
Random Walk Conformer: Learning Graph Representation from Long and Short
Range

Pei-Kai Yeh, Hsi-Wen Chen, Ming-Syan Chen
National Taiwan University

{pei-kai, hwchen}@arbor.ee.ntu.edu.tw, mschen@ntu.edu.tw

Abstract

While graph neural networks (GNNs) have achieved notable
success in various graph mining tasks, conventional GNNs
only model the pairwise correlation in 1-hop neighbors with-
out considering the long-term relations and the high-order
patterns, thus limiting their performances. Recently, several
works have addressed these issues by exploring the motif,
i.e., frequent subgraphs. However, these methods usually re-
quire an unacceptable computational time to enumerate all
possible combinations of motifs. In this paper, we intro-
duce a new GNN framework, namely Random Walk Con-
former (RWC), to exploit global correlations and local patterns
based on the random walk, which is a promising method to
discover the graph structure. Besides, we propose random
walk encoding to help RWC capture topological information,
which is proven more expressive than conventional spatial
encoding. Extensive experiment results manifest that RWC
achieves state-of-the-art performance on graph classification
and regression tasks. The source code of RWC is available at
https://github.com/b05901024/RandomWalkConformer.

Introduction
Graph Neural networks (GNNs) (Kipf and Welling 2017;
Veličković et al. 2018; Xu et al. 2019) serve as a promising
tool for several graph mining problems, e.g., social network
analysis (Dwivedi et al. 2020), and molecular design (Hu
et al. 2021). Specifically, GNNs derive the node (or graph)
embedding by iteratively aggregating the neighbors’ fea-
tures with the uniform weight (Kipf and Welling 2017) or
the attention mechanism (Veličković et al. 2018) and uti-
lize the learned representations for the downstream tasks.
Another line of studies argued the existence and the cor-
rectness of the given graph topology, thus generalizing the
GNN by Transformer (Rong et al. 2020; Ying et al. 2021),
which has achieved celebrated success in modeling structured
data in various domains, including natural language (Devlin
et al. 2019), speech (Gulati et al. 2020), and computer vi-
sion (Dosovitskiy et al. 2021). Instead of only aggregating
the node features along with the linked nodes, Transformer
utilizes a self-attention mechanism, i.e., calculating the pair-
wise relation between every node, which is more powerful
than conventional GNNs (Ying et al. 2021).

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

While the studies mentioned above mainly target the pair-
wise correlation between nodes, i.e., one-to-one, the high or-
der pattern in graphs, i.e., many-to-many (Zhao et al. 2022),
however, have not been fully discovered. Generally, most
GNNs expressiveness is bounded by the first order Weisfeiler-
Leman (1-WL) isomorphism test (Xu et al. 2019), which can
not effectively solve some fundamental graph mining tasks,
e.g., counting cycles or triangles (Chen et al. 2020). There-
fore, several recent works empower GNN with motifs, i.e.,
frequent subgraphs (Zhou et al. 2021). Morris et al. (Mor-
ris et al. 2019) incorporate K-WL in the design of more
powerful GNNs, and Zhao et al. (Zhao et al. 2022) leverage
star graph as subgraph patterns in their GNN framework.
However, enumerating all possible motifs is computationally
extensive, which usually grows exponentially, i.e., O(|G|k)
where |G| is the size of the graph, and k is the size of the
motif.1 Meanwhile, the random walk serves as a promising
technique to estimate the motif by checking only a tiny frac-
tion of all the induced subgraphs (Han and Sethu 2016). In
this paper, we aim to incorporate the random walk for motif
discovery and encode these high-order patterns into GNN.

To effectively capture nodes correlation and estimate the
motifs, we propose Random Walk Conformer (RWC), in-
cluding two major components, Random Walk Self Attention
Network (RW-SAN) and the Random Walk Convolution (RW-
Conv). By processing nodes sampled by the random walk,
RW-SAN measures the long-range correlation between the
node pairs to aggregate the topological information in the
whole random walk sequence. Then, RW-Conv encodes the
short-range local structure by processing the convolutional
module on the random walk sequence, which can be regarded
as the graph kernels (Toenshoff et al. 2021).In contrast, con-
ventional transformer ignores the high-order patterns and can-
not correctly analyze the graph structure (Zhang and Li 2021;
Zhao et al. 2022). Furthermore, we propose Random Walk
Encoding to extract both topological and contextual informa-
tion between two nodes based on the random walk sequences.
In contrast, several previous works employ the shortest path
to analyze the global structural information (Ying et al. 2021;
Vaswani et al. 2017) to empower the capability of Trans-

1Counting all the subgraphs with size k has an upper bound of
O(|E|k) and a lower bound of O(|V|ck−1), where V, E are the set
of nodes and edges in the graph, and c is the average number of
neighbors for each node (Itzhack, Mogilevski, and Louzoun 2007).

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

10936

former for modeling the graph data. However, as there are
probably many paths between these two nodes on the graph,
a fixed shortest path may not correctly represent the relation.
We also theoretically prove that by sampling random walk
with enough length, random walk encoding is strictly more
powerful than 1-WL and conventional spatial encoding based
on the shortest path.

The contributions are summarized as follows.
• We propose a new graph learning framework, Random

Walk Conformer (RWC), which extracts the advantages
from both Transformer-based and motif-based models
with the graph conformer and random walk encoding.

• We theoretically prove that random walk encoding is
strictly more powerful than 1-WL and spatial encoding
based on the shortest path.

• Extensive experiments on eight benchmark datasets man-
ifest that RWC achieves the best results on the leader-
boards compared to several state-of-the-art methods on
graph classification and regression tasks.

