative cluster struc-
ture and fair view allocation.

• A novel method, i.e., SMGC is proposed for fast cluster-
ing, which can efficient handle scalable datasets. Specif-
ically, under the guidance of PAGG, we integrate anchor
selection and bipartite graph learning into a framework
to collaboratively optimize the consensus anchor.

• Plentiful experiments are carried out on six benchmark
datasets, and the effectiveness and efficiency of the pro-
posed SMGC are verified. Moreover, we visualized the
anchors distribution of the proposed SMGC, which fully
proves the feasibility of PAGG.

Related Work
In this section, the notations are summarized, and then bi-
partite graph learning and kernel k-means are reviewed.

Notation Description
di The number of features.
n The number of samples.
k The number of clusters.
l The number of anchors.

Xi ∈ Rdi×n Data matrix for the i-th view.
Z ∈ Rn×n Affinity matrix of the all views.
Wi ∈ Rdi×l Projection matrix of the i-th view.
A ∈ Rl×l Consensus anchor matrix for all views.
R ∈ Rl×n Consensus bipartite graph for all views.
F ∈ Rl×c Priori anchor graph indicator.

Table 1: Notations used throughout paper.

Notations
To facilitate reading, we have summarized the notations in-
volved among this article in Table 1. Moreover, we visual-
ized the affinity graph, bipartite graph and anchor graph to
help distinguish and understand, as shown in Fig. 1.

Bipartite Graph Clustering
Give a multi-view dataset X = [X1,X2, · · · ,Xv] ∈ Rdi×n
consisting of v different views, where di is the number of
features in the i-th view, and n denote the number of sam-
ples. For MVC, subspace clustering is a common method,
which is based on the assumption that each sample can be
represented by a linear combination of other samples. Math-
ematically, subspace clustering can be expressed as follows:

min
Z

Ξ(X,XZ) + %Ψ(Z) (1)

where % is the tradeoff parameter, Ξ(·, ·) and Ψ(·) repre-
sent the loss function and regularization term, respectively.
Meanwhile, Z ∈ Rn×n stands for affinity matrix, which es-
sentially needs to calculate the similarity between n2 sam-
ple pairs, as shown in Fig. 1. In order to reduce the com-
putational complexity, bipartite graph clustering is proposed
(Zhou et al. 2021; Liu et al. 2022), which is essentially to
compress the information of the scalable dataset and then
learn the potential features. That is, the mathematical ex-
pression of bipartite graph clustering is

min
R,D

Ξ(X,DR) + %Ψ(R) (2)

where D ∈ Rdi×l denotes anchor matrix, l is the number
of anchors, and R ∈ Rl×n is bipartite graph representing
the similarity relationship between anchors and original data
points. In MVC, Frobenius norm (i.e., ‖·‖F ) is often used as
the loss function. Thus, the first term is expressed as ‖Xi −
DiR‖2F , where Di represents the anchor matrix of the i-th
view. In general, the anchors are the key to the quality of
bipartite graphs (Sun et al. 2021).

Kernel k-means Clustering
The kernel k-means (KKM) is the most widely applied clus-
tering method, whose goal is to minimize the sum of squares
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Figure 3: Visualization of anchors on the UCI-DIGIT dataset
by random sampling and dynamic learning, respectively.

loss over the cluster assignment matrix Y ∈ Rn×c. Mathe-
matically, KKM can be expressed as

min
Y

n,k∑
i=1,c=1

Yic ‖φ (xi)− µk‖
2
2 s.t. Y1k = 1n (3)

where µk is the clustering center, Y ∈ {0, 1}n×k is a dis-
crete clustering assignment, and φ(·) is the non-linear pro-
jection that projects data in the original space to reproducing
kernel Hilbert space (RKHS). Further, Eq. (3) can be simpli-
fied into the following matrix-vector form,

min
H∈Rn×k

Tr(K(In −HH>)) s.t. H>H = Ik (4)

where K ∈ Rn×n is a kernel matrix, which each entry is the
kernel of the corresponding data i.e., kij = φ(xi)

