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Abstract

Task Free Continual Learning (TFCL) aims to capture novel
concepts from non-stationary data streams without forget-
ting previously learned knowledge. Mixture models, which
add new components when certain conditions are met, have
shown promising results in TFCL tasks. However, such ap-
proaches do not make use of the knowledge already accumu-
lated for positive knowledge transfer. In this paper, we de-
velop a new model, namely the Online Recursive Variational
Autoencoder (ORVAE). ORVAE utilizes the prior knowledge
by selectively incorporating the newly learnt information, by
adding new components, according to the knowledge already
known from the past learnt data. We introduce a new attention
mechanism to regularize the structural latent space in which
the most important information is reused while the informa-
tion that interferes with novel samples is inactivated. The pro-
posed attention mechanism can maximize the benefit from the
forward transfer for learning novel information without for-
getting previously learnt knowledge. We perform several ex-
periments which show that ORVAE achieves state-of-the-art
results under TFCL.

Introduction
The Variational Autoencoder (VAE) (Kingma and Welling
2013) is one of the most popular generative models, which
has been widely applied for density estimation (Kim and
Pavlovic 2020; Kingma et al. 2016; Maaløe et al. 2016),
disentangled representations (Higgins et al. 2017; Ye and
Bors 2021a,b) and in mixture models (Ye and Bors 2022c,
2020b). However, one challenge for VAEs is that they grad-
ually lose performance on the previously learned probabilis-
tic representations when learning a new task. This is caused
by catastrophic forgetting (Parisi et al. 2019), which occurs
when the network weights are over-written by network up-
dating when training with a new task.

Episodic memory buffers, storing some of the past sam-
ples that will be incorporated together with samples from a
newly given task (Chaudhry et al. 2019b), have been used
for addressing catastrophic forgetting. Other memory-based
methods usually train a generator that produces a set of gen-
erative samples as memorized instances (Shin et al. 2017).
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These approaches, however, require knowing the task iden-
tity and class label for each data sample (Derakhshani et al.
2021), which is not feasible in TFCL.

Recent works have proposed to learn a dynamic expan-
sion model to address TFCL. For instance, the Contin-
ual Unsupervised Representation Learning (CURL) (Rao
et al. 2019) dynamically builds the inference models to cap-
ture the data distribution shift while the Generative Replay
Mechanism (GRM) is used to relieve forgetting. However,
CURL still causes forgetting due to the frequent generative
replay processes, theoretically explained in (Ye and Bors
2021c, 2022b,f). This issue is solved in (Ye and Bors 2022b),
through an approach called the Online Cooperative Memo-
rization (OCM), which optimizes a model structure by de-
tecting the loss change. In addition, OCM employs two dif-
ferent memory buffers to store short- and long-term knowl-
edge, further improving the performance. However, these
approaches usually optimize a simple structure on the latent
space where the previously learnt components are not fully
utilized when training on new data. These components usu-
ally contain prior information which is useful for the knowl-
edge transfer (Phuong and Lampert 2019).

In this paper, we address TFCL from two aspects. First,
we address the forgetting problem in TFCL, by proposing
a new model, namely the Online Recursive Variational Au-
toencoder (ORVAE) which automatically preserves the prior
knowledge into the trained components while expanding its
network architecture to adapt to the data distribution shift.
Second, as novel samples in a data stream share similar char-
acteristics with previously learnt ones, it is important to use
prior knowledge to learn novel concepts. However, directly
using all past samples in TFCL is impossible. Therefore, we
introduce a new recursive expansion mechanism for OR-
VAE, incorporating all previously learnt information flow
into the inference and decoding processes when learning
novel samples. Unlike CURL and CNDPM, which do not
fully utilize the latent variable information when learning
incoming samples, ORVAE integrates all previously learnt
and the currently updated variational distributions to form
an augmented distribution used for decoding, ensuring the
positive knowledge transfer. In addition, the proposed re-
cursive expansion can also be helpful in learning a com-
pact model because accumulating more knowledge can al-
low adapting to new samples fast while preventing the ex-
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pansion. Additionally, inspired by the attention mechanism
(Vaswani et al. 2017) that has been successfully used in
computer vision (Parmar et al. 2018; Liu et al. 2021), lan-
guage processing (Al-Rfou et al. 2019), and inductive learn-
ing (Veličković et al. 2018), we introduce a new attention
mechanism, called the Expandable Graph Attention Mech-
anism (EGAM) which views each previously learnt varia-
tional distribution as a node and formulates the relevance
among these latent distribution representations as a graph
structure. EGAM generates attention weights to regular-
ize the graph structure when learning novel data. Different
from existing attention mechanisms (Vaswani et al. 2017;
Veličković et al. 2018), the proposed EGAM can automat-
ically expand its attention region to adapt to the expansion
of ORVAE, and allows ORVAE to reuse the knowledge that
contributes to learning novel samples selectively.