Related Work
Recently, Graph Neural Networks (GNNs) (Kipf and Welling
2017; Hamilton, Ying, and Leskovec 2017) have gained sig-
nificant attention from research fields, which derive node
embedding by aggregating its own and neighboring node
features for several graph learning tasks. While several recent
works (Dwivedi and Bresson 2021; Ying et al. 2021) point
out the existence and the correctness of the graph topology,
several works learn the graph representation by Transformer,
which encodes the entire node set for aggregation. Dwivedi
et al. (Dwivedi and Bresson 2021) fuse node positional fea-
tures using Laplacian eigenvectors, and they suggest that the
attention mechanism should only aggregate the information
from neighbors. Kreuzer et al. (Kreuzer et al. 2021) input
the eigenfunctions of a graph and project them into a learned
positional encoding, which allows the network to use up to
the entire Laplace spectrum of each graph. Ying et al. (Ying
et al. 2021) use encodings based on the shortest path in the
graph to capture the relationship for node pairs and repre-
sent the graph. However, the studies mentioned above focus
on the pair-wise correlation and ignore the high-order pat-
tern on a graph, i.e., motif. Therefore, several works extend
GNNs to exploit motifs to capture more complex subgraph
structures (Morris et al. 2019; Maron et al. 2019b). Sankar
et al. (Sankar, Zhang, and Chang 2017) and Lee et al., (Lee
et al. 2019) employ convolution and attention mechanisms
to integrate features extracted from predefined motifs. While
the scalability of motif-based method GNNs is limited by ex-
ploring all motifs on the graph motifs (Han and Sethu 2016),
Toenshoff et al. (Toenshoff et al. 2021) employ the random
walk sequence and process them with 1D CNN to discover
the sequential pattern on the graph. However, there are little
works that extract both long-range relations of graphs and
structural information from motifs.

Preliminary
In the following, we present our problem formulation follow-
ing the conventional custom of notation. Scalars or elements

of a set are denoted by italic lowercase letters, e.g., x and xi,
while vectors are denoted by boldface lowercase letters, e.g.,
x. Matrices are represented by boldface capital letters, e.g.,
X, and sets are denoted by calligraphic letters, e.g., X .

Graph Classification/ Regression Tasks
Let G = (V, E) denote a graph, and xi is the feature vector
of node vi ∈ V . Given a set of graphs G = {Gi}i∈[1,N]

and their labels (for classification) or ground-truth values
(for regression) Y = {yi}i∈[1,N], we aim to learn model
parameters θ as follows.

θ∗ = argmin
θ

∑
i∈[1,N]

L(fθ(Gi), yi),

where L is a task-oriented loss function, e.g., cross entropy
for classification or mean absolute error for regression.

Graph Neural Network
GNNs use the graph G and associated node features X to
learn a representation vector of a node, hv , or the entire graph,
hG. Modern GNNs follow a learning schema that iteratively
updates the representation of a node by aggregating repre-
sentations of its first or higher-order neighbors. We denote
h
(k)
i as the representation of vi at the k-th layer and initialize

h
(0)
i = xi. Formally, the k-th layer of a GNN is

a
(k)
i = AGGREGATE(k)

({
h
(k−1)
j

∣∣∣vj ∈ N (vi)
})
,

h
(k)
i = COMBINE(k)

(
h
(k−1)
i ,a

(k)
i

)
,

(1)

whereN (vi) denotes the set of neighbors of vi. The AGGRE-
GATE function is used to gather information from neighbors.
Different architectures for AGGREGATE have been pro-
posed, including uniform weight (Kipf and Welling 2017;
Xu et al. 2019) or neural networks (Hamilton, Ying, and
Leskovec 2017; Veličković et al. 2018). The COMBINE
function, which is usually a concatenation followed by a lin-
ear mapping, fuses the information from neighbors into the
node representation.

Transformer
Limited to the existence and the correctness of graph topol-
ogy, recent efforts utilize Transformer (Vaswani et al. 2017),
which aggregates the node features along with every node by
the self attention mechanism.

a
(k)
i =

∑
vj∈V

exp(q
(k−1)>
i k

(k−1)
j)v

(k−1)
j∑

vj∈V
exp(q

(k−1)>
i k

(k−1)
j)

,

h
(k)
i = a

(k)
i + αh

(k−1)
i

where the node embedding of vi at the k-th layer is aggre-
gated along with all nodes on the graph. h(k−1)

i is projected
by three matrices WQ, WK , and WV as the query q

(k−1)
i ,

key k
(k−1)
i , and value v

(k−1)
i vector, respectively. Note that

the α is a trade-off parameter for the residual connection
to prevent over-smoothing problem (Hamilton, Ying, and

10937

Leskovec 2017). With self attention mechanism, Transformer
can derive the node embedding vi by considering every node
V without the graph topology, i.e., N (vi).

For graph classification or regression tasks, the READ-
OUT function aggregates node features h(K)

i from the final
iteration to obtain the entire graph’s representation hG.

hG = READOUT
({

h
(K)
i

∣∣∣vi ∈ V}) (2)

Since nodes are unordered in the graph, READOUT is a
permutation invariant graph-level pooling function, e.g., sum-
mation (Xu et al. 2019) or attention (Baek, Kang, and Hwang
2021; Ying et al. 2018). Then, an additional classifier is
trained to predict the label/value according to the embedding
vector hG.

Method
In this section, we introduce a new GNN framework, namely
Random Walk Conformer (RWC), to capture the global pair-
wise relations and consider the local subgraph structures
efficiently. First, we introduce the random walk generator
with a novel spatial encoding to discover motifs. Then, we
detail the design of the graph conformer. Fig. 1 illustrates the
overall architecture of RWC.

Random Walk Encodings
While the output of GNN (Transformer) is permutations in-
variant to the input data, it is fundamental to encode the
auxiliary topological information by spatial encoding (Ying
et al. 2021). Therefore, previous works introduce spatial en-
coding to help the models exploit the global structure in local
aggregation, which can be categorized into absolute spatial
encoding (Vaswani et al. 2017) and relative spatial encod-
ing (Ke, He, and Liu 2021). Absolute spatial encoding adds a
vector based on sinusoidal functions to each of the input fea-
tures by nodes’ order, which is also sensitive to the sequence
length (Shaw, Uszkoreit, and Vaswani 2018). Besides, nodes
are permutations invariant in the graph. Thus, relative posi-
tion encoding is proposed later (Ying et al. 2021) by adding
the information depending on the relative distance of each
node pair in the input sequence to the attention logits.

