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Abstract

Human intelligence is multimodal; we integrate visual, lin-
guistic, and acoustic signals to maintain a holistic worldview.
Most current pretraining methods, however, are limited to one
or two modalities. We present i-Code, a self-supervised pre-
training framework where users may flexibly combine the
modalities of vision, speech, and language into unified and
general-purpose vector representations. In this framework,
data from each modality are first given to pretrained single-
modality encoders. The encoder outputs are then integrated
with a multimodal fusion network, which uses novel merge-
and co-attention mechanisms to effectively combine infor-
mation from the different modalities. The entire system is
pretrained end-to-end with new objectives including masked
modality unit modeling and cross-modality contrastive learn-
ing. Unlike previous research using only video for pretrain-
ing, the i-Code framework can dynamically process single,
dual, and triple-modality data during training and inference,
flexibly projecting different combinations of modalities into
a single representation space. Experimental results demon-
strate how i-Code can outperform state-of-the-art techniques
on five multimodal understanding tasks and single-modality
benchmarks, improving by as much as 11% and demonstrat-
ing the power of integrative multimodal pretraining.

1 Introduction
True humanlike intelligence incorporates information from
a variety of signals and sensory organs (Schank and Abel-
son 1975). This implies that intelligent systems should be
integrative, incorporating signals from all available modali-
ties. In many practical data regimes this corresponds to the
modalities of vision (V), language (L), and speech/audio
(S). Although there has been tremendous progress in making
models to understand one modality (Devlin et al. 2019; Hsu
et al. 2021; Chen et al. 2022a) or two modalities (Su et al.
2019; Lu et al. 2019; Li et al. 2019; Radford et al. 2021; Jia
et al. 2021; Yuan et al. 2021) through self-supervised and
semi-supervised pretraining, it is a non-trivial task to extend
these successes to a three-modality system which can simul-
taneously interpret vision (V), language (L) and speech (S).

A few previous and concurrent attempts are made for the
three-modality pretraining (Akbari et al. 2021; Zellers et al.
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2022), however, one important difficulty is the pretraining
requires enormous amounts of three-modality data like cap-
tioned videos, which is often several orders of magnitude
smaller than the available single- or dual-modality data. E.g.,
the largest annotated video dataset at the time of writing con-
sists of 180M clips (Zellers et al. 2021), while the largest
available image-caption dataset has 900M pairs (Yuan et al.
2021). Another challenge is to effectively featurize raw sig-
nals from different modalities and allow them to interact and
fuse with one another, in an end-to-end framework.

To address these problems, we propose two solutions.
First, in addition to three-modality videos, we leverage
large-scale dual-modality data, e.g., images with captions
(V+L), speech with transcripts (S+L) and video narrations
(V+S). This greatly expands the size and diversity of pre-
training data while covering all three target modalities. Sec-
ond, instead of building a standalone model from scratch,
we leverage state-of-the-art pretrained single-modality en-
coders to generate powerful representations from raw sig-
nals. We propose a fusing architecture that can integrate the
outputs of the single-modality encoders and conducts cross-
modality understanding to get a final prediction. To design
the best fusing architecture, we experiment with variations
on the self-attention mechanism inside the transformer ar-
chitecture, including mechanisms that merge the attention
scores of different modalities. To this end, we propose i-
Code, an integrative and composable multimodal learning
framework, where “i” stands for the multimodal integration.

i-Code is pretrained on double and triple-modality data
using various self-supervision objectives, including: i)
masked unit modeling, where all input signals are converted
into discrete tokens, and the goal is to predict the tokens for
the masked units of each modality; ii) contrastive learning,
where two input modalities are provided and the model pre-
dicts whether the signals come from the same triple (or pair)
in the training data. We evaluate i-Code on diverse multi-
modal and single-modal benchmarks. Experimental results
demonstrate the effectiveness of the proposed multimodal
pretraining framework: i-Code outperforms state-of-the-art
algorithms across five multimodal datasets, as well as single
modality tasks such as the GLUE NLP benchmark, improv-
ing over the previous best by as much as 11%.