Further, our other contribution consists of deriving a new
lower bound to the data likelihood in order to understand the
forgetting behaviour of ORVAE under TFCL. The proposed
theoretical analysis demonstrates that the objective function
of ORVAE with several bounded negative error terms guar-
antees a lower bound to the data likelihood in each training
instance during TFCL.

We summarise our contributions as : (1) A new model
ORVAE, which optimizes a graph structure on the latent
space in a recursive way, is proposed for utilizing prior infor-
mation when learning novel data. (2) A new attention mech-
anism is proposed to regularize the prior information stored
in the components for ORVAE, which maximizes the knowl-
edge transfer when learning new concepts. (3) We provide
new insights into the VAE’s forgetting behaviour and theo-
retical guarantees for ORVAE under TFCL.

Supplementary materials (SM) and source code are avail-
able1.

Related Work
Memory based Lifelong learning is a natural solution for
CL, which uses a buffer to store some past samples, then
replaying them when learning a new task (Chaudhry et al.
2019a; Lopez-Paz and Ranzato 2017; Pan et al. 2020; Re-
buffi et al. 2017; Cha, Lee, and Shin 2021; Tiwari et al.
2022). However, using a fixed memory is not scalable to
learning an infinite number of tasks. Other memory-based
approaches focus on training a generator such as a VAE
or a Generative Adversarial Net (GAN) (Goodfellow et al.
2014), as a generative replay network (Achille et al. 2018;
Ramapuram, Gregorova, and Kalousis 2017; Rao et al. 2019;
Shin et al. 2017; Wu et al. 2018; Zhai et al. 2019; Ye
and Bors 2020a, 2022a) which produces past samples when
learning new tasks. However, these approaches suffer from
degenerated performance when learning a long sequence of
data domains due to the frequent generating processes (Ye
and Bors 2020a).
Dynamic Architecture Methods (DAMs) aim to expand its
network architecture by adding new neural layers and hidden
nodes in order to adapt the model for learning new tasks (Ye
and Bors 2020b, 2023, 2021c; Rao et al. 2019; Ye and Bors

1https://github.com/dtuzi123/ORVAE

2022d,e,g). These approaches usually divide the whole net-
work architecture into two components (Ye and Bors 2021c),
the shared and the task-specific modules, where a new com-
ponent is built based on a set of shared modules which do not
update in the following tasks in order to relieve catastrophic
forgetting (Wen, Tran, and Ba 2020). DAMs have been used
in a task-incremental scenario (Ye and Bors 2021c) and
TFCL (Rao et al. 2019; Lee et al. 2020), achieving promis-
ing results. The proposed ORVAE has two different features
from existing expansion approaches (Ye and Bors 2022b;
Lee et al. 2020). Firstly, ORVAE learns a graph structure
in the latent space in which all previously learnt variables
are utilized for knowledge transfer when learning new data.
Secondly, the proposed attention mechanism can generate
graph attention weights that regularize the graph structure
in the latent space to maximize the benefit from the positive
knowledge transfer.
Regularization based approaches alleviate catastrophic for-
getting by incorporating an auxiliary term that penalizes
changes in the network weights when the model learns a
new task (Kirkpatrick et al. 2017; Li and Hoiem 2017;
Nguyen et al. 2018) or store past samples into a small mem-
ory buffer to regulate the optimization (Guo et al. 2020;
Chaudhry et al. 2019a). Recently, several works have pro-
posed to regulate the representation that is robust to for-
getting in continual learning by using adversarial training
processes (Ebrahimi et al. 2020) and meta-learning (Javed
and White 2019). However, these approaches still require
both the task identity and the class label, which can not be
applied in TFCL. Additionally, they have substantial com-
putation requirements when learning a growing number of
tasks (Lopez-Paz and Ranzato 2017). The proposed ORVAE
is more efficient since we do not optimize the whole network
architecture using past samples. Additionally, we utilize the
learned information in an end-to-end learning manner with-
out requiring any extra iterative training processes (Ebrahimi
et al. 2020; Javed and White 2019).

Methodology
Problem Setups
In this paper, we mainly focus on unsupervised generative
modelling in TFCL. Let X ∈ Rdx represent the data space
with the dimension of dx and Di be the training set of the
i-th task/dataset. Let f iclass : X → C be a function for Di,
which infers the exact class label for each sample where C is
the space of the data categories. Let us divideDi into several
disjoint parts {Xi

1, · · · ,Xi
Ni} where each part Xi

k is made
up by samples satisfying f iclass(x) = k, x ∼ Xi

k. N i is the
number of data categories from Di. We then provide three
TFCL scenarios, which represent a more challenging setting
than the those from (van de Ven and Tolias 2019).
Class-Incremental for a single dataset (CIASD). A stream
XS consists of several data categories from a single train-
ing set, resulting in

⋃Ni

j=1 X
i
j .