However, previous relative spatial encodings (Ying et al.
2021) are typically based on the shortest path between two
nodes, which only considers a fixed single path on the graph.
Therefore, we introduce Random Walk Encodings, which
exploit the relative position between two nodes by multiple
paths from the random walk. Generally, the random walk
sequence S = {si}li=1 is a l-length node sequence sampled
from the graph G = {V, E}, where si ∈ V . A random walk
sequence in a graph is generated by starting at some initial
node s1 and iteratively sampling the next node si+1 randomly
from the neighbors N (si) of the current node si. Since the
nodes on a sparse graph are with a small degree, the uni-
form sampling on the neighborhood set tends to backtrack
often and is challenging to discover long-range patterns. To
explore further nodes, the random walk is sampled by the
non-backtracking method, i.e., excluding the previous node

unless it is the only neighbor. Thus, each node’s predecessor
and successor are forced to be different. 2

Given the random walk sequence S, the random walk
distance D(vi, vj) is defined as follows.

D(vi, vj) ={
min

({
|m− n|

∣∣∣sm = vi ∧ sn = vj ,
})
, if vi, vj ∈ S

∞, otherwise
,

(3)

which represents the shortest distance between vi and vj
in the random walk sequence. Thus, we can find different
paths by sampling multiple random walks to discover more
diverse patterns between a node pair. Note that shortest path
encoding can be regarded as a special case of the random
walk encoding with infinity walk length l to cover the whole
graph. Similar to other spatial encodings, we trained the
embedding function ρsi,j = ψs(D(vi, vj)), which maps the
distance between vi and vj in Eq. (3) to a trainable parameter
as our random walk encoding.3

By the random walk encoding, we can convert a random
walk sequence, i.e., a simple line graph to a motif by utilizing
the global topological information. While the random walk
encoding can explore some specific substructure on the graph
by comparing multiple random walks, the shortest path en-
coding only focus on the fixed pattern of graphs. For example,
we can explore the substructures formed by nodes vi and vj
such as k-cycles in molecular networks, where D(vi, vj) is
0 in one sequence and k in another. However, it cannot be
detected by the conventional relative spatial encoding with a
single shortest path. We conclude the proof as follows.

Theorem 1 (Proof in Appendix). With a sufficient number
of layers, random walk encoding is strictly more expressive
than that based on a fixed shortest path.

We also theoretically prove that random walk encoding is
more powerful than 1-WL test.

Theorem 2 (Proof in Appendix). With a sufficient number
of layers, random walk encoding is strictly more expressive
than 1-WL test.

Since the distance equal to 1 implies that the two nodes
are their mutual 1-hop neighbor, with a sufficient number
of layers or length of the random walk such that all the 1-
hop neighbors are explored for each node, 1-WL test can be
viewed as a special case of the random walk encoding. The-
orem 1 implies that random walk encoding can provide the
structural information to the Transformer-based model while
current relative encoding methods cannot. Furthermore, since
the expressiveness of most GNNs is bounded by 1-WL, The-
orem 2 shows that random walk encoding is more powerful
than most modern GNNs, which illustrates the expressiveness
of random walk encoding.

2The expected length of the random walk to discover all nodes
in the graph is O(4|V||E|) (Abdullah 2012). Hence, for RWC, the
random walk length l should be much larger than |V| to capture
enough information from the nodes.

3Note that each layer can either train its own embedding func-
tion or share the parameter across all blocks.

10938

Figure 1: Random Walk Conformer (RWC). The model is composed of several Random Walk Conformer blocks. Each block
consists of a Feed Forward Module (FF), a Random Walk Self Attention Network (RW-SAN), a Random Walk Convolution
(RW-Conv), and a second FF. With random walk encoding, the structural information is injected into RWC.

Random Walk Conformer
While Transformer is good at modeling the global structure,
they are less capable of extracting fine-grained local patterns.
Therefore, Conformer (Gulati et al. 2020) is proposed by
employing the convolution module to vanilla Transformer.
Unlike the sequence data in NLP tasks that can easily pass
the architecture stacked by attention module and convolution
module, it is non-trivial to apply the Conformer architecture
on graphs that usually have specific structures, i.e., motifs,
rather than a simple sequence. To gather global structure and
discover local motifs efficiently, we introduce a new GNN
framework, namely Random Walk Conformer (RWC), which
consists of two major components Random Walk Self Atten-
tion Network (RW-SAN) to capture the global information
among graphs by self attention and Random Walk Convolu-
tion (RW-Conv) to exploits the motifs.

Random Walk Self Attention Network Compared to
conventional GNNs (Xu et al. 2019; Hamilton, Ying, and
Leskovec 2017), Transformer (Vaswani et al. 2017) general-
izes the GNNs by carefully analyzing the pairwise correlation
between every node to deal with the limited graph topol-
ogy (Dwivedi and Bresson 2021). By a single self attention
layer, Transformer can potentially allow all the nodes of an
input graph to communicate; however, the price to pay is that
this core component does not take any topological structure
of the graph into account. Besides, the time complexity of
the Transformer is O(|V|2d), where d is the dimension of
the feature, thus limiting the applicability of the Transformer,
especially on a large graph. Therefore, for a large graph, one
can utilize the random walk to sample a subset of nodes
instead of considering the entire graph. Random Walk Self
Attention Network (RW-SAN) is formulated as:

a
(k)
i =

∑
vj∈S

fj exp(q
(k−1)>
i k

(k−1)
j + ρsi,j + ρpi,j)v

(k−1)
j∑

vj∈S
fj exp(q

(k−1)>
i k

(k−1)
j + ρsi,j + ρpi,j)

.