>φ(xj).
Further, considering that Tr(K) is a constant term, so Eq.
(4) can be simplified to

min
H∈Rn×k

−Tr(H>KH) s.t. H>H = Ik (5)

It is well known that kernel matrix has the following
properties, (1) kernel matrix is a symmetric matrix. For
the non-linear kernel, it is the inner product in a fea-
ture space with feature map i.e., kij = φ(xi)

>φ(xj)
(Ng 2000), and (2) in general, kernel matrix is Kij =
κ (xi,xj) = 〈φ (xi) , φ (xj)〉, for i, j = 1, . . . , `. For any
vector, we have v′Kv =

∑`
i,j=1 vivj〈φ(xi), φ(xj)〉 =

‖
∑`
i=1 viφ (xi) ‖2 ≥ 0, so kernel matrix is a positive semi-

definite matrix (Lemmetty, Keskinen, and Marjamäki 2005).
Overall, kernel matrix can be deemed as affinity graph with
symmetric and positive semi-definite (SPSD) constraints.

Proposed Method
In this section, we find that existing anchor strategies lead
to the non-uniform sampling (NUS) problem. Then, we pro-
pose priori anchor labels supervised scalable multi-view bi-
partite graph clustering (SMGC) to solve this problem.

Problem Finding
When faced with scalable multi-view datasets, MVC meth-
ods based on anchor are widely used for fast clustering. In
general, the quality of the anchors are important, which di-
rectly determines the quality of the bipartite graph, and in-
directly affects the clustering performance (Lu et al. 2022).

Thus, various anchor strategies are proposed to select few
anchors. However, through the visualization experiment
of anchors, it is found that the existing anchor strategies
are easy to lead anchors with non-uniform distribution, as
shown in Fig. 3. From the Fig. 3, we can find that the num-
ber of anchors is non-uniform in each cluster, and even no
anchors are selected in some clusters. This is because the ex-
isting anchor strategies are unsupervised and do not consider
the cluster structure of anchors and fair viewpoint allocation.
In summary, the existing anchor strategies have the problem
of non-uniform sampling (NUS).

Priori Anchor Graph Regularization (PAGG)
The NUS problem reduces the reliability of anchors and af-
fects the quality of bipartite graph. To address this issue, we
construct a priori anchor labels (PAL) i.e., F, which aim to
constrain the anchors with discriminative cluster structure
and fair view allocation by using a set of preset indicator
vectors. For a column fj , which represents the clustering in-
dicator of an anchor, if it belongs to the first cluster, then
f1j = 1 and the other elements are 0.

Take PAL as the supervised information, we innovatively
propose the prior anchor graph regularization (PAGG),
as shown in blue part in Fig. 2. To be specific, we consider
the cluster structure of anchors and the uniformity of an-
chors in each cluster. Then, we assume that we have a bipar-
tite graph R ∈ Rl×n, and use it to construct a small anchor
graph RR> ∈ Rl×l. It is important to note that we treat
the anchor graph as a kernel matrix rather than an ordinary
affinity graph. This is because the anchor graph RR> sat-
isfies symmetry and positive semi-definite (SPSD), which
is an ideal kernel matrix. Therefore, inspired by kernel k-
means (KKM), PAGG can be mathematically expressed as

min
R
−tr(F>RR>F) s.t.R ≥ 0,R>1 = 1 (6)

where F ∈ Rl×c is the priori anchor labels. Unlike Eq. (4),
the clustering indicator of Eq. (6) is given in advance. In gen-
eral, PAGG utilizes the PAL (F) to directly supervise anchor
graph, and then backpropagate to the anchor.

