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Abstract

Machine learning methods suffer from test-time performance
degeneration when faced with out-of-distribution (OoD) data
whose distribution is not necessarily the same as training data
distribution. Although a plethora of algorithms have been pro-
posed to mitigate this issue, it has been demonstrated that
achieving better performance than ERM simultaneously on
different types of distributional shift datasets is challenging
for existing approaches. Besides, it is unknown how and to
what extent these methods work on any OoD datum with-
out theoretical guarantees. In this paper, we propose a certifi-
able out-of-distribution generalization method that provides
provable OoD generalization performance guarantees via a
functional optimization framework leveraging random distri-
butions and max-margin learning for each input datum. With
this approach, the proposed algorithmic scheme can provide
certified accuracy for each input datum’s prediction on the
semantic space and achieves better performance simultane-
ously on OoD datasets dominated by correlation shifts or
diversity shifts. Our code is available at https://github.com/
ZlatanWilliams/StochasticDisturbanceLearning.

Introduction
Deep learning has achieved success in various domains, in-
cluding computer vision and natural language processing.
However, traditional algorithms only exhibit human-superior
behaviors towards datasets that are independent and identi-
cally distributed (i.i.d.) (Silver et al. 2016), while the per-
formance degenerates when exposed to out-of-distribution
(OoD) data. This precludes many applications, especially in
high-risk sectors, such as healthcare, autonomous driving
and securities, where the distribution shift between training
and testing data is ubiquitous, and the impact of machines’
mistakes is severe.

Many previous works have been done for OoD general-
ization with empirical performance improvements (Ye et al.
2021; Ahuja et al. 2020a). However, due to the complexity of
the OoD generalization problem where the model has to gen-
eralize across various unseen domains, it still remains largely
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unsolved. For example, it was recently found few methods
can outperform the empirical risk minimization (ERM) with
extensive data augmentation (Gulrajani and Lopez-Paz 2021).
It has also been demonstrated that the proposed OoD gen-
eralization algorithms exhibit preferences on one type of
distribution shift and fail on the other. Besides, many em-
pirically well-performed algorithms are provided without
performance guarantees (Ye et al. 2021; Wiles et al. 2022).

All this begs the following question:
Can we have a certifiable OoD generalization algorithm

that may work well under multiple types of distribution shifts?
Previous pioneering work (Zhao et al. 2019; Ben-David

et al. 2010) proposed upper bounds for generalization perfor-
mances, while the bounds are not computable. In this paper,
we propose the Stochastic Disturbance Learning (SDL) al-
gorithm aiming to achieve SOTA performance for different
kinds of distribution shifts that certifiably provide correct
predictions within some sets around the input data in the
semantic space. To achieve this, we derive the performance
guarantee by measuring the performance of deep neural net-
works (DNNs) under random disturbances via a functional
optimization framework, that is not reliant on the local con-
vexity assumption of DNNs. Our main contributions are as
follows:

1. We propose an OoD generalization algorithm that
achieves better performances than ERM on OoD datasets
dominated by correlation shifts and diversity shifts simul-
taneously. See Section for definitions of the mentioned
shifts.

2. We provide a certification methodology with max-margin
learning, that can provide theoretical performance guar-
antees. Ablation studies confirm the effectiveness of algo-
rithmic components. The theoretical analysis also helps
explain why the commonly-used dropout method can help
improve DNN’s generalization abilities.

Preliminaries
This section briefly summarizes the literature for the OoD
generalization methods and introduces the topics that moti-
vate the proposed algorithmic framework.
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Figure 1: The causal graph for the mentioned random vari-
ables. The directed arrow (resp. dotted line) indicates causal
(resp. confounding) relations between two random variables.
More specifically, the directed arrow from A to B indicates a
causal path from A to B.