Class-Incremental for multiple datasets (CIMD). We apply
CIASD for multiple datasets, each consisting of several
data categories, and then a data stream XS is expressed as
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Figure 1: The network architecture of ORVAE when training the third component (only “Encoder3” and “Decoder3” are up-
dated). Firstly, an image x passes three inference models (“Encoder1”, “Encoder2”, “Encoder3”) to form three individual
variational distributions Q′ω∗1 (z), Q′ω∗2 (z), Q′ω∗3 (z), where Q′2 and Q2 in the figure denote Q′ω∗2 (z) and Qω∗2 (z), respectively.
Then we form two augmented variational distributions Qω∗2 (z) and Qω∗3 (z) in a recursive way. During the decoding, we take
{z1, z2, z3} drawn from {Qω∗1 (z), Qω∗2 (z), Qω∗3 (z)} as inputs of the base decoder which outputs the corresponding represen-
tations {x1

S′ ,x
2
S′ ,x

3
S′}, allowing us to form the augmented intermediate representation x3

S . Then we take x3
S as the input of

“Decoder3” for the image x reconstruction. Notice that {x1
S′ ,x

2
S′ ,x

3
S′} are not considered as random variables.

⋃M
i=1{

⋃Ni

j=1 X
i
j}, where M is the number of datasets.

General streaming setting for multiple datasets (GSSMD).
A stream XS consists of randomly chosen samples from
multiple datasets without considering their categories,
resulting in

⋃N
i=1Di.

In TFCL, we assume that there are a total of n training
steps T = {T1, · · · , Tn} for XS and learning each batch
of images Xi

batch ∼ XS , i = 1, · · · , n is time dependent.
During a certain training step Ti, a model can only access
Xi
batch and can not access the data corresponding to previ-

ous batches {X1
batch, · · · ,X

i−1
batch}. After Tn is finished, we

evaluate the performance on all testing data.

Preliminaries
We introduce a general generative latent variable model
pθ?(x, z), where x ∈ X and z ∈ Z are the observed and
the latent variables, where Z ∈ Rdz , is the latent space
with the dimension of dz . Training this model is performed
by maximizing the marginal log-likelihood log pθ?(x) =∫
pθ?(x | z)p(z) dz with respect to the model’s parameters

θ?, which is intractable due to the need of accessing all z
in this integral. The VAE (Kingma and Welling 2013) intro-
duces a variational distribution Qω?(z) to approximate the
posterior pθ?(z |x), estimated using the objective function :

log pθ?(x) ≥ LELBO(x; θ?, ω?) :=

Ez∼Qω? (z) [log pθ(x | z)]−DKL [Qω?(z) || p(z)] ,
(1)

where the right-hand side (RHS) is called the Evidence
Lower Bound (ELBO), and includes the negative recon-
struction error and the Kullback–Leibler (KL) divergence
between the variational distribution and the prior p(z) =
N (0, I). By aiming to define a mixture model for the con-
tinuously learning framework, where some parameters can
be reused, we decompose the latent representation into two
parts: zS over the space ZS ∈ Rdzs , which is a shared la-

tent representation, and the component-specific representa-
tion z over Z , where dzs > dz. The inference process for
z can be defined as Qω?(z) = fω ◦ fωS

(x) which is imple-
mented by two independent networks : fωS

: X → ZS and
fω : ZS → Z . Notice that we use the superscript ? to de-
note that the model’s parameters ω? include the shared parts
ω? = {ω, ωS}. The decoding process is also divided into
two parts by introducing the intermediate representation xS
over the space XS ∈ Rdxs , dxs < dx, which is inferred by
a base decoder GθS : Z → XS . We also use a sub-decoder
Gθ : XS → X with the decoding output implemented by
Gθ(GθS (z)). {ωS , θS} are updated only when training for
the first task and are frozen for the others. In practice, they
can be extracted by a VAE trained on a large-scale dataset in
order to provide fundamental feature information which can
then be used for multiple tasks.

Online Recursive Variational Autoencoder
Initial network architecture. We begin with the construc-
tion of the initial network architecture for the Online Re-
cursive Variational Autoencoder (ORVAE), which includes
four sub-models {Gθ1 , GθS , fω1

, fωS
}, forming the varia-

tional distribution Qω?
1
(z) = fω1

◦ fωS
(x) and the decoder

Gθ1(GθS (z)), respectively. The ELBO loss function for op-
timizing the initial architecture is defined as :

LORVAE(x; θ?1 , ω
?
1) := Ez∼Qω?