Proposed Formula
It is well known that anchors are the key to learning bipartite
graph for fast clustering. Hence, we use PAGG to constrain
the selection of anchors, and then learn the similarity rela-
tionship between optimal anchors and original data points
to construct a bipartite graph. For bipartite graph learning,
Eq. (2) is one of the most popular methods, because anchors
are selected dynamically and have flexibility. However, Eq.
(2) select anchors for each view individually, not taking into
account that anchors for different views should have poten-
tial anchor representations. Thus, we focus on consensus an-
chors learning rather than anchors learning for each view,
which is mathematically expressed as follows

min
δi,Wi,A,R

v∑
i=1

δ2i ‖Xi −WiAR‖2F

s.t. δ>1 = 1,W>
i Wi = Ik,A

>A = Ik,R ≥ 0,R>1 = 1
(7)
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where δi is the weight of the i-th view, Wi is the projec-
tion matrix, A is the consensus anchor matrix, and R is the
consensus bipartite graph. Constraint A>A = Ik ensures
consensus anchor matrix A more discriminative.

Further, in order to obtain optimal anchors, we combine
the proposed PAGG (i.e., Eq. (7)) and Eq. (6) into a uni-
fied framework. Moreover, we name this method as priori
anchor labels supervised scalable multi-view bipartite graph
clustering (SMGC), which is mathematically expressed as

min
δi,Wi,A,R

v∑
i=1

δ2i ‖Xi −WiAR‖2F − βtr(F>RR>F)

s.t. δ>1 = 1,W>
i Wi = Ik,A

>A = Ik,R ≥ 0,R>1 = 1
(8)

where β is a regularization parameter used to control the
balance of the PAGG. In general, the advantages of the pro-
posed SMGC are as follows:

• The PAGG effectively solves the NUS problem, that is,
it can make the anchors with discriminative cluster struc-
ture and fair view allocation. In essence, PAGG has the
potential to be generalized and can become a necessary
regularization term for anchor selection;

• It considers that the kernel matrix can be regarded as the
affinity graph with SPSD constraints, and cleverly used
this property in the design of PAGG;

• The uniform anchors guarantee a high-quality bipartite
graph, resulting in optimal clustering performance via
singular value decomposition (SVD).

Optimization
In this section, algorithm 1 is proposed to solve Eq. (8) ef-
fectively. At the same time, the memory complexity, compu-
tational complexity and convergence are analyzed in detail.

Solver for the Proposed Method
The Eq.(8) is not-convex. For a concise solution, we use an
alternating iterative algorithm, updating one variable while
fixing the others.
I Update δi: Optimization δi with fixed Wi, A and R.
Thus, the objective in Eq.(8) is formulated as

min
δi

V∑
i=1

δ2i ‖Xi −WiAR‖2F s.t. δ>1 = 1 (9)

Letting di = ‖Xi−WiAR‖F , Eq.(9) can be reduced to,

min
δi

V∑
i=1

δ2i d
2
i s.t. δ>1 = 1 (10)

Eq.(10) can be solved via Cauchy-Schwarz inequality
(Wu et al. 2022).

δi =
1
di∑V
v=1

1
di

(11)

By solving Eq. (11), so we can obtain the optimal δi.

I Update Wi: With δi, A, and R are fixed, we only need
to minimize the following objective

min
Wi

V∑
i=1

δ2i ‖Xi −WiAR‖2F s.t. W>
i Wi = Ik (12)

Letting Bi =
∑V
i=1 δ

2
iXiR

>A>, the Eq. (12) can be
written as

max
Wi

Tr(W>
i Bi) s.t. W>

i Wi = Ik (13)

Fortunately, such problem can be solved by Theorem 1
(You et al. 2022).
Theorem 1. Let the SVD of B be B = UDV>, where U ∈
Rd×l, D ∈ Rl×l and V ∈ Rl×l. The optimal solution of
problem maxW>W=I Tr(W>B) is given by W∗ = UV>.
Proof. Due to B = UDV> ∈ Rd×l, problem Tr(W>B)
can be reformulated as