Our novelties include: (1) To the best of our knowl-
edge, i-Code is the first work using dual-modality data for
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three-modality pretraining. Using pretrained encoders for all
three modalities and the flexibility of switching module also
make i-Code unique of its kind. (2) How to effectively fuse
three modalities was unclear in the field of language-speech-
vision modeling. We systematically and thoroughly investi-
gate several fusion mechanisms, i.e., co-attention, merge at-
tention (Section 4.1) and Mixture of Experts (Section 6). (3)
We demonstrate the effectiveness of unified masked units
modeling for vision, language and speech (Section 4.2). (4)
i-Code can dynamically switch between single-modality en-
coders, which is a previously unexplored topic in multi-
modal pretraining and makes i-Code a more agile and com-
posable framework (Section 6). (5) In previous multimodal
models, performance of uni-modal encoders deteriorated af-
ter multimodal training. Our multimodal framework can im-
prove uni-modal encoders performance (Section 5.4).

2 Related Work

Jointly co-learning vision and language modalities is an ac-
tive area of multimodal research. One category follows a
two-tower architecture with independent encoders for two
modalities (Radford et al. 2021; Jia et al. 2021; Yuan et al.
2021; Chung, Zhu, and Zeng 2021; Alayrac et al. 2022).
Multimodality fusion is achieved via a projection layer
which is added to the single-modality encoder. These mod-
els are pretrained on image-caption or speech-text data with
contrastive learning loss. These models show outstanding
cross-modality retrieval performance along with zero and
few-shot prediction performance. Another body of research
seeks to achieve cross-modality interaction via a shared en-
coder (Dosovitskiy et al. 2020; Lu et al. 2019; Su et al.
2019; Li et al. 2019). For example, in VL-BERT (Su et al.
2019), vision features and language token embeddings are
inputted together into the encoder, and the task is to pre-
dict the masked tokens based on the detection features and
language contexts. Video-language learning has also been
an active research area (Zellers et al. 2021; Tang, Lei, and
Bansal 2021; Miech et al. 2019; Xu et al. 2021), where mod-
els are trained on videos frames and automatic speech recog-
nition transcripts.

One fundamental question in deep learning is can we
develop one unified model to learn vision, language and
speech modalities altogether (Kaiser et al. 2017; Baevski
et al. 2022). To solve this question, there has been increasing
research on modeling the multimodal components of video
data: textual transcripts, video frames, and audio waveform,
etc (Zellers et al. 2022; Akbari et al. 2021; Alayrac et al.
2020). E.g., VATT (Akbari et al. 2021) builds a transformer
encoder on top of projections of raw input data from videos
(3D RGB voxels, waveforms, and token embeddings) and
does not use single-modality encoder. We demonstrate that
leveraging state-of-the-art single modality encoders for mul-
timodal learning can effectively boost the multimodal model
performance. The i-Code framework also extends the pre-
training data from videos to dual-modality data.

3 Large-Scale Multimodal Pretraining Data

To facilitate effective multimodal learning, we collect large-
scale multimodal data for pretraining. We collect two types
of data: three-modality video and dual-modality datasets.

Video is a large-scale data resource that contains all three
modalities and is widely available on public streaming plat-
forms. We choose the recently published video dataset YT-
Temporal-180M (Zellers et al. 2021) because of its great
diversity in video corpus topics, high quality filtering and
selection, and large-scale quantity. We collect 180 million
video clips in the YT-Temporal-180M dataset, using the pro-
vided videos IDs and time stamps. For each clip, we evenly
sample 8 video frames as visual inputs. For speech, the raw
waveforms of audios are extracted to be further processed by
the downstream speech encoder. Each clip also comes with
a textual script that has been carefully denoised from the
original ASR transcripts. However, misalignment between
the frames and transcripts is a concerning and common is-
sue in video data (Tang, Lei, and Bansal 2021; Miech et al.
2019): narration transcripts can be irrelevant or temporally
misaligned with the visual frames. To alleviate this issue,
we generate the caption for the high-resolution mid-frame
of each clip with the captioning API of Azure Cognitive Ser-
vices, to augment the video dataset. More details on how we
leverage the captions can be found in Section 4.2. 54k clips
are held out as the validation set.