1
(z)

[
log pθ?1 (x | z)

]
−DKL

[
Qω?

1
(z) || p(z)

]
,

(2)

where θ?1 = {θ1, θS} and ω?1 = {ω1, ωS} are the parame-
ters of the first component. In TFCL, we desire to increase
the model’s capacity to learn the new knowledge by dynam-
ically augmenting a mixture model in a recursive way. In the
following, we describe how to build a new component based
on the initial network.
Build the second component. The main function of ORVAE
is to incorporate all previously learned latent representations
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into the inference and decoding processes whenever learning
novel information. We build a new inference model on the
base encoder fωS

, represented by :

Q′ω?
2
(z) = fω2

◦ fωS
(x), (3)

where ω2 represents the parameters of the inference model
for the second component. We then incorporate the previ-
ously learned encoding distribution Qω∗1 (z) into the infer-
ence process, expressed by :

Qω?
2
(z) = π(1,2)Qω∗1 (z) + π(2,2)Q

′
ω?

2
(z), (4)

where π(i,j) represents the weight between the i-th com-
ponent (previously learned) and the j-th component in the
inference process. Qω?

2
(z) is an augmented variational dis-

tribution by involving previously learned latent information.
We useQω?

i
(z) andQ′ω?

i
(z) to represent the augmented vari-

ational distribution and the individual variational distribu-
tion, respectively, for i > 1.

For the decoding process, we build a sub-generator Gθ2
based on the base decoderGθS and the decoding distribution
pθ?2 (x | z) is represented by :

pθ?2 (x | z) = N (Gθ2(x2
S), εI),

x2
S = a(1,2)GθS (z1) + a(2,2)GθS (z2) ,

(5)

where z1 ∼ Qω?
1
(z), z2 ∼ Qω?

2
(z) and a(i,j) represents

the importance of the intermediate representations GθS (zi)
when training the j-th component. ε and I are the noise vari-
ance and identity matrix. x2

S is an augmented intermediate
representation involving the information from all previously
learned representations {z1, z2}.
Training the growing graph model. ORVAE trains a growing
mixture model with an arbitrary number of components K
in a recursive expansion manner in order to adapt to the data
distribution shift and accumulate previously learnt informa-
tion during TFCL. Firstly we define a variational distribution
for the K-th component :

Q′ω?
K

(z) = fωK
◦ fωS

(x) . (6)

Then the augmented variational distribution is defined as :

Qω?
K

(z) =
K−1∑
i=1

{
π(i,K)Qω?

i
(z)
}

+ π(K,K)Q
′
ω?

K
(z) (7)

For the decoding process, we build a new sub-generatorGθK
based on the base decoder GθS and the decoding process is :

pθ?K (x | z) = N (GθK (xKS ), εI),

xKS =
K−1∑
i=1

{
a(i,K)GθS (zi)

}
+ a(K,K)GθS (zK), (8)

where θ?K = {θK , θS}, ω?K = {ωK , ωS} are the parameter
sets and zK ∼ Qω∗K (z). We present the network architecture
of the proposed ORVAE when learning the third component
in Fig. 1, where Qω?

2
(z) and Qω?

3
(z) are augmented by indi-

vidual variational distributions {Qω?
1
(z), Q′ω?

2
(z), Q′ω?

3
(z)},

regularized by their component weights. For the decoding

process, we augment x3
S by using {x1

S′ ,x
2
S′ ,x

3
S′} given by

the base decoder GθS , which is used as the input of the
sub-generator Gθ3 for the reconstruction process. We use
the reparameterization trick (Kingma and Welling 2013) for
the sampling process of each variational distribution in or-
der to ensure the differentiable optimization (See details in
Appendix-I from the Supplementary Material (SM1)).
Objective function. In order to embed the inference and de-
coding processes, described above, into the maximum likeli-
hood framework, we propose a new loss function that guar-
antees a lower bound to the data likelihood (See Theorem 1),
used to train the newly added K-th component, K > 1, in
ORVAE :
LORVAE (x; θ?K , ω

?
K) := Ez∼QωK

(z)

[
log pθ?K (x | z)

]
−
K−1∑
i=1

{
π(i,K)DKL

[
Qω∗i (z) || p(z)

]}
− π(K,K)DKL

[
Q′ω∗K (z) || p(z)

]
.

(9)

We only update {θK , ωK} by maximizing Eq. (9) for
training theK-th component to adapt to novel samples while
freezing previously learned components to avoid forgetting.