Tr(W>B) = Tr(W>UDV>) = Tr(DV>W>U)

Letting L = V>W>U, dii and lii represent the i-th diag-
onal elements of matrix D and L, respectively. Considering
L>L = Ik, we have |lii| ≤ 1; moreover, have dii ≥ 0 since
it is the singular value of matrix A. Therefore,

Tr(W>B) = Tr(DL) =

l∑
i=1

diilii ≤
l∑
i=1

dii

According to the above inequality, Tr(W>B) reaches to
maximization when lii = 1. Thus L = [Id, 0] ∈ Rl×n and
L = V>W>U, so W = U[Id; 0]V> can be obtained. Fur-
ther, the solution of maxW>W=I Tr(W>B) can be rewrit-
ten as W = UV> based on the SVD of matrix B. Hereto,
the proof is completed. �
I Update A: With δi, Wi, and R are fixed, we only need
to minimize the following objective

min
A

V∑
i=1

δ2i ‖Xi −WiAR‖2F s.t. A>A = Ik (14)

which is equivalent to:

max
A

Tr(A>E) s.t. A>A = Ik (15)

where E =
∑V
i=1 δ

2
iW

>
i XiR

>. Similar to Eq. (13), the
optimal A can solved by Theorem 1.
I Update R: Fixing the other variables except Z, the opti-
mal problem can be reduced to

min
R

V∑
i=1

δ2i ‖Xi −WiAR‖2F − βtr(F>RR>F)

s.t. R ≥ 0,R>1 = 1

(16)

It is equivalent to solving the following Quadratic Pro-
gramming (QP) problem (Wang et al. 2022).

min
1

2
R>:,jMR:,j + n>R:,j

s.t. R>:,j1 = 1,R ≥ 0
(17)

where M = 2((
∑V
i=1 δ

2
i )I − βFF>) and N =

−2
∑V
i=1 X

>
:,jWiA.

In sum, we summarize Algorithm 1 for solving Eq. (8).
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Algorithm 1 The algorithm of SMGC
Input: The multi-view data X = [X1,X2, · · · ,Xv] ∈
Rdi×n, the regularization parameter β, and the priori an-
chors indicator F ∈ Rl×c.
Initialize: Initialize W, A, and R is a identity matrix with
dimensions di × l, l × l and l × n respectively, and δi = 1

v .
Output: Perform k-means on bipartite matrix R to obtain
cluster indicator.

1: while condition do
2: Solve weight δi by Eq. (10).
3: Solve projection matrix Wi by Eq. (13).
4: Solve consensus anchor matrix A by Eq. (15).
5: Solve consensus bipartite graph R by Eq. (17).
6: end while

Complexity Analysis
In this section, we analyze the memory complexity and time
complexity of the proposed SMGC.

Memory complexity: The proposed SMGC needs to
store three matrix variables, namely Wi ∈ Rdi×l, A ∈ Rl×l
and Rl×n, with memory complexity of O(dil), O(l2), and
O(ln), respectively. Therefore, the total memory complexity
is O(dil + l2 + ln) ≈ O(n), bacause di � n and l� n.

Time complexity: In this paper, time complexity is
caused by the optimization of four sub-problems. For the
δi sub-problem, only O(1) of computational complexity is
require. For the Wi and A sub-problem, the main time
complexity cost is singular value decomposition (SVD) of
B ∈ Rdi×l and E ∈ Rl×l, respectively. Therefore, their
time complexity is O(dil

2) and O(l3). For the R sub-
problems, this is a QP problem, which the time complexity
is O(nl3) for all columns. Thus, the total time complexity is
O(1 + dil

2 + (n+ 1)l3) ≈ O(n).
Comparison and analysis: Furthermore, in order to

demonstrate the efficiency of SMGC, we compare other
methods and summarize them in Table 2. From the Table 2,
it can be seen that the proposed method has lower memory
(i.e., O(n)) and computation complexity (i.e., O(n)).