OoD Generalization OoD generalization is the task of gen-
eralizing a model’s performance under distribution shifts be-
tween the training and the unseen testing distributions. This is
in stark contrast with adversarial defense, where the objective
is to have a robust classifier against steered minor pertur-
bations added to the images, which resemble noises in the
images. The OoD generalization focuses on generalizing to
data subsuming the same semantic information for classifica-
tion but with different environments or styles information, ar-
guably more commonly observed in practical scenarios than
deliberate adversarial attacks. For example, the system has to
generalize to unseen environments for safety in autonomous
driving. Existing OoD generalization algorithms can be gen-
erally divided into four genres: domain generalization-based
methods that focus on learning coherent patterns in data col-
lected from diverse environments (Huang et al. 2020; Li et al.
2018b; Ganin et al. 2016); invariant learning-based methods
that exclude spurious correlations that exist in the data (Ar-
jovsky et al. 2019; Ahuja et al. 2020b, 2021); distributionally
robust optimization methods that fabricate challenging data
distributions from the original (Sagawa* et al. 2020); causal
learning-based methods that leverage causal inference tech-
niques (Shen et al. 2020b,a; Tran et al. 2016). These methods
have demonstrated empirical improvements on OoD gener-
alization tasks, while their theoretical performance on OoD
generalization is largely untapped.

Diversity and Correlation Shifts It was recently found
that multiple dimensions exist in OoD generalization datasets
where algorithms typically perform better than ERM on one
dimension but not as well on the other (Wiles et al. 2022; Ye
et al. 2021). In (Ye et al. 2021), these dimensions are delin-
eated as diversity shift or correlation shift. The diversity shift
is formally defined as the difference in the environmental
semantic feature’s training and testing probability density
functions (p.d.f.s) on the overall differences between two
distributions’ supports1. In comparison, the correlation shift
is defined as the difference in training and testing marginal

1A function f ’s support is informally interpreted as the subset
of the domain where f takes non-zero values.

z

Figure 2: Summary of certifiable out-of-distribution general-
ization. The black center point is the living input datum in the
semantic space, which should be classified as cats. The black
circle denotes the certifiable range, inside which data are
classified as cats with theoretical guarantees with our method.
The blue region outside the black circle is the semantic space
where input samples are also classified as cats but may have
no guarantees. The green region is the semantic space where
input samples are classified as other types, such as bears,
elephants, and giraffes. The red lines denote the model’s de-
cision boundary shaped by the proposed max-margin training
method to separate different categories.

p.d.f.s over the environmental semantic feature on the inter-
section of training and testing distributions’ supports. For
example, consider data pairs (X,Y ), where X is the covari-
ate variable and Y is a dependent variable (e.g. label), we
wish to model from X (i.e., we wish to find the function
f : X → Y). Z is defined to be the semantic/feature/latent2
space with Zc ⊂ Z and Zn ⊂ Z be vectors of latent (unob-
served) confounding causal and non-causal random variables.
The causal graph in Figure 1 is an illustration of the settings
described above. In other words, we can interpret X being
caused by Zc and Zn and Y is determined by Zc only. The
reason for assuming this model is that in most real-world
distribution shifts, the interpretation is valid and produces
productive outcomes. Intuitively, The diversity distribution
shifts summarise the traits of novel features between the
training and testing distributions. In contrast, the correlation
shifts summarise the spurious correlation between label Y
and non-causal features Zn, which can also be interpreted as
the environmental semantic feature. It was found that very
few methods can achieve better performance than ERM con-
currently on two kinds of OoD shifts (Ye et al. 2021; Huang
et al. 2022).

Theoretical Results in OoD Generalization As men-
tioned in the previous paragraphs, there is no theoretical
approach to solve the OoD generalization problem com-

2Note that semantic feature Z will be formally defined in the
following section and could be viewed equivalently as latent space.
This differs from some other papers where semantic feature means
causal feature.
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pletely, and existing theories mostly require assumptions
and optimization under constraints. One of the most popular
directions is the distributionally robust optimization (DRO)
(Rahimian and Mehrotra 2019), which is under the robust-
ness optimization framework. The ethics behind the DRO
is minimizing the worst-case risk over an uncertainty distri-
bution set centered on the training distribution. Under this
scenario, there exhibits freedom of choosing sensible distance
measure (e.g. f -Divergence (Weber et al. 2022; Duchi and
Namkoong 2019), Wasserstein Distance (Gao and Kleywegt
2016; Sinha, Namkoong, and Duchi 2018), MMD (Staib and
Jegelka 2019)) to define the uncertainty set which leads to
various angles to tackle the OoD generalization problem. In
(Gao and Kleywegt 2016), bounds for the worst-case risk are
obtained under the minimum assumption of loss function l
being bounded for any black-box machine learning functions.
Another direction is Invariance-Based Optimization (Rojas-
Carulla et al. 2018; Koyama and Yamaguchi 2020b) which
defines an optimization problem based on information the-
ory. Specifically, the Shannon mutual information (Cover and
Thomas 2006) between two random variables is optimized
under an invariance set. Despite the success of theoretical
certificates, the limitations of using these optimization mod-
els are that these results are only non-trivial under a small
ball of distribution shifts and the bounds derived are not nu-
merically computable. (Weber et al. 2022). Sometimes strong
assumptions are needed to be imposed on the loss function
l or the machine learning models to guarantee validity (Gao
and Kleywegt 2016; Sinha, Namkoong, and Duchi 2018;
Staib and Jegelka 2019). These limitations have made these
models hard to apply in real-world data where the distribution
shifts are generally large and provide theoretical guarantees
to existing algorithms.

