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Abstract

Task-Free Continual Learning (TFCL) represents a challeng-
ing scenario for lifelong learning because the model, under
this paradigm, does not access any task information. The Dy-
namic Expansion Model (DEM) has shown promising re-
sults in this scenario due to its scalability and generalisation
power. However, DEM focuses only on addressing forgetting
and ignores minimizing the model size, which limits its de-
ployment in practical systems. In this work, we aim to si-
multaneously address network forgetting and model size op-
timization by developing the Lifelong Compression Mixture
Model (LGMM) equipped with the Maximum Mean Discrep-
ancy (MMD) based expansion criterion for model expansion.
A diversity-aware sample selection approach is proposed to
selectively store a variety of samples to promote information
diversity among the components of the LGMM, which allows
more knowledge to be captured with an appropriate model
size. In order to avoid having multiple components with sim-
ilar knowledge in the LGMM, we propose a data-free com-
ponent discarding mechanism that evaluates a knowledge re-
lation graph matrix describing the relevance between each
pair of components. A greedy selection procedure is pro-
posed to identify and remove the redundant components from
the LGMM. The proposed discarding mechanism can be per-
formed during or after the training. Experiments on different
datasets show that LGMM achieves the best performance for
TFCL.

Introduction
Continual learning (CL) represents an innate ability of hu-
mans that enables them to adapt to an evolving environ-
ment. Due to its natural property of acquiring new knowl-
edge and skills without forgetting CL has become an impor-
tant direction of research in deep learning. CL enable tack-
ling real-world online problems such as autonomous driving
and streaming services. However, existing Deep Learning
models do not fulfil CL requirements as they tend to quickly
forget the previously learnt knowledge when trying to learn
a new task. Therefore, conventional models suffer from mas-
sive degeneration on previous tasks and this phenomenon is
called catastrophic forgetting, (Parisi et al. 2019).

Most existing studies assume a sequence of multiple
tasks, where each task is assigned by sampling multiple in-
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cremental classes and the model can access the task descrip-
tor during training (Chaudhry et al. 2019). In this study,
we consider a more realistic scenario in CL, called Task-
Free Continual Learning (TFCL) (Aljundi, Kelchtermans,
and Tuytelaars 2019; Ye and Bors 2022f), where task identi-
ties and descriptors are not available during training. An ef-
ficient and simple approach to reduce forgetting in TFCL is
to manage a small fixed capacity memory buffer (De Lange
and Tuytelaars 2021; Jin et al. 2021; Bang et al. 2021) that
aims to store and replay past samples during training, called
the memory-based approach. Such an approach is suitable
for learning a fixed-length data stream and cannot handle in-
finite data streams. Recently, the Dynamic Expansion Model
(DEM) (Lee et al. 2020; Rao et al. 2019; Ye and Bors
2022f,a) has shown impressive results on TFCL due to its
scalability and generalisation performance. DEM is enabled
with an architecture expansion mechanism, which increases
the model’s capacity to address the data distribution shift.
However, these approaches only focus on addressing forget-
ting and ignore the model’s architecture optimization, limit-
ing their applicability in practical systems.

In this paper, we aim to simultaneously address catas-
trophic forgetting and model’s architecture minimization for
DEM through two goals : (1) Firstly, we want to promote
the learnt knowledge diversity among trained components
to avoid missing previously seen information; (2) Secondly,
to compress DEM’s architecture by removing superfluous
components from DEM in order to ensure good performance
with a minimal architecture. To realise these objectives, we
propose a diversity-aware sample selection approach that
selectively stores the different samples with respect to the
knowledge stored in each learned component of DEM. Then,
we introduce a new expansion criterion that evaluates the
difference between the current memory buffer and the previ-
ously learned knowledge. We propose to estimate the Max-
imum Mean Discrepancy (MMD) on the feature space be-
tween the memory buffer and each trained component as the
expansion signal. By choosing MMD in the expansion cri-
terion can avoid substantial computational costs and enables
unsupervised learning. Second, to compress DEM’s archi-
tecture, we introduce a new mixture component discarding
mechanism that selectively removes components from DEM
without compromising its performance. The proposed dis-
carding mechanism identifies those components that have
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learnt similar knowledge. We first construct the relationship
graph between the trained components, where the similarity
between two components is evaluated using the Fréchet In-
ception Distance (FID) (Heusel et al. 2017) estimated on the
pseudo samples generated by themselves. We then select a
pair of components with the highest learnt knowledge simi-
larity. We also propose a diversity selection criterion which
decides to remove one of the selected components without
reducing the diversity of the knowledge of the remaining
components. Finally, we implement these mechanisms un-
der a greedy algorithm framework where we iteratively re-
move the redundant components from DEM while retain-
ing only those essential. The proposed discarding mecha-
nism has several advantages over other compression meth-
ods, including Pruning (Zhu and Gupta 2017) and Knowl-
edge Distillation (KD) (Ye and Bors 2022e) : (1) It does not
require samples or the task information compared with KD,
and consequently is more suitable for TFCL; (2) It can re-
duce the number of components, leading to a reduction in
the necessary inference time. However, Pruning (Hung et al.
2019) only reduces the number of parameters and can not
reduce the number of components for the DEM, which still
requires significant inference times due to the component
selection process.