Method Time Complexity Memory Complexity
MLRSSC O(n3) O((v + 1)n2)

BMVC O(n) O(lm)
FMR O(n3) O(n2 +mn)
mPAC O(vmn2) O(mn2)
PMSC O(n3) O(2vn2 + (v + 1)nk)
MLES O(n3) O(vn2)

LMVSC O(n4) O(vk(n+ h))
SFMC O(nmd+ nm2) −
CAG O(n) O(kn+ (h+ k)k)

SMVSC O(n) O(mn+ (h+m)k)
Proposed O(n) O(n)

Table 2: Summary of the time complexity and memory com-
plexity of all comparison methods, where n, m, v and l re-
spectively represent the number of samples, features, views
and anchors, and h =

∑v
i=1 di.

Convergence Analysis
Theoretically, the objective function Eq. (8) is bounded and
lower bounded, and convergence can be proved. Firstly, we
omit these constraints, and then Eq. (8) can ve converted to

min
δi,Wi,A,R

v∑
i=1

δ2i ‖Xi −WiAR‖2F − βtr(F>RR>F)

= min
δi,Wi,A,R

v∑
i=1

δ2i ‖Xi −WiAR‖2F + β‖FF> −RR>‖2F

= min
δi,Wi,A,R

‖R−
∑v
i=1 δ

2
i (X>i WiA) + βF>∑v

i=1 δ
2
i + I

‖2F ≥ 0

(18)
According to the above analysis, the objective function

i.e., Eq. (8) has a lower bound of 0, so the convergence of
algorithm 1 can be guaranteed.

Experiments
In this section, we verify the effectiveness and efficiency of
the proposed SMGC through extensive of experiments.

Experiment Settings and Implementation Details
Benchmark datasets: We extensively evaluate the cluster-
ing performance of our proposed SMGC on six real multi-
view benchmark datasets, including Caltech101-20 (Wu
et al. 2022), CCV (Wang et al. 2021), Caltech101-all (Sun
et al. 2021), SUNRGBD (Liu et al. 2021), NUSWIDEOBJ
(Du et al. 2021), and AwA (Yang et al. 2022a). The number
of samples, views, clusters and size of these datasets ranges
from 2386 to 30475, 2 to 6, 20 to 120, and 3M to 543.4M,
respectively. To more intuitively reflect the differences be-
tween datasets, we summarize the details in Table 3.

Dataset Samples Views Clusters Size
n v k MB

Caltech101-20 2386 6 20 34.8
CCV 6773 3 20 3

Caltech101-all 9144 5 102 133.6
SUNRGBD 10335 2 45 229.5

NMSWIDEOBJ 30000 5 31 112.6
AwA 30475 6 50 543.4

Table 3: Summary of the used MVC benchmark datasets.

Benchmark methods: In order to verify the superiority
of the proposed SMGC, we choose state-of-the-art methods
from the last five years. To be more specific, we chose 10
methods as comparison methods, namely MLRSSC (Brbić
and Kopriva 2018), BMVC (Zhang et al. 2018), mPAC
(Kang et al. 2019), PMSC (Kang et al. 2020), LMVSC
(Zhan et al. 2018), SFMC (Li et al. 2020), FPMVC-CAG
or CAG (Wang et al. 2021), and SMVSC (Sun et al. 2021).
These methods can be roughly divided into two categories.
The first category is MVC methods based on anchor, i.e.,
BMVC, SFMC, FPMVC-CAG, and SMVSC. The other
competitors are MVC methods based on subspace learning.
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Dataset Metrics MLRSSC BMVC mPAC PMSC LMVSC SFMC CAG SMVSC Ours2018 2018 2019 2020 2020 2021 2021 2021
ACC 0.3600 0.1769 0.4893 0.5981 0.4304 0.5947 0.6547 0.6132 0.6697