Proposed Methodology
In this section, we will first introduce the certification method-
ology for providing certifiable guarantees for each input da-
tum’s prediction. Then, based on the theoretical results, the
max-margin training is proposed and analyzed via the neural
tangent kernel theory to improve the certification bounds.
A summary of certifiable OoD generalization is illustrated
in Figure 2. Later, we propose an instantiation of practical
certifiable OoD generalization algorithms.

Certification Methodology
Notations and Settings We use (X,Y) to denote the
dataset with n data pairs, where X ∈ Rn×p and Y ∈ Rn.
We denote fθ(·) = f(·;θ) = fL−1 ◦ fL−2 · · · ◦ f0 as a
L-layer DNN with the last layer as the classification layer,
where θ ∈ RΘ is the parameters of the DNN. We also
use f(·) for short in the next paragraphs. For simplicity
and without loss of generality, we consider a 0-1 classifi-
cation problem 3 and the range of f ’s output lies in [0, 1].
As previous research revealed that the intermediate repre-
sentations learned by DNN exhibit semantic features of
objects to be recognized (Zeiler and Fergus 2013), given

3Indeed, a multi-class classification problem can be seen as
multiple 0-1 classification problems (one versus others).

an input datum x, we define the semantic representation
as the concatenation intermediate layers’ representations:
z = [f0(x), f1(x), · · · , fL−2(x)]. Without loss of general-
ity, we want to certify that if f(z) > 1/2, then, it still holds
for some set B around z, i.e., for any change in the semantic
information δ ∈ B, f(z ⊗ δ) ≥ 1/2, where ⊗ is an opera-
tor that is addition or multiplication. Formally, we have the
following B-Generalizable definition for OoD generalization:
Definition 1. (B-Generalizable) For a 0-1 classification
problem with notations inherited from above where f(z) ∈
[0, 1], given B a closed set and f(z) > 1/2, we say the
function f is B-Generalizable at z, if for any perturbation δ
in the B set i.e., δ ∈ B, f(z⊗ δ) > 1/2.

Remark: For convenience we will simply write ”f(z) is B-
Generalizable”. For clarity, we posit the proposed definition
for [0,1] classification problem. This can be also extended for
multi-class cases. Next, we will introduce certifiable methods
to elicit B-Generalizable models and corresponding B.

In the following, we introduce the proposed random dis-
turbed version of the model. Assuming π0 is the distribu-
tion of the stochastic disturbance, the randomized model is
defined as the expectation of prediction averaged over the
distribution of the semantic representation:

fπ0(z) := Eη∼π0 [f(z⊗ η)] (1)

We want to prove that if the original classifier still gives the
correct prediction under stochastic disturbance (fπ0

(z) >
1/2), then for any perturbation within some range δ ∈ B, the
following inequality still holds:

min
δ∈B

fπ0
(z⊗ δ) = min

δ∈B
fπδ

(z)

= min
δ∈B

Eη∼π0
[f(z⊗ η ⊗ δ)] > 1/2 (2)

where ⊗ is element-wise addition or element-wise multiplica-
tion and πδ is the distribution of η ⊗ δ. To derive a tractable
lowerbound of minδ∈B fπ0

(z⊗ δ), we further relax f to the
functional space F = {f̂ : f̂(z) ∈ [0, 1], ∀z ∈ RZ} that is
the set of all functions bounded in [0, 1], along with a equality
constraint at the original function f :

min
δ∈B

fπ0
(z⊗ δ) ≥ min

f̂∈F

{
min
δ∈B

f̂π0
(z⊗ δ)