As high-quality three-modality videos are limited in size,
we also resort to dual-modality datasets for pretraining,
which have been widely used in dual-modality learning such
as visual-language representation learning (Radford et al.
2021; Jia et al. 2021; Yuan et al. 2021), zero-shot cross-
modality generation (Ramesh et al. 2021), automatic speech
recognition (ASR).. i-Code leverages the following dual-
modality datasets during pretraining:

1. Visual-Language. We use 72.8 million image-caption
pairs from the pretraining data of the Florence computer vi-
sion foundation model (Yuan et al. 2021). Data are collected
with a programmatic data curation pipeline from the Inter-
net, then selected and post-filtered (Yuan et al. 2021). 25K
pairs are held out as the validation set.

2. Language-Speech. We use internal 75k-hour tran-
scribed English speech data. This dataset, containing 63.2
million transcript-speech pairs, is diverse in scenarios, in-
cluding Cortana, far-field speech, and call center. Again, 25k
pairs are kept as the validation set.

3. Visual-Speech. For visual and speech pair datasets,
we leverage Spoken Moments in Time (SMiT), a video-
narration dataset. SMiT comprises 500k spoken captions
each of which depicts a broad range of different events in
a short video (Monfort et al. 2021). The validation split con-
tains 5k examples.

To the best of our knowledge, this is the first time that
paired datasets have been used to train vision-language-
speech models. In the experiment section, we compare the
performance of models pretrained with paired and video
datasets, respectively. To balance between dual-modality
datasets with difference sizes, we perform Exponentially
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Smoothed Weighting1 when sampling from difference data
resources. We discover that combining both types of datasets
can further boost the model’s performance.

4 The i-Code Multimodal Framework
In this section, we introduce the overall model architecture
of i-Code and how we pretrain i-Code on the aforementioned
large-scale multimodal datasets in a self-supervised manner.

4.1 Model Architecture
i-Code has three single-modality encoder and a multimodal
fusion module (Figure 1). The raw input for each modality
is fed into its corresponding single-modality encoder, then
all encoded inputs are fed through a linear projection layer
and integrated with the modality fusion network. Due to this
architecture design, i-Code can process various kinds of in-
puts: single-modality inputs, any combination of two modal-
ities, and all three modalities together.

Instead of training each single-modality encoder from
scratch, we design our framework to be modular: any pre-
trained model can be swapped in to fill the role of a single-
modality encoder. This provides the fusion network with
high-quality contextual representations for more effective
multimodal understanding. We opt to leverage state-of-the-
art models for each modality:

Language Encoder. We use the recently published De-
BERTa V3 base (He et al. 2020) as the language encoder.
This pretrained language model with 183 million parame-
ters has a disentangled attention mechanism that has helped
it achieve record-breaking performance on the GLUE and
SuperGLUE NLP benchmarks.

Vision Encoder. We adopt CoSwin transformer (Yuan
et al. 2021) as the vision encoder. To enable i-Code to pro-
cess both images and sequence of frames (video), we instan-
tiate a video CoSwin transformer from a pretrained CoSwin
transformer (Yuan et al. 2021) as the vision encoder, follow-
ing the procedure in Liu et al. (2022). The video CoSwin
transformer has 91 million parameters.

Speech Encoder. Recently, there has been significant ad-
vances in learning speech representations through diverse
network architectures (Schneider et al. 2019; Baevski et al.
2020; Hsu et al. 2021; Chen et al. 2022a). To leverage these
state-of-the-art techniques in speech representation learning,
we use a pretrained WavLM-large model (Chen et al. 2022a)
of 315 million parameters as the speech encoder. WavLM
contains a temporal convolutional encoder to featurize the
input speech waveform, followed by a transformer encoder.

Note other encoders can also be used besides these three
mentioned above. For example, we experimented with an-
other speech encoder HuBERT and include the results in
Appendix E.1. We also show that for a already pretrained
i-Code framework, it is possible to switch to other single
modality encoders without pretraining from scratch, indicat-
ing the composable property of i-Code (Section 6).

Multimodal Fusion Module. Features extracted by each
single-modality encoder are then projected to the fusion net-
work’s hidden dimension by a 1-layer feed-forward net-

1github.com/google-research/bert/blob/master/multilingual.md

work. The projected features are input to the modality fu-
sion network to generate integrative multimodal representa-
tions. Since positional information is already incorporated
by single-modality encoders, we do not use positional em-
beddings in the fusion module.