(4)

Note that fj is the weight for the attention mechanism, we can
either set it to 1 or reweight the node based on the occurrence
of each node, which is the number of node vj in the random
walk sequence over the walk length l. Therefore, RW-SAN is
able to estimate the statistics in the graph, i.e., the occurrence
of a node in the random walk reflects its importance.

Since it is challenging to model the topological informa-
tion by Transformer, we utilize the random walk encoding
ρsi,j = ψs(vi, vj) which maps the distance between a sam-
pled random walk D(vi, vj) to a scalar. Furthermore, the
edges may also consist of rich contextual features (Dwivedi
et al. 2020; Hu et al. 2021), e.g., edges represent the bonds
between node pairs and have features to describe the type
of the bonds in a molecular graph. Similar to random walk
encoding, we choose the shortest path in the random walk
instead of the fixed shortest path in the graph for each node
pair. Given the shortest path Pi,j for vi to vj in the random
walk, which represents the set of edges linked vi to vj in the
random walk sequence S, we defined the path features as
follows.

ρpi,j =
1

|Pi,j |
∑
e∈Pi,j

wp>e, (5)

where e and wp denote the features of the edge e and the
trainable vector for weighted sum, respectively. The random
walk encoding ρsi,j and path features ρpi,j serve as a bias term
in the self attention mechanism, which can utilize both topo-
logical and contextual information from the given random
walk path. Since there are residual connections between all
modules, if the node does not exist in the random walk se-
quence, it will not be updated in this layer. In other words,
the embeddings of those unsampled nodes are the same in
the next layer. Therefore, to reduce the chance of missing
some nodes, we sample the random walk with a large enough
length l.

Random Walk Convolution Compared to Transformer,
which models the global interactions, CNN exploits local
features and is used as the de-facto computational block with

10939

Figure 2: Assume the kernel size is 4, by sampling the random walk (red path) and processing the line graph with convolution
operation, RWC can discover several motifs in the graph. We color the starting node in yellow for each motif.

a shared kernel. Inspired by Toenshoff et al. (Toenshoff et al.
2021), we adopt Random Walk Convolution (RW-Conv) to
iteratively update node embeddings from the random walk se-
quence. In the k-th layer, RW-Conv first samples a sequence
of nodes with the associated hidden features Sk−1 from RW-
SAN. Similar to RW-SAN, we also leverage the topological
and contextual information from random walk encoding and
edge features. For the random walk encoding rk−1n ∈ Rw,
RW-Conv looks up the w predecessors of sn, storing their
distances to sn, which is derived from Eq. (3), and mapping
each distance to a scalar similar to RW-SAN. In addition to
node features, we also utilize the edge features to explore the
contextual information by RW-Conv. For each node sn, we
concatenate random walk encoding, and the edge features of
predecessor em,n with sm and the successor en,o with so to
the original node features. The final input of the RW-Conv is
defined as follows.

ŝ(k−1)
n = s(k−1)

n || rk−1
n || em,n || en,o, (6)

where || is the concatenation operation. In contrast, RW-SAN
exploits the information to the attention map because the
attention map represents the global pairwise relation while
convolution is used to detect local structural information
formed as motifs (see Figure 2).

Then, we process hidden features of the random walk
sequence Ŝk−1 by 1D CNN with kernel size w.

s(k)n =
∑

i∈b−w
2
,w
2
c

w
(k)
i � ŝ

(k−1)
n+i + b(k), (7)

where � denotes the Hadamard product between the input
features ŝk−1 and the kernel vector wi with the bias b(k).
Therefore, RW-Conv gathers motif information by perform-
ing a convolution operation over the given random walk se-
quence, where the kernel in the CNN acts like a graph kernel
and slides over the walk to extract features from each seg-
ment as a motif. Since a node vi may occur multiple times in
the random walk sequence, we take the average of the hidden
features and reorder them to node features matrix H(k) as
the input of the next layer.

Readout To derive the whole graph embedding, one
straightforward method is to sum the embedding of every
node (Lee et al. 2019); however, direct summation treats
each node equally, thus leading to the over-squashing prob-
lem (Alon and Yahav 2020). In contrast, we employ the
virtual node, which is a special node that connects to all the

Algorithm 1: Random Walk Conformer (RWC)
1: Adding degree encoding to node features.
2: for k ← 1 to K do
3: Sample the random walk sequence S with random walk

encodings ρs

4: H′(k−1) = H(k−1) + 1
2

FF(H(k−1))

5: H′′(k−1) = H′(k−1) + RW-SAN(H′(k−1),ρs)

6: Construct the random walk features S(k−1) from H′′(k−1)

by the order of S.
7: S(k) = S(k−1) + RW-Conv(S(k−1),ρs)

8: Rearrange the value in S(k−1) to the corresponding node
index in H′′(k).

9: H′(k) = H′′(k) + 1
2

FF(H′′(k))
10: H(k) = LayerNorm(H′(k))

11: Output the final embedding of the virtual node

nodes in the graph and can help nodes to exchange informa-
tion effectively, and thus improve the performance (Gilmer
et al. 2017; Li, Cai, and He 2017). Furthermore, since the
virtual node aggregates information from every node in the
graph, we adopt the hidden feature of the virtual node as
the whole graph embedding and train an additional classifier
for the downstream task. Since RWC depends on the ran-
dom walk, one may concern about the robustness of RWC.
Sampling different random walks can be viewed as data aug-
mentation (You et al. 2020) that provides various motifs in
each training iteration, which helps RWC become more ro-
bust. During our experiments, we notice that the learning
curve can converge after several iterations.