}
(3)

s.t. f̂π0(z) = fπ0(z)

Remark 1: To make the lowerbound computable, as f is a
high-dimensional non-linear function (deep neural networks)
that is generally intractable, we further relax it to any function
bounded in [0, 1] but with an extra constraint that it should
give the same prediction as the original function. Note that the
above inequality can be solved with the Lagrangian method.
Theorem 1. (Lagrangian) Denote by πδ the distribution
of η ⊗ δ, solving Inequality 3 is equivalent to solving the
following problem:

L = min
f̂∈F

min
δ∈B

max
λ∈R

{
f̂π0

(z⊗ δ)− λ(f̂π0
(z)− fπ0

(z))
}

≥ max
λ≥0

{
λfπ0

(z)−max
δ∈B

DF (λπ0, πδ)

}
(4)
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where DF (λπ0, πδ) is:

DF (λπ0, πδ)

= max
f̂∈F

{
λEη∼π0

[f̂(z⊗ η)]− Eη∼πδ
[f̂(z⊗ η)]

}
(5)

=

{ ∫
[λπ0(η)− πδ(η)]+dη, if π is continuous,∑
[λπ0(η)− πδ(η)]+, if π is discrete.

Remark 2: The proof of Theorem 1 and following Propo-
sitions are shown in Appendix C. This theorem does not rely
on additional assumptions of (local) convexity of deep neu-
ral networks, which is network architecture agnostic, which
means the elicited bound can be applied to any black-box
model. From this result, we can derive OoD generalizable set
B via solving L > 1/2. Based on Theorem 1, we have the
following Propositions for various distributions.
Proposition 1. (Gaussian distribution) In this case, we
instantiate π0 as a Gaussian distribution that is centered at
0: N (0, σ2I), ⊗ as the addition operator, and fπ0

(z) > 1
2 .

Then fπ0
(z) is B-Generalizable for B = {δ : ∥δ∥2 ≤ r},

with r satisfying the prediction confidence lowerbound:

L ≥ Φ
(
Φ−1(fπ0

(z))− r

σ

)
>

1

2
(6)

Φ(·) is the cumulative density function of standard Gaussian
distribution, which gives:

r < σΦ−1(fπ0
(z)) (7)

Thus, the randomized classifier always gives correct predic-
tions when the perturbation range r lies in the generalizable
set B. For Laplace distribution, the result is similar, which
we leave to Appendix. We also consider the Bernoulli distri-
bution, which can offer discrete stochastic disturbance to the
semantic representations. Bernoulli distribution is the widely-
used dropout trick for reducing overfitting in deep neural
networks. Our results can shed some light on explaining why
dropout works.
Proposition 2. (Bernoulli distribution) In this case, we
instantiate π0 as a Bernoulli distribution with a probability of
setting to zero as p ∈ [0, 1). ⊗ is instantiate as multiplication,
and fπ0(z) >

1
2 . ∥ · ∥0 represents the l0-norm which counts

the number of non-zero elements in a vector. Then fπ0
(z)

is B-Generalizable for B = {δ : ∥δ − 1∥0 ≤ r}, with r
satisfying the prediction confidence lowerbound:

L ≥ max{fπ0 (z)− 1 + pr, 0} >
1

2
(8)

Which gives

r <
ln(1.5− fπ0

(z))

ln p
(9)

The proof of Proposition 2 is challenging as it involves
discrete distributions, which we leave for Appendix. From
Proposition 2, it can be concluded that the radius of general-
izable set B is propositional to the inverse of ln(p). This pro-
vides a plausible theoretical explanation of why the widely-
used dropout methods can help avoid over-fitting and improve

generalization performance. It also further reveals an inherent
trade-off between selecting a higher dropout rate p and keep-
ing fπ0

(z) > 1
2

4. Additionally, this analysis also indicates
a new research direction by automatically searching for the
optimal parameters of random distributions e.g. the dropout
rate to improve generalization abilities, which we leave for
future works.

Remark 3: The above analysis equips us with methods
for certifying OoD generalization algorithms. Though our
analysis is based on a 0-1 classification problem, it can be
directly extended to a multi-classes classification problem by
constructing multiple one-vs-others classification problems.
For the above propositions to hold, a necessary condition is
fπ0

(z) > 1
2 . Besides, in the binary classification setting, the

closer fπ0
(z) to 1 (i.e., further away from the decision bound-

ary), the larger the allowed perturbation range r (i.e., the
certifiable region B) from Equation 7 5.