We summarize our contributions as follows : (1) We
propose a novel expansion criterion that evaluates the dis-
crepancy between the learned knowledge and the incom-
ing samples using MMD, aiming to learn non-overlapping
data distributions by the DEM model. (2) We propose a
diversity-aware sample selection approach that selectively
stores samples that are different with respect to the already
learned knowledge, which further promotes knowledge di-
versity among the trained components. (3) We develop a
new mixture component discarding mechanism that opti-
mizes DEM architecture by selectively removing unneces-
sary components. The proposed mechanism does not require
any supervision signals and thus can be used in both super-
vised and unsupervised learning. (4) We evaluate our model
against the standard TFCL benchmarks and the results show
the effectiveness of the proposed model. Supplementary ma-
terials (SM) and source code are available1.

Related Works
Memory-based continual learning methods have been shown
to mitigate catastrophic forgetting. They can be divided into
those using a small memory buffer and those using a gen-
erative replay network. Methods from the former category
usually preserve data from the previous tasks and use them
to regularise the model optimisation (Hinton, Vinyals, and
Dean 2014; Jung et al. 2018; Kirkpatrick et al. 2017; Kurle
et al. 2020; Li and Hoiem 2017; Nguyen et al. 2018; Po-
likar et al. 2001; Ren et al. 2017; Ritter, Botev, and Bar-
ber 2018; Rebuffi et al. 2017; Cha, Lee, and Shin 2021; Yan
et al. 2022; Bang et al. 2022; Gu et al. 2022; Tiwari et al.
2022). Approaches from the latter category aim to train a
generator such as a Variational Autoencoder (VAE) (Kingma
and Welling 2013) or a Generative Adversarial Nets (GANs)

1https://github.com/dtuzi123/LifelongCompressionMix

(Goodfellow et al. 2014) that generate data similar to the
past samples (Achille et al. 2018; Ramapuram, Gregorova,
and Kalousis 2017; Shin et al. 2017; Ye and Bors 2020a,b,
2022e; Zhai et al. 2019; Ye and Bors 2021b). These ap-
proaches have a fixed capacity and are not scalable when
learning multiple tasks.

The Dynamic Expansion Model (DEM) would expand
its learning capacity by increasing the number of network
layers and/or processing nodes to handle new knowledge
(Cortes et al. 2017; Ye and Bors 2022b; Li and Hoiem 2017;
Ye and Bors 2022c; Rao et al. 2019; Rusu et al. 2016; Wen,
Tran, and Ba 2020; Xiao et al. 2014; Ye and Bors 2020c,
2021a, 2023). Such models prevent catastrophic forgetting
by freezing the weights of the previously learned network
(Rusu et al. 2016) or by splitting the whole model into gen-
eral and task-specific components, the latter of which can be
extended for learning a growing number of tasks, (Ye and
Bors 2021a). The DEM has several advantages over a single
model, such as scalability and performance and can guaran-
tee optimal performance for each learned task if the number
of components matches the number of tasks, as shown theo-
retically and empirically in (Ye and Bors 2021a, 2022d).