Architecture
Fig. 1 illustrates the architecture of RWC. In the k-th layer,
we first generate the random walk sequence S with associated
random walk encodings. Then, RWC constructs the hidden
features S(k−1) by the lookup function on the previous layer
H(k−1) and processes the features by a conformer block.
The conformer block sandwiches the proposed RW-SAN and
RW-Conv modules by two Feed Forward networks (FFs).
Furthermore, the residual connection is adopted within each
module in a conformer block. Finally, we obtain the output
features H(k) of each node by rearranging the processed node
embeddings from the random walk sequence w.r.t to the node
index. If a node is sampled multiple times in the random walk
sequence, we average the node features as the final output.

10940

In addition, RWC can still obtain the node embedding that
does not occur in the random walk sequence through residual
connection, i.e., the embedding passes through two FFs.

The total complexity of RWC is O(|V|2d+ |V|k(d+w)),
where k is kernel size, and w is window size for RW-Conv.
Generally, |V| � k, d, w. Hence, the complexity can be sim-
plified to O(|V|2d), the same as Transformer. In comparison,
the complexity of K-WL is O(|V|K+1d2 log |V|) (Immer-
man and Sengupta 2019), which is much larger than RWC.
Detailed pseudocode is provided in Algorithm 1.

Experiments
Here, we evaluate RWC on graph classification with six
datasets and graph regression with two datasets, compared to
both graph kernel methods and state-of-the-art GNNs.

Experiment Setup
Datasets and Evaluation For graph classification, we test
RWC on six TUDataset benchmarks (Morris et al. 2020) from
various domains, including one biology (i.e., PROTEINS),
three chemistry (i.e., MUTAG, PTC, and NCI1), and two
social (i.e., IMDB-B and IMDB-M) datasets, measured by
the accuracy score. For graph regression, we further conduct
experiments on two public molecular benchmarks. ZINC-
500k (Dwivedi et al. 2020) is a molecular dataset with 12K
molecules that aims to predict the strained solubility. Besides,
PCQM4Mv2 (Hu et al. 2021) is currently the most extensive
graph regression dataset with 3.7M molecules, which aims at
predicting the HOMO-LUMO energy gap. The node label is
the atomic number, and the edge labels specify the bond type
for both datasets. The mean absolute error (MAE) measures
the performance graph regression. We adopt the standard
split for all benchmarks.

Implementation Details For all experiments, we use a lin-
ear learning rate scheduler with the peak learning rate 1e− 3
and the end learning rate 1e− 9. The optimizer of RWC is
AdamW with the weight decay in 0.01. To avoid exploding
gradient, we set a gradient clipping value to 5. Following
Toenshoff et al. (Toenshoff et al. 2021), the random walk
length for training is 50 for all experiments. Note that the
lengths of random walks for validating and testing are longer
than that for training to prevent missing some nodes while
evaluating. The random walk length for testing is set to 150
for TUDatasets and ZINC-500k and 100 for PCQM4Mv2.
Besides, the window size w and kernel size are set to 8 and 9,
respectively. Due to the parameter constraint of Benchmark-
ing GNN leaderboard (Dwivedi et al. 2020), we keep the total
parameters of RWC approximate to 500K for ZINC-500k.
Detailed hyper-parameter settings are reported in Appendix.

Graph Classification
Table 1 summarizes the quantitative results of the graph clas-
sification by comparing graph kernel methods and GNNs. For
chemistry datasets, RWC outperforms all baselines by at least
2% on MUTAG, and 6.2% on PTC in terms of accuracy. Sim-
ilarly, RWC improves the accuracy by 2.2% on the biological
dataset PROTEINS, and the social networks by 1% on IMDB-
B and 0.2% on IMDB-M. Specifically, RWC can outperform

all graph kernel methods except K-WL method on NCI1
since there are 37 discrete labels in this dataset, and K-WL
achieves better performance with a large number K = 37.
However, the computation time of K-WL is unacceptable for
evaluating all combinations of the k-order subgraphs. Note
that motif-based GNNs outperform conventional GNNs that
merely aggregate the information from neighbors. Specif-
ically, CIN explores the graph’s cellular structures, which
is suitable for biology and chemistry graph data. Further-
more, GSN shows similar results in biology and chemistry
datasets, achieving impressive performance on social net-
works. RWC employs the RW-SAN to measure the global
pairwise correlations and RW-Conv to carefully analyze the
local substructures of graphs.

Graph Regression
The results of the graph regression task are shown in Table 2.
RWC achieves state-of-the-art performance by outperform-
ing the best motif-based GNNs (CIN) by 14% and the best
Transformer-based method (GRPE) by 28%. In ZINC-500k,
we follow the budget constraints with 500K parameters for a
fair comparison (Dwivedi et al. 2020). The results manifest
that the RWC can achieve the best performance even with
limited parameters by effectively discovering the motif by the
random walk sequences with RW-SAN and RW-Conv. For
PCQM4Mv2, since the test set is unavailable, we compare
the result to the validation set with the best performance of
0.0837 in terms of MAE, which outperforms current state-
of-the-art methods on the official leaderboard. Similar to
the graph classification task, the motif-based GNNs, i.e.,
CIN and CRaWl, possess the motifs and thus beat those
conventional GNNs on the chemistry datasets because the
molecules consist of rich substructures, e.g., rings. On the
other hand, Transformer-based methods, i.e., Graphormer,
EGT, and GRPE, also outperform other GNNs since it mod-
els global relations and leverages spatial encoding to ex-
ploit the topological information on graphs, especially on a
large dataset PCQM4Mv2. By leveraging the strengths of
Transformer-based and motif-based GNNs, RWC can outper-
form all baselines significantly.