Max-Margin Training
To find as large as possible certifiable region, we introduce
max-margin training, which aligns with our moral of being
away from the decision boundary. The maximal margin train-
ing is the task of finding the optimal hyperplane that linearly
separates two separable classes. To ensure robustness, nat-
urally, the optimal hyperplane is defined as the hyperplane
that maximizes its distance (= 1

2 margin) from the closest
points of the two clouds of separable data. From the neural
tangent kernel (NTK) theory in (Jacot, Gabriel, and Hongler
2018), we can approximate a high-dimensional non-linear
deep neural network model fπ0

(x;θ) with kernelized lin-
ear regression when the dimension of the network goes to
infinity:

fπ0(x;θ) ≈ fπ0(x;w)

≈ fπ0
(x;w0) + Ψπ0

(x;w0)(w −w0) (10)

where Ψπ0
(x;w0) is the NTK, w is the last layer’s parameter,

w0 is the initialization for the last layer. Then, we derive the
max-margin linear classifier for separating samples.

Theorem 2. (Max-margin classifier) If we wish to allow
outliers (points within the margin, or even on the other side
of decision boundary). The NTK max-margin classifier’s
parameters satisfy the following optimal conditions:

min
ξ,w

1

2
∥w∥2 + C

n∑
i=1

ξi (11)

s.t. yi(fπ0(xi;w0) + Ψπ0(xi;w0)(w −w0)) ≥ 1− ξi,

ξi ≥ 0, i = 1, · · · , n

where ξi/∥w∥ is the distance of the furthest outlier point
to the decision boundary (margin) along the i-th axis, C is
the hyper-parameter controlling the costs of outliers. This is

4A too large dropout rate p may lead to wrong prediction results
i.e., fπ0(z) <

1
2

.
5For Bernoulli case, the result is similar as maintaining higher

fπ0(z) values can leave room for much smaller magnitude of ln(p).
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equivalent to solving the following optimization problem:

min
w

1

2
∥w∥2+

C
n∑

i=1

max(0, 1− yi(fπ0(xi;w0) + Ψπ0(xi;w0)(w −w0)︸ ︷︷ ︸
Training loss

))

(12)
We will show the equivalence of Equation 11 and Equa-

tion 12 in the Appendix. From the above equation, we can
see that the essence of the max-margin classifier is the intro-
duction of the Hinge loss which only keeps the training loss
larger than a constant. Indeed, this can also be achieved by se-
lecting samples that yield larger losses in a batch for training
to avoid introducing an extra task-dependent hyper-parameter
for practical reasons.

Practical Algorithm Instantiation
Based on the theoretical analysis, we propose an instantia-
tion of the algorithm—Stochastic Disturbance Learning with
Gaussian distribution as an example. For Gaussian distribu-
tion, the expectation of random disturbed loss for a data pair
(Xi,Yi) is:

Eπ0
[ℓ(f(Xi;θ),Yi)] =

Eη∼N (0,σ2)[ℓ(fL−1((z+ η);θ),Yi)] (13)

where z = fL−2◦· · ·◦f0(Xi;θ). where σ is the added Gaus-
sian distribution’s variance. The proposed SDL algorithm is
shown in Algorithm 1. Based on the derived propositions, an
instantiation of the certification algorithm that obtains B is
demonstrated in Appendix B. After training DNNs with Algo-
rithm 1, we can use the Certification Algorithm in Appendix
B to provide certified accuracies within the closed set B cal-
culated by Propositions in the previous sections. This can
provide a theoretical performance guarantee for high-stake
applications.

Algorithm 1: Training procedure of stochastic disturbance
learning

Require: Training set (X,Y), maximum number of epochs
T , percentage of max-margin training epochs κ, percent-
age of top loss samples used in max-margin training η,
batch-size B, variance of Gaussian distribution σ.

Ensure: The model’s parameters θ.
1: while t ≤ (1− κ)T do
2: Calculate the forward pass loss for every datum with

added stochastic disturbances: Eπ0
[ℓ(fθ(X

i),Yi)]
(See Eq 13).