Recent work has drawn attention to a more complex sce-
nario in CL, where task identities are not available. One of
the attempts for addressing TFCL introduces the use of a
slight memory buffer to store and replay some past samples
during training. To avoid overloading the memory, a suitable
memory management method is required. This approach
was first explored in (Aljundi, Kelchtermans, and Tuyte-
laars 2019) for training a classifier under TFCL. This was
then extended to train both the classifier and VAEs (Aljundi
et al. 2019a) by using a new retrieval mechanism that selec-
tively stores the most distinct samples, called Maximal Inter-
fered Retrieval (MIR). Then, the Gradient Sample Selection
(GSS) was introduced in (Aljundi et al. 2019b), where sam-
ple selection is formulated in the memory as a constrained
optimisation reduction. ‘Sample selection is also performed
in a learner-evaluator framework called the Continual Pro-
totype Evolution (CoPE) (De Lange and Tuytelaars 2021),
which maintains the same number of samples for each class
in memory, ensuring the balance of data for each class. An-
other approach to TFCL, called Gradient-based Memory
EDiting (GMED) (Jin et al. 2021), modifies stored data such
that edited samples would increase the loss in the upcom-
ing model updates. However, these approaches depend on a
single memory system that cannot capture the entire infor-
mation from the data stream. This inspires several attempts
to apply DEM to TFCL. The first attempt of applying DEM
to TFCL was the Continual Unsupervised Representation
Learning (CURL) (Rao et al. 2019), where new inference
models are inserted into a VAE framework to capture new
knowledge when a certain expansion criterion is met. Then,
similar ideas are used in the Continual Neural Dirichlet Pro-
cess Mixture (CN-DPM) (Lee et al. 2020), which dynami-
cally builds a VAE model as an expert in a mixture system
using the Dirichlet processes. More recently, the Online Co-
operative Memorization (OCM) (Ye and Bors 2022a) em-
ploys two memory buffers to store the short- and long-term
information from the data stream in a novel DEM approach
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to TFCL. However, these approaches lead to non-optimal ar-
chitectures, which do not consider ensuring the learning of
a diversity of information.

Methodology
Dynamic Expansion Model (DEM)
Let X and Y be the space of observation and target la-
bel, respectively, and Z denote the feature space. Let T =
{T1, · · · , Tn} be a set of training steps and D be a data
stream. We assume that learning D requires n training
steps, D =

⋃n
i=1 Di, proceeding continuously as Di =

{xj , yj}bj=1 representing each time the i-th batch of sam-
ples and b = |Di| is the i-th batch size. In TFCL, a model
can only access the observation xj and the target yj from Di

at a certain training step (Ti) and can not access all previ-
ously learnt batches {D1, · · · ,Di−1}. We evaluate the per-
formance of the model against the test dataset, before com-
pleting n training steps.

A simple and effective approach to reduce forgetting in
TFCL is to use a small memory buffer of real training sam-
ples, denoted as Mi updated at Ti. Following from (Ye
and Bors 2022a,f), we define a dynamic expansion model
G = {S1, · · · , St} that has already learnt t components, we
only update the current component St on Mi, while freezing
the other t−1 trained components at Ti to ensure their learnt
information preservation. Each component St consists of a
classifier Ct and a Variational Autoencoder (VAE) (Kingma
and Welling 2013) Vt that is used for the component selec-
tion at the testing phase. We implement Ct through a fully
connected or a convolutional network fξt : X → Y , parame-
terized by ξt, used for the classification task. We implement
Vt using two networks fv

ωt
: X → Z and fv

θt
: Z → X ,

where the former models an encoding distribution qωt(z |x)
and the latter models a decoding distribution pθt(x | z), as-
sumed to be Gaussian. We define the loss functions used to
train St on Mi at Ti as :

LC(St,Mi)
∆
=

1

|Mi|
∑|Mi|

j=1

{
Lce

(
fξt(xj), yj

)}
, (1)

LV (St,Mi)
∆
= Eqωt (z |x) [log pθt(xt | z)]
−DKL [qωt

(z |xt) || p(z)] ,
(2)

where Lce is the cross-entropy loss and |Mi| is the num-
ber of samples stored in Mi. LC is the classification loss
used for training Ct and LV is the VAE loss for training Vt.
DKL(· ||·) and p(z) = N (0, 1) are the Kullback–Leibler
(KL) divergence and the prior distribution. In the following
section, we introduce a model expansion mechanism based
on the Maximum Mean Discrepancy (MMD) criterion.