Caltech101-20 NMI 0.2008 0.1708 0.5855 0.5244 0.5553 0.5641 0.6326 0.5873 0.6423
PUR 0.4476 0.4166 0.6622 0.6480 0.7125 0.7045 0.7368 0.6999 0.7485
ACC 0.1259 0.1326 0.2311 − 0.2014 0.1156 0.2399 0.2182 0.2368

CCV NMI 0.0471 0.0763 0.1744 − 0.1657 0.0346 0.1760 0.1684 0.1792
PUR 0.1307 0.1652 0.2917 − 0.2396 0.1194 0.2605 0.2439 0.2622
ACC 0.1365 0.2123 0.2031 − 0.2005 0.1777 0.3015 0.2750 0.3584

Caltech101-all NMI 0.1066 0.4246 0.3809 − 0.4155 0.2613 0.3549 0.3510 0.3665
PUR 0.1371 0.4124 0.2914 − 0.3975 0.2430 0.3460 0.3395 0.4056
ACC 0.1741 0.1669 0.1906 − 0.1858 0.1113 0.2392 0.1930 0.2462

SUNRGBD NMI 0.1108 0.1954 0.1335 − 0.2607 0.0202 0.2418 0.2007 0.2479
PUR 0.1741 0.3357 0.1992 − 0.3818 0.1144 0.3400 0.2971 0.3526
ACC − 0.1299 − − 0.1583 0.1221 0.1946 0.1916 0.2210

NUSWIDEOBJ NMI − 0.1290 − − 0.1337 0.0095 0.1351 0.1272 0.1309
PUR − 0.2333 − − 0.2488 0.1227 0.2382 0.2331 0.2406
ACC − 0.0867 − − 0.0770 0.0390 0.0919 0.0878 0.1006

AwA NMI − 0.1195 − − 0.0879 0.0032 0.1083 0.1061 0.1130
PUR − 0.1094 − − 0.0957 0.0399 0.0961 0.0993 0.1172

Table 4: Clustering results of the comparison methods, where boldface indicates the optimal result. Moreover, the ′−′ repre-
sents the result that cannot be obtained due to out-of-memory.
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Figure 4: Parameter sensitivity of the proposed SMGC on four benchmark datasets.

Evaluating Metrics: In this paper, normalized mutual
information (NMI), accuracy (ACC) and Purity (PUR) are
used to evaluate the clustering performance of the proposed
SMGC. Besides, in order to be fair, the comparison meth-
ods adopt the parameters recommended by the correspond-
ing article. Considering the randomness of k-means due to
random center initialization, we perform k-means 30 times
to eliminate randomness.

Experimental Results and Analysis
In order to investigate the clustering performance of our pro-
posed SMGC in MVC, we conducted experiments on 10
state-of-the-art methods on six benchmark datasets, and the
results are shown in Table 4. Based on this table, we can
draw the following conclusion.

• On the whole, the proposed SMGC achieves the best
clustering performance on most datasets, which ade-
quately demonstrates the feasibility of our SMGC.

• Compared with the traditional MVC methods based on
subspace learning, the proposed SMGC achieves the best
performance. This is because the process of anchors

learning can essentially eliminate a lot of noise and out-
liers, which is conducive to subsequent clustering. In
other words, our anchors learning method is an effective
way of selecting representative samples from the original
data points, which makes the data relatively clean.

• Compared with the other four MVC methods based on
anchors (i.e., SFMC, CAG, SMVSC and ours), BMVC
and SFMC have poor performance. The former dynam-
ically selects the anchors from the original data points,
so that the anchors are more flexible. However, the lat-
ter adopts the static anchor strategy, that is, the anchor
is fixed and cannot change again. Thus, the advantage of
dynamic anchor selection is proved effectively.