3: Select the top ηB loss samples for max-margin train-
ing (Xi

max, Y
i
max)

4: Train the model with (Xi
max, Y

i
max):

Eπ0 [ℓ(fθ(X
i
max),Y

i
max)]

5: end while
6: while (1− κ)T < t ≤ T do
7: Calculate the forward pass loss for every datum

Eπ0
[ℓ(fθ(X

i),Yi)]
8: Train the model with (X,Y ) with Eπ0

[ℓ(fθ(X
i),Yi)]

9: end while

Experiments Results
This section will demonstrate the effectiveness of the pro-
posed algorithmic framework with empirical experiments as
it was found that benchmark results on OoD datasets are sus-
ceptible to hyper-parameters choices. For a fair comparison,
we evaluate the effectiveness of our method with the OoD-
Bench suit (Ye et al. 2021) based on the DomainBed imple-
mentation (Gulrajani and Lopez-Paz 2021). With OoD-Bench
suit, we can evaluate the OoD generalization performances
on datasets dominated by diversity shifts or correlation shifts.
Next, ablation studies are conducted for further analysis.

OoD-Bench Results on Distribution Shifts Datasets
We follow the setting of OoD-Bench (Ye et al. 2021) for
comparison experiments. Specifically, we have selected
PACS (Li et al. 2017), OfficeHome (Venkateswara et al.
2017), TerraIncognita (Beery, Horn, and Perona 2018), and
Camelyon17-WILDS (Koh et al. 2020) for benchmarking on
the diversity shift datasets, and Colored MNIST (Arjovsky
et al. 2019), NICO (He, Shen, and Cui 2020) , and a modi-
fied version of CelebA (Liu et al. 2015) for benchmarking
on the correlation shift datasets. We use ResNet-18 for all
experiments except the Colored MNIST dataset. For the Col-
ored MNIST dataset, a multi-layer perceptron is used. For
hyper-parameter search, we run twenty iterations for each
algorithm and the search procedure is repeated three times.
The means and standard deviations of accuracies are reported.
For every dataset-algorithm pair, depending on whether the
attained accuracy is lower than, within, or higher than the
standard error bar of ERM accuracy on the same dataset, the
ranking score -1, 0, +1 is assigned to the pair. Eighteen strong
OoD generalization algorithms are compared, including the
invariant risk minimization methods (e.g. IRM (Arjovsky
et al. 2019), VREx (Krueger et al. 2020)), distributionally
robust optimization method (e.g. GroupDRO (Sagawa* et al.
2020)), and domain generalization methods (e.g. MLDG (Li
et al. 2018a), ERDG (Zhao et al. 2020)), etc. The results for
diversity shifts dominated datasets are shown in Table 1. For
correlation shifts dominated datasets, the results are shown
in Table 2.