Model Expansion Mechanism
Maximum Mean Discrepancy : MMD is a distance on the
space of probability measures, which is based on the notion
of embedding probabilities in a Reproducing Kernel Hilbert
space (RKHS) (Tolstikhin, Sriperumbudur, and Schölkopf
2016). Let P and Q represent two Borel probability mea-
sures while X and U represent random variables over a topo-
logical space X . Let f : X → R ∈ F be a function, where

F is a class of functions. The Maximum Mean Discrepancy
(MMD) between P and Q, represents an integral probability
metric, defined as :

LM(P,Q)
∆
= sup

f∈F
(Ex∼P [f(x)]− Eu∼Q [f(u)]) . (3)

We have LM(P,Q) = 0, if P = Q. In this paper, we con-
sider the function class F to be a unit ball in a RKHS with
a positive definite kernel k(x, x′) and RKHS has the repro-
ducing property f ∈ F , f(x) = ⟨f , k(x, ·)⟩. This induces
the squared population MMD based on the kernel functions :
L2
M(P,Q) = Ex,x′∼P [k(x, x

′)]− 2Ex∼P,u∼Q[k(x, u)]

+ Eu,u′∼Q[k(u, u
′)] , (4)

where x′ and u′ are independent copies of x and u, respec-
tively. Usually, we draw the same number of samples from
P and Q (NP = NQ), where NP and NQ denotes the num-
ber of samples for P and Q, respectively. Then an unbiased
empirical estimate for Eq. (4) is defined as :

Le
M(P,Q) =

1

NP (Np − 1)

∑NP

i̸=j

{
h(i, j)

}
, (5)

where h(i, j) = k(xi, xj)+k(ui, uj)−k(xi, uj)−k(xj , ui).
MMD-based model expansion : In the following, we explain
how the MMD measure from Eq. (5) can be used as an
expansion criterion. We assume that a dynamic expansion
model G = {S1, · · · , St} has already trained t components
while the t-th component St, is currently trained on Mi at
Ti. Since we want to promote probabilistic diversity between
the trained components, we maximize the distance between
each trained component and the distribution of the current
memory as :

c⋆ = arg max
c=i,i+1,··· ,n

∑t−1

j=1

{
Le
M

(
Pz̃j ,PzMc

)}
, (6)

where Pz̃j is the distribution formed by the latent variable
{z̃j,1, · · · , z̃j,m}, where each z̃j,s is given by the inference
model of Vj that receives the sample x̃j,s generated by it-
self. PzMc

is the distribution formed by the latent variables
{z1, · · · , zm} and each zs is given by the inference model
of the current component Vt that receives the stored sample
xs drawn from the memory Mc. c⋆ is the optimal index of
the training step in Eq. (6) which can be seen as a recursive
optimization problem when G is expanded (t is increased).
However, searching for the optimal c⋆ needs to access all
training steps, which would lead to severe forgetting since
we can not revisit all past samples. Therefore, we introduce
a practical solution to implement the optimization problem
(Eq. (6)) by involving the expansion criterion expressed as :

min
{
Le
M

(
Pz̃1

,PzMc

)
, · · · ,Le

M

(
Pz̃t−1

,PzMc

)}
≥ λ (7)

where λ is an expansion threshold that controls the expan-
sion of the model. If the data statistics of the current mem-
ory Mc is largely different from the probabilistic representa-
tions of all previously trained components at Tc (satisfying
Eq. (7)), then we freeze the current component St to pre-
serve the information of the current memory while building
a new component St+1 to be trained next. In the next sec-
tion, we introduce a new sample selection approach from
the memory Mi to further increase the statistical diversity
among the trained components.
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Figure 1: The proposed mixture component discarding
mechanism.

Diversity-Aware Sample Selection
First, we consider a simple selection approach in which the
earliest stored samples are always removed and the newly
seen samples are continuously added, while the current
memory is kept at a size no larger than |Mi|Max, which is
the maximum memory size. The sample selection approach
is akin to a Sliding Window (SW) recording memory :

Mi = Mi−1

⋃
Di → Mi =

⋃|Mi|Max+b

j=b
Mi[j] , (8)

where Mi[j] represents the j-th stored samples of Mi and
b is the batch size, considered as b = 10 in the experiments.
However, according Eq. (8), Mi always stores only the re-
cently given samples and thus would not record the previ-
ously learnt information. To solve this problem, we intro-
duce a new sample selection approach that selectively stores
the more statistically diverse samples with respect to the al-
ready learnt knowledge, stored in each model component.