Ablation Studies
We conduct ablation studies to evaluate the importance of
different modules in RWC on graph classification (NCI1) and
graph regression (ZINC-500k) in Table 3. We first validate
the importance of RW-SAN by comparing RW-SAN with the
weighted and unweighted version, i.e., calculating the occur-
rence of each node fj in the random walk in Eq. (4). The
experimental results manifest that adopting RW-SAN can
boost RWC’s performance, and assigning weight, i.e., occur-
rence, to the attention mechanism according to the occurrence
in the random walk can also improve the performance. Then,
we investigate the effectiveness of RW-Conv, which exploits
the motifs to strengthen RWC’s performance significantly.
Last, we compare the spatial encoding based on the shortest
path (SP) and the random walk (RW). Random walk encoding
is more powerful than shortest path encoding on ZINC-500k.
We also theoretically prove that our random walk is more ex-
pressive than the shortest path in Theorem 1. While random

10941

Method MUTAG ↑ PTC ↑ PROTEINS ↑ NCI1 ↑ IMDB-B ↑ IMDB-M ↑
GK (k = 3) (Shervashidze et al. 2009) 81.4 ± 1.7 55.7 ± 0.5 71.4 ± 0.3 62.5 ± 0.3 - -
PK (Neumann et al. 2016) 76.0 ± 2.7 59.5 ± 2.4 73.7 ± 0.7 82.5 ± 0.5 - -
WL kernel (Shervashidze et al. 2011) 90.4 ± 5.7 59.9 ± 4.3 75.0 ± 3.1 86.0 ± 1.8 73.8 ± 3.9 50.9 ± 3.8

DGCNN (Zhang et al. 2018) 85.8 ± 1.8 58.6 ± 2.5 75.5 ± 0.9 74.4 ± 0.5 70.0 ± 0.9 47.8 ± 0.9
IGN (Maron et al. 2019b) 83.9 ± 13.0 58.5 ± 6.9 76.6 ± 5.5 74.3 ± 2.7 72.0 ± 5.5 48.7 ± 3.4
GIN (Xu et al. 2019) 89.4 ± 5.6 64.6 ± 7.0 76.2 ± 2.8 82.7 ± 1.7 75.1 ± 5.1 52.3 ± 2.8
PPGNs (Maron et al. 2019a) 90.6 ± 8.7 66.2 ± 6.6 77.2 ± 4.7 83.2 ± 1.1 73.0 ± 5.8 50.5 ± 3.6
Natural GN (de Haan, Cohen, and Welling 2020) 89.4 ± 1.6 66.8 ± 1.7 71.7 ± 1.0 82.4 ± 1.3 73.5 ± 2.0 51.3 ± 1.5
GSN (Bouritsas et al. 2020) 92.2 ± 7.5 68.2 ± 7.2 76.6 ± 5.0 83.5 ± 2.0 77.8 ± 3.3 54.3 ± 3.3
RWNN (Nikolentzos and Vazirgiannis 2020) 89.2 ± 4.3 65.8 ± 5.5 74.7 ± 3.3 73.9 ± 1.3 70.8 ± 4.8 48.8 ± 2.9
CRaWl (Toenshoff et al. 2021) 88.2 ± 5.6 63.9 ± 4.9 74.1 ± 4.4 82.0 ± 2.0 72.7 ± 2.8 47.8 ± 3.9
CIN (Bodnar et al. 2021) 92.7 ± 6.1 68.2 ± 5.6 77.0 ± 4.3 83.6 ± 1.4 75.6 ± 3.7 52.7 ± 3.1
GNN-AK (Zhao et al. 2022) 91.3 ± 7.0 67.7 ± 8.8 77.1 ± 5.7 85.0 ± 2.0 75.0 ± 4.2 52.7 ± 4.8

RWC 94.7 ± 3.7 74.4 ± 4.4 79.4 ± 4.7 82.2 ± 1.5 78.8 ± 3.1 54.5 ± 2.9

Table 1: Results on graph classification.

Method ZINC ↓ PCQM4Mv2 ↓
GCN (Kipf and Welling 2017) 0.3671 0.1153
GraphSAGE (Hamilton, Ying, and Leskovec 2017) 0.3982 0.1199
GIN (Xu et al. 2019) 0.5264 0.1083
PNA (Corso et al. 2020) 0.1421 0.1231
GT (Dwivedi and Bresson 2021) 0.2265 0.1002
CRaWl (Toenshoff et al. 2021) 0.0851 0.0902
Graphormer (Ying et al. 2021) 0.1228 0.0865
EGT (Hussain, Zaki, and Subramanian 2021) 0.1085 0.0869
GRPE (Park et al. 2022) 0.0942 0.0890
CIN (Bodnar et al. 2021) 0.0790 0.0871
GNN-AK (Zhao et al. 2022) 0.0801 0.0881

RWC 0.0678 0.0837

Table 2: Results on graph regression.

walk encoding show relatively weak performance in some
case of NCI1, our potential explanation is that random walk
encoding requires a larger number of layers, and there are 16
layers for ZINC-500k and 4 layers for NCI1.

Sensitivity Test
As a key component of RWC, we evaluate the impact of
various parameter of random walk.

Effect of Random Walk Sampling Method We follow
the random sampling method from CRaWl (Toenshoff et al.
2021) and Node2Vec (Grover and Leskovec 2016), which
conducts random walks without backtracking to exploit the
high-order neighborhood more effectively. We also compare
the performance of non-backtracking and backtracking in
Table 4. Non-backtracking can significantly outperform back-
tracing since it helps RWC to discover further nodes.

Effect of Training Random Walk Length We also con-
duct experiments for different training walk lengths on ZINC
dataset (with a test length 150) in Table 4. While RWC can
exploit more diverse patterns in the graph with a longer walk
sequence, there is a tradeoff between performance and effi-
ciency. Furthermore, since random walk encoding is more
expressive than shortest path spatial encoding, and if the
length becomes a large number, random walk encoding acts

RW-SAN RW-Conv Enc. ZINC
MAE ↓

NCI1 Acc.
(%) ↑

w/o weighted X SP 0.082 82.4
w/o weighted X RW 0.070 82.6
w/o weighted - SP 0.141 79.1
w/o weighted - RW 0.120 76.2

- X SP 0.090 80.6
- X RW 0.077 81.2

w/ weighted X SP 0.081 82.6
w/ weighted X RW 0.068 82.2
w/ weighted - SP 0.130 75.7
w/ weighted - RW 0.116 75.8

Table 3: Ablation studies.

training walk length
Sampling method 20 50 100 200

Non-backtracking 0.191 0.068 0.065 0.077
Backtracking 0.299 0.131 0.091 0.085

Table 4: Sensitivity test on ZINC dataset. (MAE ↓)

like shortest path spatial encoding, thus the walk length in-
deed affects the model performance.