From Table 1 and Table 2, it can be observed that all
methods except for the proposed SDL can only achieve better
results than ERM on either type of distribution shift. From Ta-
ble 1, we can observe that the proposed SDL method achieves
better performances. Among the top performers, we observe
that RSC, MMD, and SagNet outperform the standard empir-
ical risk minimization method. This demonstrates that only a
few methods can achieve better performances with system-
atic evaluation than ERM, revealing the inherent challenge of
OoD generalization. From Table 2, the proposed method is
still the best-performing method among all candidates. This
answers an unsolved question in the previous paper (Ye et al.
2021) whether there exists an OoD generalization algorithm
that can achieve better performances than ERM simultane-
ously on diversity and correlation shifts dominated datasets.
For overall performance, the proposed SDL obtains a ranking
score of +5 followed by RSC and MMD with the ranking
score of +1, which means SDL achieves better performances
stably for most OoD datasets in OoD-Bench.
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Algorithm PACS OfficeHome Terra Incognita Camelyon17 Average Ranking score
SDL(Proposed) 84.8 ± 0.6 63.9 ± 0.1 44.1 ± 1.1 95.4 ± 0.3 72.1 +4
RSC 82.8 ± 0.4 62.9 ± 0.4 43.6 ± 0.5 94.9 ± 0.2 71.1 +2
MMD 81.7 ± 0.2 63.8 ± 0.1 38.3 ± 0.4 94.9 ± 0.4 69.7 +2
SagNet 81.6 ± 0.4 62.7 ± 0.4 42.3 ± 0.7 95.0 ± 0.2 70.4 +1
ERM 81.5 ± 0.0 63.3 ± 0.2 42.6 ± 0.9 94.7 ± 0.1 70.5 0
IGA 80.9 ± 0.4 63.6 ± 0.2 41.3 ± 0.8 95.1 ± 0.1 70.2 0
CORAL 81.6 ± 0.6 63.8 ± 0.3 38.3 ± 0.7 94.2 ± 0.3 69.5 0
IRM 81.1 ± 0.3 63.0 ± 0.2 42.0 ± 1.8 95.0 ± 0.4 70.3 -1
VREx 81.8 ± 0.1 63.5 ± 0.1 40.7 ± 0.7 94.1 ± 0.3 70.0 -1
GroupDRO 80.4 ± 0.3 63.2 ± 0.2 36.8 ± 1.1 95.2 ± 0.2 68.9 -1
ERDG 80.5 ± 0.5 63.0 ± 0.4 41.3 ± 1.2 95.5 ± 0.2 70.1 -2
DANN 81.1 ± 0.4 62.9 ± 0.6 39.5 ± 0.2 94.9 ± 0.0 69.6 -2
MTL 81.2 ± 0.4 62.9 ± 0.2 38.9 ± 0.6 95.0 ± 0.1 69.5 -2
Mixup 79.8 ± 0.6 63.3 ± 0.5 39.8 ± 0.3 94.6 ± 0.3 69.4 -2
ANDMask 79.5 ± 0.0 62.0 ± 0.3 39.8 ± 1.4 95.3 ± 0.1 69.2 -2
ARM 81.0 ± 0.4 63.2 ± 0.2 39.4 ± 0.7 93.5 ± 0.6 69.2 -3
MLDG 73.0 ± 0.4 52.4 ± 0.2 27.4 ± 2.0 91.2 ± 0.4 61.0 -4

Average 80.8 62.6 39.8 94.6 69.4 –

Table 1: Performance of ERM and OoD generalization algorithms on datasets dominated by diversity shift. The baseline methods
include RSC (Huang et al. 2020), MMD (Li et al. 2018b), SagNet (Nam et al. 2019), IGA (Koyama and Yamaguchi 2020a),
CORAL (Sun and Saenko 2016), IRM (Arjovsky et al. 2019), VREx (Krueger et al. 2020), GroupDRO (Sagawa* et al. 2020),
ERDG (Zhao et al. 2020), DANN (Ganin et al. 2016), MTL (Blanchard et al. 2017), Mixup (Yan et al. 2020), ANDMask
(Parascandolo et al. 2021), ARM (Zhang et al. 2020), and MLDG (Li et al. 2018a). Every symbol ↓ denotes a score of -1, and
every symbol ↑ denotes a score of +1; otherwise, the score is 0. The scores indicate how many datasets the candidate algorithm
are performed better than ERM. Adding up the scores across all datasets produces the ranking score for each algorithm. The
proposed SDL can achieve the best average performance and the highest ranking score.

Certified Accuracy on OoD Datasets and Ablation
Studies

The certified accuracy is defined as the fraction of the test
set samples which is certifiably correct within the maximum
allowable generalizable set B. We show the certified accura-
cies of the proposed algorithmic scheme taking PACS and
OfficeHome as examples. We plot the certified accuracies of
the proposed SDL against the radius of B varying the vari-
ance σ, which is shown in Figure 3 (a). We can observe that
varying variances σ can yield different trade-offs between
certified accuracies and the radius of the generalizable set B.
Larger variance generally leads to higher certified accuracies
where semantic information deviates further. This aligns well
with our theoretical analysis that larger variance can lead to
a higher allowable radius (Equation 7). The certifying result
with the Bernoulli distribution is shown in Appendix C.

The effectiveness of max-margin training and random
noises in SDL is investigated for ablation studies. We com-
pare SDL and its variants without max-margin training (Ma1)
or random noises (Ma2), or without both of them (ERM). The
results are visualized in Figure 3 (b). From Figure 3 (b), we
can observe that SDL can achieve statistically significant
better results than its variants on all radius selections. Fur-
thermore, when the deviation degree increases, the certified
accuracy reduces more significantly after removing the ran-
dom noises part, confirming the algorithmic components’
necessity.