Expandable Graph Attention Mechanism
Component weights {π(i,K), a(i,K) | i = 1, . . . ,K} in
Eq. (9) play an important role for the knowledge trans-
fer since they control the contribution of each component
when optimizing Eq. (9). To search the optimal configura-
tion for these component weights, we introduce the Expand-
able Graph Attention Mechanism (EGAM) which can dy-
namically optimize component (attention) weights for both
the encoding and decoding processes during the contin-
ual learning. Firstly, let us describe how to generate at-
tention weights when ORVAE builds the second compo-
nent. As shown in Eq. (4) and Eq. (5), we have four com-
ponent weights {π(1,2), π(2,2), α(1,2), α(2,2)}, then we dy-
namically build two groups of attention parameters, de-
noted as {ζe(1,1), ζ

e
(1,2)} and {ζd(1,1), ζ

d
(1,2)}, for encoders

and decoders, respectively. Instead of the existing atten-
tion approaches that model the correlation between im-
age/feature patches (Parmar et al. 2018; Shaw, Uszkoreit,
and Vaswani 2018), the proposed EGAM models the cor-
relation between learned representations when seeing a new
instance xn+1 by dynamically updating the attention param-
eters {ζe(1,2), ζ

e
(2,2), ζ

d
(1,2), ζ

d
(2,2)} with respect to the maxi-

mization of the objective function from Eq. (9) :

ζe(j,2) =ζe(j,2) + l1∇ζe
(j,2)
{−LORVAE(xn; θ?2 , ω

?
2)},

(10)
where j = 1, 2 and l1 is a the learning rate. xn is the last
given sample. We use Eq. (10) to update ζd(j,2), j = 1, 2 in
the same way. Then attention weights associated with xn+1

are generated by the softmax function :

π(j,2) = exp(ζe(j,2))/
∑2

i=1
exp(ζe(i,2)) , j = 1, 2 . (11)

We are also using Eq. (11) to generate {α(1,2), α(2,2)} based
on {ζd(1,2), ζ

d
(2,2)}. These attention weights are then used
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to regulate the variational distributions {Qω?
1
(z), Q′ω?

2
(z)}

and the representations {GθS (z1), GθS (z2)} during the in-
ference and decoding processes. Then we update the at-
tention parameters using Eq. (10) to adapt the new sample
xn+1. When ORVAE expands the model, EGAM also adds
new sets of attention parameters which are optimized using
Eq. (10) to regularize the new latent structure (See details
in Appendix-J from SM1). In practice, we jointly update the
model and attention parameters by maximizing Eq. (9).

The Learning Algorithm
In this section, we introduce the detailed algorithm used for
training ORVAE under TFCL. In order to avoid frequently
building new components, we use a single memory buffer to
replay a few past samples for training, denoted as St when
it is updated at the training step Tt, where |St| represents the
number of its stored samples. Let |St|max be the maximum
size of the memory. We have the following steps for opti-
mizing ORVAE from the training step Tt to Tt+1 (See more
details in Appendix-A from SM1). :
Step 1 (Updating the memory): We add a new data batch
Xt+1
batch to the memory buffer St, resulting in S(t+1). If the

memory buffer is overloaded, we randomly remove samples
from St+1 until its size becomes equal to |S(t+1)|max.
Step 2 (Checking expansion): In this paper, we adapt a sim-
ilar expansion process as in (Ye and Bors 2022b), described
as follows. If |S(t+1)| = |S(t+1)|max, then we evaluate the
novelty of the incoming batch of samples Xt+1

batch. We use a
measure dt, representing the absolute difference when eval-
uating the objective function from Eq. (9), calculated by the
current model, on the memorized samples from St and the
new batch of data Xt+1

batch :

dt =
∣∣Ex∼St [LORVAE(x; θtK , ω

t
K)]

− Ex∼Xt+1
batch

[LORVAE(x; θtK , ω
t
K)]
∣∣ , (12)

where {θtK , ωtK} are the parameters of the K-th mixture
model trained at the training step Tt.
Step 3 (Expansion): If dt > λ, where λ is a threshold, OR-
VAE builds a new mixture componentM(K+1), in a recur-
sive way, using Eq. (7) and (5), while S(t+1) is the set to
contain Xt+1

batch only at T(t+1) in order to learn novel sam-
ples, otherwise, we randomly remove samples from S(t+1)

until its size is equal to |S(t+1)|max.
Step 4 (Learning): We train ORVAE and attention parame-
ters are updated based on S(t+1) using Eq. (9).

Theoretical Analysis for TFCL
In this section, we introduce a new theoretical framework for
analyzing the forgetting behaviour of TFCL. In the follow-
ing, we consider the CIASD scenario.