The backbone of the fusion network is a transformer
encoder, where each layer conducts cross-modality atten-
tion, forward projection, and layer normalization. To facil-
itate more effective cross-modality understanding, we ex-
plore two variations on the traditional attention mechanism:
merge-attention and co-attention, as illustrated in Figure 1.

Merge-attention. Different modalities share the same at-
tention parameters. To distinguish between different modal-
ities, an identification embedding unique to each modality
is added to the projected features (on all temporal and spa-
tial dimensions). Projected features from different modali-
ties are concatenated together (the temporal and spatial di-
mensions are flattened for visual inputs) and fed into the fu-
sion network, where each layer is the same as the classical
transformer encoder layer (Vaswani et al. 2017).

Co-attention. Each transformer layer first conducts self-
attention among features of each individual modality, with
modality-specific attention parameters (Lu et al. 2019). For
example, let the language, vision and speech outputs from
a previous transformer layer be XL, XV and XS . Now, we
can write a single attention head focusing on the language
modality as:

Xself
L = Self-Attention-Language(QL,KL, VL),

where query QL = XLW
Q
L , key KL = XLW

K
L , value

VL = XLW
V
L ; WQ

L , WK
L , and WV

L are modality-specific
attention matrices (in this case language). The self-attention
sublayer (with the residual connection and layer normaliza-
tion) is followed by a cross-modality attention:
Xcross

L = Cross-Attention-Language(Qcross
L ,Kcross

L , V cross
L ),

where Qcross
L = Xself

L WQ
Lc, Kcross

L = [Xself
V , Xself

S ]WK
Lc,

V cross
L = [Xself

V , Xself
S ]WV

Lc; WQ
Lc, WK

Lc, and WV
Lc are cross-

attention parameters of the language modality. Figure 1 il-
lustrates the merge- and co-attention mechanisms. For a fu-
sion network module with merge-attention, we use 6 trans-
former encoder layers with hidden size 768 and the fusion
module has 154 million parameters. For the co-attention
fusion module, to keep its model size close to the merge-
attention one, we use 3 layers and the same hidden size, end-
ing up with 163 million parameters. The parameters in the
fusion module are randomly initialized in pretraining and are
not instantiated from pretrained checkpoints.

Furthermore, we investigated the relationship between
model scale and pretraining performance, replacing the
dense transformer fusion encoder with a Mixture-of-Experts
encoder and observing consistent performance gains (Sec-
tion 6).

4.2 Pretraining i-Code
In this subsection, we introduce how we pretrain i-Code. We
first discuss the multimodal pretraining objectives: masked
units modeling and cross-modality contrastive learning.
Then we introduce the optimization and training details.
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Figure 1: Left: i-Code model architecture. Right: the attention and feed-forward operation in a fusion network layer with (a)
merge-attention and (b) co-attention. For simplicity, we only draw the residual connection of the language modality.

Masked Units Modeling: Masked Language Modeling
(MLM). Masked Language Modeling (MLM) has achieved
remarkable success in self-supervised learning for both lan-
guage (Devlin et al. 2019) and vision-language pretraining
(Dou et al. 2022). During pretraining, we mask out 30% of
the text tokens2. The task is to predict the masked tokens and
the loss LMLM is the cross entropy between the ground-truth
and the predicted token indices.

Masked Vision Modeling (MVM). For vision self-
supervised learning, we adopt the consistent high-level strat-
egy as masked language modeling. We convert vision inputs
to discrete tokens, mask out regions in the inputs images,
and maximize the cross-entropy between the prediction and
ground-truth tokens of the masked out regions. Given a se-
quence of frames, we leverage PeCo (Dong et al. 2021), a
state-of-the-art visual vector quantized variational Autoen-
coder (VQ-VAE), to discretize each frame to tokens. For
masking, we adopt the 3D tube-masking strategy proposed
in Wang et al. (2022) to mask image regions across the
temporal dimension, where the masking patch ratio for one
frame is 50%. We introduce the details in Appendix E.