We have analyzed the relationship between the radius of
B and the variance σ both theoretically and empirically (see
Equation 7 and Figure 4(a)). The degree of domain shift
between training data and test data affects B through fπ0(z).
As for a dataset with a very large degree of distribution shift, it
may be quite hard for the baseline to learn fπ0

(z) well, which
may be close to the classification bound of 0.5. We have
addressed this issue by max-margin training which is quite
efficient according to the ablation study. In fact, a very large
domain shift does not essentially cause B-set very small or
disappear according to the experimental results. For example,
for dataset PACS with a very large degree of diversity shift
(about 0.8 in OoD-Bench), the certified test accuracies by
SDL (σ = 3.0) start to drop significantly until the radius is
up to 8.

Conclusion
In this paper, we propose a certifiable out-of-distribution gen-
eralization algorithm that can provide certified accuracy for
each input datum’s prediction on the semantic space. The
proposed method simultaneously achieves the state-of-the-art
empirical performance on datasets dominated by two types
of distribution shifts with theoretically guaranteed perfor-
mance. For future work, we will explore how to further apply
this method to other tasks, such as autonomous driving or
medical image processing, to improve OoD generalization
performances.
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Algorithm Colored MNIST CelebA NICO Average Ranking score
SDL(Proposed) 58.8 ± 2.2 88.6 ± 0.5 71.7 ± 0.6 73.0 +2
VREx (Krueger et al. 2020) 56.3 ± 1.9 87.3 ± 0.2 71.5 ± 2.3 71.7 +1
GroupDRO (Sagawa* et al. 2020) 32.5 ± 0.2 87.5 ± 1.1 71.0 ± 0.4 63.7 +1
ERM (Vapnik 1998) 29.9 ± 0.9 87.2 ± 0.6 72.1 ± 1.6 63.1 0
IRM (Arjovsky et al. 2019) 60.2 ± 2.4 85.4 ± 1.2 73.3 ± 2.1 73.0 0
MTL (Blanchard et al. 2017) 29.3 ± 0.1 87.0 ± 0.7 70.6 ± 0.8 62.3 0
ERDG (Zhao et al. 2020) 31.6 ± 1.3 84.5 ± 0.2 72.7 ± 1.9 62.9 0
ARM (Zhang et al. 2020) 34.6 ± 1.8 86.6 ± 0.7 67.3 ± 0.2 62.8 0
MMD (Li et al. 2018b) 50.7 ± 0.1 86.0 ± 0.5 68.9 ± 1.2 68.5 -1
RSC (Huang et al. 2020) 28.6 ± 1.5 85.9 ± 0.2 74.3 ± 1.9 62.9 -1
IGA (Koyama and Yamaguchi 2020a) 29.7 ± 0.5 86.2 ± 0.7 71.0 ± 0.1 62.3 -1
CORAL (Sun and Saenko 2016) 30.0 ± 0.5 86.3 ± 0.5 70.8 ± 1.0 62.4 -1
Mixup (Yan et al. 2020) 27.6 ± 1.8 87.5 ± 0.5 72.5 ± 1.5 62.5 -1
MLDG (Li et al. 2018a) 32.7 ± 1.1 85.4 ± 1.3 66.6 ± 2.4 61.6 -1
SagNet (Nam et al. 2019) 30.5 ± 0.7 85.8 ± 1.4 69.8 ± 0.7 62.0 -2
ANDMask (Parascandolo et al. 2021) 27.2 ± 1.4 86.2 ± 0.2 71.2 ± 0.8 61.5 -2
DANN (Ganin et al. 2016) 24.5 ± 0.8 86.0 ± 0.4 69.4 ± 1.7 60.0 -3

Average 36.2 86.4 70.9 64.5 –

Table 2: Performance of ERM and OoD generalization algorithms on datasets dominated by correlation shift. Every symbol
↓ denotes a score of -1, and every symbol ↑ denotes a score of +1; otherwise, the score is 0. The scores indicate how many
datasets the candidate algorithm performs better than ERM. Adding up the scores across all datasets produces the ranking score
for each algorithm. The proposed SDL can achieve the best average performance and the highest ranking score.

Figure 3: (a) Certified accuracy on PACS and OfficeHome. The left line chart shows the certified accuracy under SDL with
different σ of π(η). The x-axis denotes the radius of generalizable set B. (b) The right bar chart shows the ablation study results
of removing max-margin training (Ma1) or random noises (Ma2).
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