Conclusion
We have proposed a novel GNN, namely Random Walk Con-
former (RWC), which benefits from its attention mechanism
to extract global pairwise relations and random walk convo-
lution operation to model the local structure from motifs. Fur-
thermore, we propose novel random walk encoding to exploit
motifs on graphs, which is theoretically proven to be more
expressive than conventional spatial encoding. Experiment
results manifest that RWC achieves state-of-the-art perfor-
mance in various domains, including biological, chemistry,
and social datasets for graph classification and regression.

10942

Acknowledgments
This work is supported by MOST Project No. 111-2221-E-
002-135-MY3 and No. 111-2223-E-002-006, Taiwan.

References
Abdullah, M. 2012. The Cover Time of Random Walks on
Graphs. CoRR, abs/1202.5569.
Alon, U.; and Yahav, E. 2020. On the Bottleneck of Graph
Neural Networks and its Practical Implications. In Interna-
tional Conference on Learning Representations.
Baek, J.; Kang, M.; and Hwang, S. J. 2021. Accurate Learn-
ing of Graph Representations with Graph Multiset Pooling.
In International Conference on Learning Representations.
Bodnar, C.; Frasca, F.; Otter, N.; Wang, Y. G.; Liò, P.;
Montúfar, G.; and Bronstein, M. 2021. Weisfeiler and
Lehman Go Cellular: CW Networks. In Advances in Neural
Information Processing Systems, volume 34.
Bouritsas, G.; Frasca, F.; Zafeiriou, S.; and Bronstein,
M. M. 2020. Improving graph neural network expressiv-
ity via subgraph isomorphism counting. arXiv preprint
arXiv:2006.09252.
Chen, Z.; Chen, L.; Villar, S.; and Bruna, J. 2020. Can graph
neural networks count substructures? Advances in neural
information processing systems, 33: 10383–10395.
Corso, G.; Cavalleri, L.; Beaini, D.; Liò, P.; and Veličković, P.
2020. Principal Neighbourhood Aggregation for Graph Nets.
In Advances in Neural Information Processing Systems.
de Haan, P.; Cohen, T. S.; and Welling, M. 2020. Natural
graph networks. Advances in Neural Information Processing
Systems, 33: 3636–3646.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), 4171–4186. Minneapolis,
Minnesota: Association for Computational Linguistics.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale. ICLR.
Dwivedi, V. P.; and Bresson, X. 2021. A Generalization of
Transformer Networks to Graphs. AAAI Workshop on Deep
Learning on Graphs: Methods and Applications.
Dwivedi, V. P.; Joshi, C. K.; Laurent, T.; Bengio, Y.; and
Bresson, X. 2020. Benchmarking graph neural networks.
arXiv preprint arXiv:2003.00982.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural Message Passing for Quantum
Chemistry. In Precup, D.; and Teh, Y. W., eds., ICML, vol-
ume 70 of Proceedings of Machine Learning Research, 1263–
1272. PMLR.
Grover, A.; and Leskovec, J. 2016. node2vec: Scalable Fea-
ture Learning for Networks. In KDD.

Gulati, A.; Qin, J.; Chiu, C.-C.; Parmar, N.; Zhang, Y.; Yu,
J.; Han, W.; Wang, S.; Zhang, Z.; Wu, Y.; and Pang, R. 2020.
Conformer: Convolution-augmented Transformer for Speech
Recognition. In Meng, H.; Xu, B.; and Zheng, T. F., eds.,
INTERSPEECH, 5036–5040. ISCA.
Hamilton, W. L.; Ying, Z.; and Leskovec, J. 2017. Inductive
Representation Learning on Large Graphs. In Guyon, I.;
von Luxburg, U.; Bengio, S.; Wallach, H. M.; Fergus, R.;
Vishwanathan, S. V. N.; and Garnett, R., eds., NIPS, 1024–
1034.
Han, G.; and Sethu, H. 2016. Waddling Random Walk: Fast
and Accurate Mining of Motif Statistics in Large Graphs.
In Bonchi, F.; Domingo-Ferrer, J.; Baeza-Yates, R.; Zhou,
Z.-H.; and Wu, X., eds., ICDM, 181–190. IEEE Computer
Society.
Hu, W.; Fey, M.; Ren, H.; Nakata, M.; Dong, Y.; and
Leskovec, J. 2021. OGB-LSC: A Large-Scale Chal-
lenge for Machine Learning on Graphs. arXiv preprint
arXiv:2103.09430.
Hussain, M. S.; Zaki, M. J.; and Subramanian, D. 2021.
Edge-augmented Graph Transformers: Global Self-attention
is Enough for Graphs. arXiv preprint arXiv:2108.03348.
Immerman, N.; and Sengupta, R. 2019. The k-Dimensional
Weisfeiler-Leman Algorithm. CoRR, abs/1907.09582.
Itzhack, R.; Mogilevski, Y.; and Louzoun, Y. 2007. An op-
timal algorithm for counting network motifs. Physica A:
Statistical Mechanics and its Applications, 381: 482–490.
Ke, G.; He, D.; and Liu, T.-Y. 2021. Rethinking Positional
Encoding in Language Pre-training. In International Confer-
ence on Learning Representations.
Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Classifi-
cation with Graph Convolutional Networks. In Proceedings
of the 5th International Conference on Learning Representa-
tions, ICLR.
Kreuzer, D.; Beaini, D.; Hamilton, W.; Létourneau, V.; and
Tossou, P. 2021. Rethinking graph transformers with spec-
tral attention. Advances in Neural Information Processing
Systems, 34.
Lee, J. B.; Rossi, R. A.; Kong, X.; Kim, S.; Koh, E.; and Rao,
A. 2019. Graph convolutional networks with motif-based
attention. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management,
499–508.
Li, J.; Cai, D.; and He, X. 2017. Learning Graph-Level
Representation for Drug Discovery. CoRR, abs/1709.03741.
Maron, H.; Ben-Hamu, H.; Serviansky, H.; and Lipman, Y.
2019a. Provably Powerful Graph Networks. In Wallach,
H. M.; Larochelle, H.; Beygelzimer, A.; d’Alché Buc, F.;
Fox, E. B.; and Garnett, R., eds., NeurIPS, 2153–2164.
Maron, H.; Ben-Hamu, H.; Shamir, N.; and Lipman, Y. 2019b.
Invariant and Equivariant Graph Networks. In International
Conference on Learning Representations.
Morris, C.; Kriege, N. M.; Bause, F.; Kersting, K.; Mutzel,
P.; and Neumann, M. 2020. TUDataset: A collection of
benchmark datasets for learning with graphs. In ICML 2020
Workshop on Graph Representation Learning and Beyond
(GRL+ 2020).