• Our proposed SMGC has better clustering performance
than CAG and SMVSC, because we have effectively
solved the NUS problem. The competitors do not con-
sider the fairness of different views and lacks the pri-
ori supervised guidance. However, we innovatively pro-
poses prior anchor graph regularization (PAGG) with us-
ing prior anchor labels (PAL) to directly supervise anchor
graph, and then backpropagate to the consensus anchor.
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Figure 5: The objective value of the proposed SMGC.

Parameter Sensitivity and Convergence Analysis
In this section, we utilize the grid search to adjust pa-
rameter β with the range of [10−5, 10−4, · · · , 101, 102], so
as to study the influence of parameter in SMGC. In de-
tail, we performed parameter sensitivity experiments on
four benchmark datasets, and the results are shown in Fig.
4. We can draw following conclusions: (1) Our proposed
SMGC only involves one parameter i.e., β, which is easy
to adjust; (2) When the values of β are not too large,
e.g., [10−5, 10−4, 10−3, 10−2, 10−1], the parameter β are
relatively insensitive. Moreover, it is important that ACC
achieves the best when β = 1 or β = 10, which proves
the effectiveness of the proposed PAGG; and (3) Under the
same β setting, the number of anchors will affect the clus-
tering performance. Obviously, when the number of anchors
are k or 2k, most datasets have the best performance. This
proves the importance of anchors selection.

Experimentally, we record the objective function value
of the proposed SMGC in each iteration. Due to space
constraints, we present the corresponding results of three
datasets, i.e., Caltech101-20, CCV, and NUSWIDEOBJ, as
shown in Fig. 5. From the Fig. 5, we can see that most of the
datasets tend to converge in 12 iterations.

Influence of Prior Anchor Graph Regularization
In this section, in order to verify the effectiveness of the pro-
posed prior anchor graph regularization (PAGG), we destroy
the PAGG function by setting β = 0, which is actually the
comparison method CAG. Then, we verify the effectiveness
of PAGG from two aspects, namely clustering performance
and anchor distribution. From the perspective of clustering
performance, our proposed SMGC is superior to CAG.

Furthermore, we take UCI-DIGIT dataset as an example
to draw the distribution of anchors, which the number of
samples, views and clusters of UCI-DIGIT are 2000, 3 and
10, respectively (Tang et al. 2021). Because the number of
clusters in UCI-DIGIT dataset is relatively small, it is easy to
display. From Fig. 6, it is not difficult to see that the anchors
selected by SMGC are uniform distributed in each cluster.
However, CAG method select anchors that are distributed
inhomogeneous in each cluster, as shown in Fig. 2 (a). This
is because our proposed SMGC makes use of the prior an-
chor labels (PAL) to make the anchors with discriminative
cluster structure and uniform distributed property.

Sample Anchor

Figure 6: Visualization of anchors on UCI-DIGIT dataset.

Computational Time Comparison
For fairness, we compare the computational time on six
benchmark datasets in detail. It is worth noting that un-
recorded datasets cannot be tested because of insuffi-
cient memory. Moreover, the comparison methods are not
recorded due to the inability to test too many results. As can
be seen from Fig. 7, the computation time of our proposed
SMGC is significantly lower than MVC methods based on
subspace learning. Moreover, it is equal to the MVC meth-
ods based on anchor, which proves that the PAGG does not
increase the computation time too much.
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Figure 7: Computational time of different methods.

Conclusion
In this paper, we propose a novel MKC method, i.e., SMGC,
which innovatively propose PAGG using the PAL to con-
strain anchor selection. By doing this, the dynamically se-
lected anchors are uniform distributed in different clus-
ters and have a discriminative cluster structure. Next, we
learn the similarity relationship between optimal anchors
and original data points, and then obtain a high quality bi-
partite graph. Moreover, the k-means is applied to bipar-
tite graph to obtain the clustering result. Extensive experi-
ments prove the effectiveness and efficiency of the proposed
SMGC. In the future, we plan to further study how to im-
prove the distribution and representativeness of anchors.
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