Since VAE is a natural estimator of the sample log-
likelihood, it can be used to detect the novelty of new sam-
ples (Rao et al. 2019). On this basis, we propose to sum up
the negative VAE loss (negative sample log-likelihood) of
all previously learned components as a discrepancy score for
each stored sample, expressed as :

Ld(xs) =
1

t− 1

∑t−1

j=1

{
− LV (Sj ,xs)

}
, (9)

where xs represents the s-th stored sample. If the discrep-
ancy score (Eq. (9)) is low means that each trained compo-
nent knows more about xs and then we want to remove xs

from the current memory in order to promote the statisti-
cal diversity between the current memory and the existing
trained components. Eq. (9) is used for the sample selection
in a procedure called Diverse Sampling Selection (DivSS) :

x′
s = arg min

xs∈Mi

{Ld(xs)} , (10)

then x′
s ̸∈ Mi. We repeat recursively the selection and ex-

clusion of x′
s’es until |Mi| ≤ |Mi|Max.

The Component Discarding Mechanism
In this section, we develop a new component discarding
mechanism that selectively removes the unnecessary com-
ponents to reduce the overall size of the model while pro-
moting the probabilistic diversity of generated data among

Figure 2: The overview of the proposed optimization frame-
work that includes four steps.

the remaining components. The main idea behind the pro-
posed discard mechanism is to identify the components
which are characterized by overlapping probabilistic repre-
sentations and remove those that are not necessary. How-
ever, searching for components directly in the DEM (Lee
et al. 2020; Rao et al. 2019) would incur significant compu-
tational costs. In this paper, we propose to create a relation-
ship graph matrix that describes the relevance between each
pair of mixture components and we discard the components
by analysing the relationships in this graph matrix.

The proposed component discarding mechanism is illus-
trated in Fig. 1, considering that we have already trained t
components in the DEM mixture. First, we generate 1,000
samples using the VAE of each component, describing the
previously learned knowledge, denoted as Px̃j

for the j-th
component. Then we form the relationship graph between
these trained components using the FID score (Heusel et al.
2017) estimated from the generated samples and calculated
between pairs of components. FID is appropriate for mea-
suring the discrepancy between two empirical data distribu-
tions (Gulrajani et al. 2017) and thus can be used to mea-
sure the knowledge similarity between two components. Let
E ∈ Rt×t represent a relationship matrix in which E(c,g)

represents the edge value between Sc and Sg , estimated
by 1/fFID(Px̃c

,Px̃g
), where fFID(·, ·) is the FID estimator.

Since the FID criterion is symmetric, E is a symmetric ma-
trix. The selected components are decided by:

E⋆ = max
c,g=1,··· ,t

E(c,g),

c⋆, g⋆ = arg max
c,g=1,··· ,t

E(c,g) ,
(11)

where c⋆ and g⋆ are the indices of the selected components.
We then remove one of the selected components from G ac-
cording to the statistical diversity assessment. The compo-
nent to be removed during the training is chosen according
to E⋆ > λ2 from Eq. (11), where λ2 ∈ [0, 10] is a thresh-
old. We also define a threshold n ∈ [1, 20] to represent the
remaining number of components after performing the dis-
carding mechanism (See details in Appendix-A from SM1).

As shown in Fig. 1, after Eq. (11), we evaluate the di-
versity score for each of the selected component Sc⋆ or Sg⋆

using :

Ldiversity(Sa) =
1

t− 1

∑t

j=1

{ 1

E(j,a))

}
, j ̸= a , (12)
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Methods Split MNIST Split CIFAR10 Split CIFAR100
finetune* 19.75 ± 0.05 18.55 ± 0.34 3.53 ± 0.04
GEM* 93.25 ± 0.36 24.13 ± 2.46 11.12 ± 2.48
iCARL* 83.95 ± 0.21 37.32 ± 2.66 10.80 ± 0.37
reservoir* 92.16 ± 0.75 42.48 ± 3.04 19.57 ± 1.79
MIR* 93.20 ± 0.36 42.80 ± 2.22 20.00 ± 0.57
GSS* 92.47 ± 0.92 38.45 ± 1.41 13.10 ± 0.94
CoPE-CE* 91.77 ± 0.87 39.73 ± 2.26 18.33 ± 1.52
CoPE* 93.94 ± 0.20 48.92 ± 1.32 21.62 ± 0.69
ER + GMED† 82.67 ± 1.90 34.84 ± 2.20 20.93 ± 1.60
ERa + GMED† 82.21 ± 2.90 47.47 ± 3.20 19.60 ± 1.50
CURL* 92.59 ± 0.66 - -
CNDPM* 93.23 ± 0.09 45.21 ± 0.18 20.10 ± 0.12
Dynamic-OCM 94.02 ± 0.23 49.16 ± 1.52 21.79 ± 0.68
DivSS + Discard 96.16 ± 0.11 50.12 ± 0.23 25.24 ± 0.17
DivSS 96.95 ± 0.13 53.71 ± 0.19 26.03 ± 0.16
SW 96.81 ± 0.12 50.91 ± 0.25 25.65 ± 0.16
SW + Discard 95.93 ± 0.15 49.93 ± 0.23 24.18 ± 0.18