Masked Span Modeling (MSM). We discretize the
speech utterance into tokens with a speech quantizer model,
i.e., the quantizer of wav2vec 2.0 (Baevski et al. 2020). We
use the same masking strategy as in HuBERT (Hsu et al.
2021) and wav2vec 2.0 (Baevski et al. 2020), where p% of
the time steps are randomly selected as start indices, and
the next l-step span is masked (Hsu et al. 2021). We follow
the default setting of pretraining WavLM and HuBERT by
choosing l = 10 and p = 8. The MSM loss LMSM is the

2Similarly to BERT pretraining, 10% of the masked tokens are
replaced with random token, and 10% of the time we keep the to-
kens unchanged and 80% are replaced with the MASK token.

cross-entropy between the prediction and labels.

Cross-Modality Contrastive Learning The second
group of pretraining objectives are the cross-modality
contrastive learning objectives. Each single modality input
is first encoded by the corresponding encoder and then fed
into the multimodal encoder individually. Next, we average
each group of single-modality embeddings. For language
and speech, the multimodal encoder outputs are averaged
along the sequential/temporal dimension. For vision in-
puts, they are averaged along both temporal and spatial
dimensions. We denote the l2 normalized representations
for vision, language and speech as uv,ul,us respectively.

Similar to previous works (Yuan et al. 2021; Jia et al.
2021; Radford et al. 2021), the vision-language contrastive
loss Lvl for a minibatch B is then defined as:

Lvl = Lv2l + Ll2v,

Lv2l = − 1

|B|

|B|∑
i=1

exp(τvl⟨u(i)
v ,u

(i)
l ⟩)∑|B|

j=1 exp(τvl⟨u
(i)
v ,u

(j)
l ⟩)

,

Ll2v = − 1

|B|

|B|∑
i=1

exp(τvl⟨u(i)
l ,u

(i)
v ⟩)∑|B|

j=1 exp(τvl⟨u
(i)
l ,u

(j)
v ⟩)

.

(1)

Lv2l and Ll2v denote the vision-to-language and language-
to-vision contrastive learning objectives respectively; τvl is a
learnable scaling parameters; ⟨ , ⟩ denotes the inner product.
We also define Lvs and Lls for vision-speech and language-
speech contrastive learning. To increase the effective batch
size, we concatenate the batches across all GPUs and em-
ploy the recently proposed gradient-cache technique (Gao
et al. 2021). This also ensures that when pretraining on dual
data, the effective batch from steps accumulation can con-
tain pairs from different dual datasets.
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For pretraining with video, captions and ASR tran-
scripts are concatenated as the language input to the visual-
language contrastive learning and MLM. The final pretrain-
ing objective is the weighted sum of the masked units mod-
eling and contrastive learning objectives:

L = αLMLM + βLMVM + γLMSM + λ(Lvl + Lvs + Lls).
(2)

We experiment with both fixed and learnable combination
weights. We do not observe significant differences in down-
stream performance and empirically find that α = 0.5, β =
0.6, γ = 1, λ = 1 works well. On either paired datasets or
videos, we pretrain for 3 epochs on 72 A100 GPUs, with ef-
fective batch size 1728. The learning rate is 2×10−5 for the
fusion module and 10−5 for modality encoders with 20000
warm-up steps, and the optimizer is AdamW.

5 Experiments
In this section, we evaluate i-Code and compare it with pre-
vious work on a variety of downstream tasks, including mul-
timodal sentiment & emotion analysis, multimodal infer-
ence, video QA and single-modality tasks. We refer readers
to the appendix for details on experiment settings, hyper-
parameters, and performance standard deviation for each
downstream task due to space limit.

5.1 Multimodal Sentiment & Emotion Analysis
We test i-Code on the largest dataset of multimodal senti-
ment analysis and emotion recognition to date, CMU Mul-
timodal Opinion Sentiment and Emotion Intensity (CMU-
MOSEI) (Zadeh et al. 2018) of 23,453 videos. It has two
tasks: sentiment analysis and emotion recognition. For sen-
timent analysis, given a video, the models need to predict the
sentiment levels from “highly negative (-3)” to “highly pos-
itive (3)” (Zadeh et al. 2018). Evaluation metrics are mean
average errors (MAE), correlation (Corr) between the pre-
dicted and ground-truth labels and F1. The dataset can also
be evaluated as a binary classification task, by grouping sen-
timent -3 to 0 as one class and 1 to 3 as another 3.