Preliminaries
Notation. Let Dc represent a training set and we consider
a data stream XS =

⋃Nc

j=1 X
c
j from Dc according to the

CIASD setting. We assume that there are n training steps
for learning XS . LetMt be a VAE model trained on St at Tt

and τ ′t represents the distribution of St. Let Pθt represent the
generator distribution ofMt. We use Mt

k to represent the k-
th component in ORVAE trained on St at Tt and Pθtk to rep-
resent the generator’s distribution of Mt

k. Before we derive
a lower bound on ELBO for CIASD, we firstly demonstrate
that the objective function from Eq. (9) is a lower bound to
the marginal log-likelihood when we can access all training
samples.

Theorem 1 For a given component Mt
K , the objective func-

tion LORVAE from Eq. (9) is a lower bound to the marginal
log-likelihood:

log pθ∗K (x) = LORVAE(x; θ∗K , ω
∗
K) + LGAP , (13)

and LGAP ≥ 0 is defined by :

DKL[Qω?
K

(z) || p(z |x)] + π(K,K)DKL

[
Q′ω?

K
(z) ||Qω?

K
(z)
]

+
K−1∑
i=1

{
π(i,K)DKL

[
Qω?

i
(z) ||Qω?

K
(z)
]}
. (14)

The proof is provided in Appendix-B from SM1. From
Eq. (14), we can observe that LGAP also depends on the
KL divergence between the previously learned variational
distribution Qω?

i
(z), i < K and the current variational dis-

tribution Q′ω?
K

(z). However, Theorem 1 can not evaluate
the generalization performance (the gap between ELBO and
the data log-likelihood (Burda, Grosse, and Salakhutdinov
2015)) of ORVAE under the TFCL learning setting in which
the source and target distributions are not identical. This mo-
tivates us to develop a new lower bound to ELBO, which can
evaluate the generalization performance of ORVAE in each
training step, described in the next section.

Online ELBO for a Single Model
Existing approaches (Burda, Grosse, and Salakhutdinov
2015; Rezende and Mohamed 2015) attempt to derive a
tight ELBO to the data likelihood in order to improve the
performance of the VAE. However, none of them consid-
ers TFCL. In this section, we introduce a new bound, called
Online ELBO (OELBO) which assesses the model’s gener-
alization when the source distribution evolves over time. Let
DTc be the testing dataset and we divide DTc into N c parts
{X(T,c)

1 , · · · ,X(T,c)
Nc } by using f cclass, where the distribution

of each X
(T,c)
i is represented by τi. In the following, we de-

rive the online ELBO under this setting.

Theorem 2 (Online ELBO.) Let Mt be a VAE model,
which converged following training on St at Tt. OELBO for
a target set X(T,c)

i is defined as:

Ex∼τi
[

log pθt(x)
]
≥ Ex∼τ ′t

[
LELBO(x; θt, ωt)

]
− C(τi, τ

′
t ,Pθt)−DLog(τi, τ

′
t) ,

(15)

where C(τi, τ
′
t ,Pθt) and DLog(τi, τ

′
t) are defined as :

C(τi, τ
′
t ,Pθt) = DKL(τi || τ ′t)

+ |DKL(τ ′t ||Pθt)−DKL(τi ||Pθt)| ,
(16)
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Methods MNIST N Fashion N Split M-F N MFO N

VAE-ELBO -228.86 1 -341.63 1 -291.99 1 -1086.424 1
VAE-IW50 -211.64 1 -324.33 1 -278.42 1 -363.19 1
VAE-IW10 -214.45 1 358.12 1 -275.40 1 -348.15 1
BE-ELBO -228.08 20 -348.86 20 -308.20 20 1171.74 20
BE-IW10 -209.09 20 -354.64 20 -295.00 20 1025.90 20
BE-IW50 -207.27 20 330.27 20 -290.93 10 -1069.29 20
CNDPM-IW50 113.15 29 -266.22 30 -242.54 30 -230.03 30

ORVAE-ELBO -108.21 14 -281.76 18 -241.40 14 -227.58 13
ORVAE-IW10 -120.12 14 -278.07 19 -241.70 16 -241.70 16
ORVAE-IW50 -133.45 7 -262.68 13 -246.48 15 -246.48 15

Table 1: The sample log-likelihood estimation for Split
MNIST, Split Fashion, Split MNIST-Fashion and MFO.