Table 1: Classification accuracy of five independent runs for
various models on three datasets. * and † denote the results
cited from (De Lange and Tuytelaars 2021) and (Jin et al.
2021), respectively.

Figure 3: Assessing the performance of the model when
changing the number of remaining components.

G = {Sj ∈ G | j = 1, · · · , t , j ̸= c}

c = arg min
c⋆,g⋆

{
Ldiversity(Sc⋆),Ldiversity(Sg⋆)

}
.

(13)

The component with the minimum diversity score, accord-
ing to Eq. (13) is discarded. To avoid reselection at the next
discarding step, we also remove all edge values associated
with the deleted component from E. We can repeat Eq. (13)
and Eq. (12) in order to discard more components from G
(See Appendix-A from SM1).

The Unified Optimization Framework
In this section, we propose a unified optimisation framework
for the mixture model that integrates the proposed expansion
mechanism, sample selection approach and discard mecha-
nism for training a dynamic expansion model. The overview
of the proposed framework is shown in Fig. 2 and is summa-

Methods Split MNIST Split CIFAR10 Split CIFAR100
DivSS + Discard 10 10 6
DivSS 29 31 9
SW 30 35 10
SW + Discard 10 10 6

Table 2: Number of components for the proposed model
when learning various datasets.

Figure 4: Assessing the performance of the model when
changing λ2.

rized in four steps :
Step 1 (The training of the current component.) We assume
that a dynamic expansion model has trained t components.
Then we train the current component St on Mi at Ti using
LC(St,Mi) and LV (St,Mi) using (1) and (2).
Step 2 (Check the expansion of the model.) If the current
memory Mi is full |Mi| ≥ |Mi|Max, then we check the
expansion of the model using Eq. (7). If the expansion crite-
rion is satisfied, we create a new component St+1 for G and
clean up Mi in order to learn statistically non-overlapping
samples, otherwise, we perform Step 3.
Step 3 (Sample selection.) If |Mi| ≥ |Mi|Max, then we es-
timate the sample log-likelihood for each stored sample us-
ing Eq. (9). We perform the sample selection for the current
memory Mi using Eq. (10).
Step 4 (Discarding the components.) Once all the training
steps are completed, we repeatedly perform the component
discarding procedure to remove the unnecessary compo-
nents from the dynamic expansion model G.

Experiments
Datasets : Split MNIST divides MNIST (LeCun et al. 1998)
containing 60k training samples, into five tasks according to
pairs of digits in increasing order (De Lange and Tuytelaars
2021). Split CIFAR10 splits CIFAR10 (Krizhevsky and Hin-
ton 2009) into five tasks where each task consists images
from two different classes (De Lange and Tuytelaars 2021).
Split CIFAR100 divides CIFAR100 into 20 tasks where each
task has 2500 samples from 5 different classes (Lopez-Paz
and Ranzato 2017).
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Methods Split MImageNet
ERa 25.92 ± 1.2
ER + GMED 27.27 ± 1.8
MIR+GMED 26.50 ± 1.3
MIR 25.21 ± 2.2
DivSS 29.63 ± 1.5
DivSS + Discard 27.58 ± 2.7

Table 3: Classification accuracy for 20 runs when testing
various models on Split MImageNet.

Figure 5: The number of components and the classifica-
tion accuracy of the proposed model on Split MNIST when
changing λ.