10943

Morris, C.; Ritzert, M.; Fey, M.; Hamilton, W. L.; Lenssen,
J. E.; Rattan, G.; and Grohe, M. 2019. Weisfeiler and le-
man go neural: Higher-order graph neural networks. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 33, 4602–4609.
Neumann, M.; Garnett, R.; Bauckhage, C.; and Kersting,
K. 2016. Propagation kernels: efficient graph kernels from
propagated information. Mach. Learn., 102(2): 209–245.
Nikolentzos, G.; and Vazirgiannis, M. 2020. Random walk
graph neural networks. Advances in Neural Information
Processing Systems, 33: 16211–16222.
Park, W.; Chang, W.-G.; Lee, D.; Kim, J.; and seung-won
hwang. 2022. GRPE: Relative Positional Encoding for Graph
Transformer. In ICLR2022 Machine Learning for Drug Dis-
covery.
Rong, Y.; Bian, Y.; Xu, T.; Xie, W.; Wei, Y.; Huang, W.;
and Huang, J. 2020. Self-supervised graph transformer on
large-scale molecular data. Advances in Neural Information
Processing Systems, 33: 12559–12571.
Sankar, A.; Zhang, X.; and Chang, K. C.-C. 2017. Motif-
based Convolutional Neural Network on Graphs. arXiv
preprint arXiv:1711.05697.
Shaw, P.; Uszkoreit, J.; and Vaswani, A. 2018. Self-Attention
with Relative Position Representations. In Walker, M. A.; Ji,
H.; and Stent, A., eds., NAACL-HLT (2), 464–468. Associa-
tion for Computational Linguistics. ISBN 978-1-948087-29-
2.
Shervashidze, N.; Schweitzer, P.; van Leeuwen, E. J.;
Mehlhorn, K.; and Borgwardt, K. M. 2011. Weisfeiler-
Lehman Graph Kernels. J. Mach. Learn. Res., 12: 2539–
2561.
Shervashidze, N.; Vishwanathan, S. V. N.; Petri, T.;
Mehlhorn, K.; and Borgwardt, K. M. 2009. Efficient graphlet
kernels for large graph comparison. In Dyk, D. A. V.; and
Welling, M., eds., AISTATS, volume 5 of JMLR Proceedings,
488–495. JMLR.org.
Toenshoff, J.; Ritzert, M.; Wolf, H.; and Grohe, M. 2021.
Graph Learning with 1D Convolutions on Random Walks.
arXiv preprint arXiv:2102.08786.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. Advances in neural information processing
systems, 30.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph Attention Networks. In ICLR.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
Powerful are Graph Neural Networks? In Proceedings of the
7th International Conference on Learning Representations,
ICLR ’19, 1–17.
Ying, C.; Cai, T.; Luo, S.; Zheng, S.; Ke, G.; He, D.; Shen,
Y.; and Liu, T.-Y. 2021. Do Transformers Really Perform
Badly for Graph Representation? In Thirty-Fifth Conference
on Neural Information Processing Systems.
Ying, Z.; You, J.; Morris, C.; Ren, X.; Hamilton, W. L.;
and Leskovec, J. 2018. Hierarchical Graph Representation
Learning with Differentiable Pooling. In Bengio, S.; Wallach,

H. M.; Larochelle, H.; Grauman, K.; Cesa-Bianchi, N.; and
Garnett, R., eds., NeurIPS, 4805–4815.
You, Y.; Chen, T.; Sui, Y.; Chen, T.; Wang, Z.; and Shen, Y.
2020. Graph contrastive learning with augmentations. Ad-
vances in Neural Information Processing Systems, 33: 5812–
5823.
Zhang, M.; Cui, Z.; Neumann, M.; and Chen, Y. 2018. An
End-to-End Deep Learning Architecture for Graph Classi-
fication. In McIlraith, S. A.; and Weinberger, K. Q., eds.,
AAAI, 4438–4445. AAAI Press.
Zhang, M.; and Li, P. 2021. Nested graph neural networks.
Advances in Neural Information Processing Systems, 34:
15734–15747.
Zhao, L.; Jin, W.; Akoglu, L.; and Shah, N. 2022. From
Stars to Subgraphs: Uplifting Any GNN with Local Struc-
ture Awareness. In International Conference on Learning
Representations.
Zhou, D.; Zhang, S.; Yildirim, M. Y.; Alcorn, S.; Tong, H.;
Davulcu, H.; and He, J. 2021. High-Order Structure Ex-
ploration on Massive Graphs: A Local Graph Clustering
Perspective. ACM Trans. Knowl. Discov. Data, 15(2).

10944