DLog(τi, τ
′
t) = Ex∼τ ′t [pτ ′t (x) log pτ ′t (x)]

− Ex∼τi [pτi(x) log pτi(x)] ,
(17)

The proof is provided in Appendix-C from SM1. We call the
RHS of Eq. (15) as LOELBO(x; θt, ωt), which can be recov-
ered up to the standard ELBO when the source and target
distributions are equal, τi = τ ′t (See details in Appendix-C
from SM1). pτ ′t (x) and pτi(x) are the density functions of τ ′t
and τi. DLog(τi, τ

′
t) is constant if τi and τ ′t are fixed, which

can be bounded by |DKL(τ ′t || τi)−DKL(τi || τ ′t)|.
Limitations when using a single model. As shown in
Eq. (15) for the Online ELBO, the marginal log-likelihood
on the target distribution τi not only depends on ELBO
estimated on the source distribution τ ′t , but also relies
on C(τi, τ

′
t ,Pθt) where DKL(τi || τ ′t) is crucial for the

generalization performance of the model. If τ ′t is sufficiently
different from τi, then a large DKL(τi || τ ′t) would make
ELBO on τ ′t to be far away from the data log-likelihood,
Ex∼τi

[
log pθt(x)

]
. In practice, a single model has lim-

itations when trained on multiple tasks due to the fixed
capacity of the memory (See Lemma 1 from Appendix-D
of SM).

In the following, we analyze the forgetting behaviour of
ORVAE and show that ORVAE can address the limitations
of a single VAE model.

Online ELBO for ORVAE
Let MK = {Mt1

1 , · · · ,M
tK
K } represent an ORVAE model

which has trained K components, where each Mti
i con-

verged on Sti , at the training step Tti .
Lemma 1 The online ELBO of MK for multiple target sets
{X(T,c)

1 , · · · ,X(T,c)
Nc } is defined as :

Nc∑
i=1

{
Ex∼τi

[
log pθ(x)

]}
≥

Nc∑
i=1

{
max
M∈MK

{
− C(τi, τ

′,Pθ)

+ Ex∼τ ′
[
LORVAE(x; θ, ω)

]
−DLog(τi, τ

′)
}}

. (18)

where {θ, ω} are the parameters ofM and τ ′ is the distri-
bution of the memorized samples thatM was converged on.
Pθ denotes the generator distribution ofM.

Inception Score (IS)

Datasets ORVAE BE VAE CNDPM ORVAE*

Split CIFAR10 3.01 2.92 2.86 2.88 2.91
Split TinyImageNet 2.92 2.53 2.82 2.46 2.67

Fréchet Inception Distance (FID)

Split CIFAR10 122.73 146.30 138.37 142.36 126.76
Split TinyImageNe 131.46 170.62 155.82 171.10 140.56

Table 2: Quality of the reconstruction results by various
models when training with natural images under CIASD.

Remark. The proof is provided in Appendix-E from SM1.
We have several key results for Lemma 1 as : 1) MK

achieves a tighter bound to the data log-likelihood than a
single VAE model M. 2) ORVAE can relieve the nega-
tive backward transfer by preserving prior knowledge into
frozen components while performing the forward transfer
by the proposed recursive expansion and attention mecha-
nisms. 3) The objective function, Eq. (9) of ORVAE with
other negative terms guarantees a lower bound to the data
log-likelihood in each training step, as shown in the RHS of
Eq. (18).

Experiments
The Experiment Setting
Datasets and evaluation criteria : We consider MNIST (Le-
Cun et al. 1998), Fashion (Xiao, Rasul, and Vollgraf 2017)
and OMNIGLOT (Lake, Salakhutdinov, and Tenenbaum
2015) datasets for the density estimation task. All datasets
are binarized by using the setting from (Burda, Grosse, and
Salakhutdinov 2015). We use the sample log-likelihood es-
timated from 5000 important samples (Burda, Grosse, and
Salakhutdinov 2015) as the criterion for density estimation.
Baselines : We consider the following baselines: BE : We
implement Batch Ensemble (BE) (Wen, Tran, and Ba 2020)
as a mixture VAE model where the decoder shares param-
eters between components. BE also uses an episodic mem-
ory for training; VAE (VAE) : This baseline is a single VAE
model with an episodic memory; CNDPM is a dynamic ex-
pansion model that uses the Dirichlet process for the expan-
sion of components. The maximum number of components
in CNDPM is restricted to 30 to avoid memory overload.

Density Estimation
Settings: We consider three settings, defined as in Problem
Setups. CIASD: Split MNIST into ten parts according to
the ten classes and create a data stream by connecting these
parts orderly, one after another, denoted as Split MNIST. We
repeat this for Fashion, denoted as Split Fashion; CIMD:
We create a data stream by using samples from both Split
MNIST and Split Fashion, denoted as Split MNIST-Fashion;
GSSMD: We create a data stream by using ransom samples
from MNIST, Fashion and OMNIGLOT, denoted as MFO.