Network architecture and hyperparameters : In the experi-
ments we adapt the setting from (De Lange and Tuyte-
laars 2021), where ResNet-18 (He et al. 2016) is used as
the classifier for Split CIFAR10 and Split CIFAR100. We
also use an MLP network with 2 hidden layers of 400 units
(De Lange and Tuytelaars 2021) as the classifier for Split
MNIST. The maximum memory size for Split MNIST, Split
CIFAR10, and Split CIFAR100 is 2000, 1000 and 5000,
respectively. In each training step Ti, we only access a
small batch (b = 10) of training samples. The number of
epochs for each training step/time is 10. The model expan-
sion threshold λ from Eq. (7) for Split MNIST, Split CI-
FAR10, Split CIFAR100, and Split MImageNet is 0.009,
0.04, 0.03 and 0.055, respectively.
Baselines : We train a DEM with the MMD-based expan-
sion mechanism, the sample selection approach (DivSS) and
the component discarding mechanism, called “DivSS + Dis-
card”. We also replace DivSS by a Sliding Window (SW)
and the resulting approach is called “SW + Discard”. In
this paper, we mainly compare with the two most popular
dynamic expansion models, CURL (Rao et al. 2019) and
CN-DPM (Lee et al. 2020). Additionally, we also compare
with a series of recent TFCL approaches, including : fine-
tune that trains a classifier on the data stream, GSS (Aljundi
et al. 2019b), Dynamic-Online Cooperative Memorization
(OCM) (Ye and Bors 2022a), MIR (Aljundi et al. 2019a),
Gradient Episodic Memory (GEM) (Lopez-Paz and Ran-
zato 2017), Reservoir (Vitter 1985), Incremental Classifier

Methods Split MNIST Split CIFAR10 Split MImageNet
Vanilla 21.53 ± 0.1 20.69 ± 2.4 3.05 ± 0.6
ER 79.74 ± 4.0 37.15 ± 1.6 26.47 ± 2.3
MIR 84.80 ± 1.9 38.70 ± 1.7 25.83 ± 1.5
ER + GMED 82.73 ± 2.6 40.57 ± 1.7 28.20 ± 0.6
MIR+GMED 86.17 ± 1.7 41.22 ± 1.1 26.86 ± 0.7
DivSS + Discard 95.80 ± 2.1 43.57 ± 1.6 28.27 ± 1.5
DivSS 96.51 ± 1.8 44.23 ± 1.4 29.35 ± 1.2

Table 4: Classification accuracy of five independent runs for
various models over streams with fuzzy task boundaries.
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Figure 6: The performance change of various models on
Split MINI-ImageNet when changing the memory size.
More results are reported in Appendix-C.1 from SM1.

and Representation Learning (iCARL) (Rebuffi et al. 2017),
CoPE, ER + GMED and ERa + GMED (Jin et al. 2021)
where ER is the Experience Replay (Rolnick et al. 2019)
and ERa is ER with data augmentation.

Classification Task
In this section, we evaluate the performance of the proposed
approach in classification and we adapt the standard TFCL
experiment setting of (De Lange and Tuytelaars 2021). We
report the classification accuracy of Split MNIST, Split CI-
FAR10 and Split CIFAR100 in Table 1, where “DivSS”
means that the proposed approach does not use the compo-
nent discarding mechanism. The number of components of
the proposed model is provided in Table 2. The classification
accuracy shows that the proposed “DivSS” outperforms the
other baselines in the three datasets. Moreover, the proposed
mixture component discarding mechanism can significantly
compress the trained model without much performance loss,
according to the results from Table 1.

We also investigate the effectiveness of the proposed
approach in learning a large dataset, such as MINI-
ImageNet (Le and Yang 2015). The Split MINI-ImageNet
(S-MImageNet) contains 20 disjoint tasks, where each task
consists of learning the images of five classes (Aljundi et al.
2019a). We adapt the settings of (Aljundi et al. 2019a), with
a maximum memory size of 10K using a lean version of
ResNet-18 (He et al. 2016) as the classifier. The classifica-
tion accuracy for Split MImageNet is given in Table 3, where
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Split MNIST-SVHN
Methods Accuracy No Parameters Speed (seconds)
DivSS 65.29 18 175M 0.0064
DivSS + Discard 63.78 13 126M 0.0048
DivSS + Pruning 60.63 18 131M 0.0052
DivSS + KD 58.82 13 126M 0.0048
CNDPM 60.26 31 301M 0.0104
Methods Split MNIST-CIFAR10
DivSS 64.36 16 155M 0.0050
DivSS + Discard 62.15 11 106M 0.0032
DivSS + Pruning 58.97 16 112M 0.0041
DivSS + KD 56.64 11 106M 0.0032
CNDPM 59.92 27 262M 0.0106

Table 5: Classification accuracy under Split MNIST-SVHN
and Split MNIST-CIFAR10

we compare with several state-of-the-art methods, quoting
the results from (Jin et al. 2021). The number of compo-
nents in the proposed model is 10 and we keep 8 components
while removing two components for “DivSS + Discard” us-
ing the proposed component discarding mechanism. These
results show that the proposed approach performs better than
other baselines under challenging learning conditions.