The results for the density estimation task are shown in
Table 1, where ‘VAE-IW10’ and ‘VAE-ELBO’ represent
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Figure 2: Performance when changing memory size.

Methods Split MNIST Split CIFAR10 Split CIFAR100

GEM 93.25 ± 0.36 24.13 ± 2.46 11.12 ± 2.48
iCARL 83.95 ± 0.21 37.32 ± 2.66 10.80 ± 0.37
MIR 93.20 ± 0.36 42.80 ± 2.22 20.00 ± 0.57
GSS 92.47 ± 0.92 38.45 ± 1.41 13.10 ± 0.94
CoPE-CE 91.77 ± 0.87 39.73 ± 2.26 18.33 ± 1.52
ER + GMED† 82.67 ± 1.90 34.84 ± 2.20 20.93 ± 1.60
ERa + GMED† 82.21 ± 2.90 47.47 ± 3.20 19.60 ± 1.50
CoPE 93.94 ± 0.20 48.92 ± 1.32 21.62 ± 0.69
CURL 92.59 ± 0.66 - -
CNDPM 93.23 ± 0.09 45.21 ± 0.18 20.10 ± 0.12

ORVAE 94.07 ± 0.13 50.43 ± 0.15 22.83 ± 0.25

Table 3: Classification accuracy for five independent runs for
various models on three datasets.

VAE using Importance Weighted VAE (Burda, Grosse, and
Salakhutdinov 2015) (using 10 importance samples) and
ELBO as the objective functions.

The threshold λ, controlling the size of the architecture in
Eq. (12), is set to 30 and 40 for Split MNIST and Split Fash-
ion, respectively. The maximum number of samples in the
memory is set to 512. We can observe that the importance
sampling can not improve the performance since all mod-
els are trained under TFCL. From Table 1 we can see that
the proposed ORVAE outperforms other baselines by a large
margin for the density estimation tasks.

Since Split MNIST-Fashion and MFO require a large
number of training steps, we set λ = 500 to control the total
number of components. However, under such a challenging
setting, the proposed ORVAE still achieves the state of the
art results, outperforming CNDPM-IWELBO50, even for a
smaller number of components, as shown in Table 1.

Evaluation of Generative Modelling Capability
We evaluate the generative ability of various models for CI-
FAR10 (Krizhevsky and Hinton 2009) and Tiny-ImageNet
(Le and Yang 2015) datasets. For this experiment, we divide
CIFAR10 and Tiny-ImageNet into ten parts, respectively,
denoted as Split CIFAR10 (SC) and Split Tiny-ImageNet
(STI). We consider λ = 80 for Eq. (12) and the maximum

Figure 3: Performance when changing λ for Eq. (12).

number of samples in the memory as 512. All models use
ELBO with a small weight of 0.01 for the KL divergence
term to avoid over-regularisation (Ye and Bors 2022c). From
Table 2, the results for the Fréchet Inception Distance (FID)
(Heusel et al. 2017) and Inception Score (IS) (Salimans et al.
2016) indicate that ORVAE outperforms other models in re-
construction quality. In Table 2, ORVAE* indicates that the
shared module is pre-trained on other datasets, see more de-
tails in Appendix-F from SM1.

Classification Task
This section considers supervised learning by training clas-
sifiers with ORVAE. We adapt the learning setting and net-
work architecture from (De Lange and Tuytelaars 2021) (see
details in Appendix-G.5, G.6 from SM1). The results for all
datasets are reported in Table 3, where the results from other
baselines are cited from (De Lange and Tuytelaars 2021).
These results show that the ORVAE outperforms CNDPM
in every dataset using fewer parameters.

Ablation Study
We study the performance of ORVAE when changing the
memory size. We train ORVAE when considering 192, 256,
320, 384, 700, and 1024 samples in the memory, on Split
MNIST, and the results are reported in Fig. 2. A large mem-
ory does not ensure optimal performance, while the size of
320 or 256 sets the balance between performance and the
model’s complexity. In Fig. 3, we provide the results for OR-
VAE when varying the threshold λ. A large λ would lead
to a compact network, while a small λ provides a growing
number of components while improving the performance as
well. More results can be seen in Appendix-G from SM1.

Conclusion
A new model, the Online Recursive Variational Autoencoder
(ORVAE)is proposed for addressing TFCL. ORVAE can ac-
cumulate knowledge by expanding its architecture without
forgetting. Furthermore, a new attention mechanism is pro-
posed to regulate the structural latent spaces to fully utilize
previously learned representation information when learning
novel samples. The empirical results demonstrate the perfor-
mance and scalability of the proposed ORVAE in TFCL.
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