Results on Fuzzy Task Boundaries
In a more realistic learning environment, a model is provided
with a data stream with fuzzy task boundaries (Lee et al.
2020). To investigate the performance of the proposed ap-
proach under these conditions, we swap randomly samples
between two tasks as in the study from (Lee et al. 2020).
We train the proposed approach under Split MNIST, Split
CIFAR10 and Split MImageNet under this setting of cor-
rupting the data and the results are shown in Table 4. In
Appendix-C4 from SM1 we also give the number of com-
ponents for the proposed approach under fuzzy task bound-
aries. These results demonstrate that the proposed approach
is robust and provides better performance under this setting
when compared to other approaches.

Ablation Study
We perform a full ablation study to evaluate the effective-
ness of each component used in our approach. Additional
ablation results are provided in Appendix-C from SM1.
Expansion mechanism : First, we study the mixture expan-
sion process of the proposed approach when we change the
threshold λ in Eq. (7). We train the proposed approach under
Split MNIST and plot the number of components and classi-
fication accuracy in Fig. 5. A large λ encourages the model
to use fewer components, resulting in poorer performance.
As λ decreases, the model improves its performance while
also adding more components to the mixture.
Discarding mechanism : We investigate the performance of
the proposed approach when we discard some redundant
components. We train the proposed “DivSS” under Split
MNIST and use the proposed component discarding mech-
anism to remove unnecessary components. We present the

results in Fig. 3, where we can observe that the performance
of the proposed approach does not degrade too much even
when considering fewer components, such as 6 in this case.
Moreover, we use λ2 for E⋆ < λ2 from Eq. (11), to se-
lect the components to be removed during the training (see
details in Appendix-B of SM1). We plot the results with dif-
ferent λ2 in Fig. 4. When increasing λ2, the model tends to
discard fewer components. If λ2 is very small, the model
is left with only two components, resulting in degenerating
performance.
The size of memory buffer : We train the proposed approach
“DivSS + Discard” under Split MNIST, Split CIFAR10,
Split CIFAR100 and Split MImageNet with different buffer
memory sizes. The average accuracy for each dataset is pro-
vided in Fig. 6, where we compare with MIR + GMED and
ER + GMED. These results show that reducing the memory
buffer size leads to a degenerated performance for all meth-
ods, but the proposed approach performs better than all other
baselines with different memory configurations.
Model complexity and processing time : We create Split
MNIST-SVHN which consists of Split MNIST and Split
SVHN and similarly Split MNIST-CIFAR10. The results on
Split MNIST-SVHN and Split MNIST-CIFAR10 are pro-
vided in Table 5, where “No” and “Parameters” are the num-
ber of components and parameters. “Speed” denotes the test-
ing time for each testing sample. The proposed model out-
performs CNDPM by using fewer parameters and requiry-
ing less testing time under TFCL. These results demonstrate
that CNDPM ends up with statistically overlapping experts,
which does not improve the performance while requiring ad-
ditional computational costs.
Compressing methods : We compare with other compress-
ing methods such as Pruning (Zhu and Gupta 2017) and
Knowledge Distillation (KD) (Ye and Bors 2022e). Since
Pruning is not designed for discarding components, we ap-
ply it to reduce the number of parameters for each compo-
nent. We also apply KD to compress many components into
one by using the KD process (Ye and Bors 2022e). In Ta-
ble 5, where ”No”, ”Parameters”, and ”Speed” denotes the
number of components, we provide the number of parame-
ters and the required inference time for each sample. These
results show that the proposed compression method achieves
the best performance while employing fewer parameters.

Conclusion
In this paper, we introduce a novel DEM model enabled
by the MMD-based expansion mechanism for TFCL. A
diversity-aware sample selection approach is proposed to
promote knowledge diversity among components, which can
further improve performance. Then, we propose a novel
component discarding mechanism to reduce a significant
number of parameters without sacrificing much performance
for the proposed model. The proposed discarding mecha-
nism can be performed during or after the training process,
which provides a flexible learning manner. We perform a se-
ries of TFCL experiments, and the empirical results demon-
strate that the proposed approach achieves best performance
than other baselines.
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