We tested several configurations of i-Code, with results
shown in Table 1. We compare with MulT (Tsai et al. 2019),
ICCN (Sun et al. 2020), MISA (Hazarika, Zimmermann,
and Poria 2020), ScaleVLAD (Luo et al. 2021), and Self-
MM (Yu et al. 2021). i-Code sets the state-of-the-art on this
task, e.g., improving 3% on the correlation. i-Code models
trained on the dual dataset exhibit better performance than
the one trained on video dataset, and the merge-attention
outperforms the co-attention on this dataset. We also explore
directly finetuning on the downstream task, without pretrain-
ing the fusion module (“No Pretrain”).

For emotion recognition, videos are categorized into
{happiness, sadness, anger, fear, disgust, surprise}. Evalu-
ation metrics are accuracy, precision, recall and micro-F1.
We evaluate on the unaligned version of the dataset since
the alignment information is not always available in real-
world scenarios. i-Code improves upon previous best mod-

3We also present the result of grouping [-3, -1] as one class and
[1, 3] as another in the appendix (Table 15).

Model MAE (↓) Corr. Acc-2 F1

MulT 0.591 69.4 81.6 81.6
ICCN 0.565 71.3 84.2 84.2
MISA 0.555 75.6 85.5 85.3
ScaleVLAD 0.527 78.1 86.4 86.3
Self-MM 0.530 76.5 85.2 85.3

i-Code

Pretrain Att.

No Pretrain Merge 0.529 79.6 86.8 86.5
Dual Merge 0.502 81.1 87.5 87.4

No Pretrain Co 0.510 80.6 87.3 87.5
Dual Co 0.525 80.9 87.1 87.0
Video Merge 0.519 80.8 87.3 87.1

Dual+Video Merge 0.507 80.7 87.3 87.2

Table 1: Experimental results on CMU MOSEI Sentiment
Analysis dataset.

Model Acc. F1 Prec. Recall

DFG (Zadeh et al. 2018) 38.6 49.4 53.4 45.6
MISA 39.8 45.0 37.1 57.1
RAVEN 40.3 51.1 63.3 42.9
MuIT 42.3 52.3 63.6 44.5
HHMPN (Zhang et al. 2021) 43.4 52.8 59.1 47.6
TAILOR (Zhang et al. 2022) 46.0 52.9 63.9 45.2
SIMM (Wu et al. 2019) 41.8 48.4 48.2 48.6
ML-GCN (Chen et al. 2019) 43.7 52.4 57.3 48.2

i-Code

Pretrain Att.

No Pretrain Merge 49.2 54.6 50.3 59.8
Dual Merge 49.4 55.4 49.4 63.0

No Pretrain Co 49.5 55.0 50.2 60.0
Dual Co 50.2 56.2 50.7 63.0
Video Merge 49.4 55.3 49.6 62.4

Dual+Video Merge 49.8 56.0 50.8 62.1

Table 2: Experimental results on MOSEI Emotion Recogni-
tion dataset.

els by 4.2% on accuracy and 3.3% on F1 (Table 2). The co-
attention surpasses the merge-attention. Leveraging dual and
video data together for pretraining achieves the best result. i-
Code even surpasses previous models which had additional
access to the alignment information (Table 17).

We then test on a humor detection dataset, UR-FUNNY
(Hasan et al. 2019). Given a video clip with subscripts, video
frames and sound, the task is to predict whether this clip will
lead to immediate laughter. Baseline models include those
that also leverage three-modality inputs, e.g., Bi-Bimodal-
Fusion Network (Han et al. 2021), Low-rank Matrix Fusion
(LMF, Liu et al. (2018)), MultiBench (Liang et al. 2021)
and Tensor Fusion Network (TFN, Zadeh et al. (2017)).
Due to the space limit, the i-Code model pretrained with
“dual datasets” is abbreviated as “D”, “videos” as “V”, “dual
datasets+video” as “DV”, “no pretraining” as “NP”, the
merge-attention fusion network as “M”, and the co-attention
fusion network as “C”. E.g., the i-Code model trained on
dual datasets with the co-attention is denoted as “i-Code
D+C”. Results in Table 3 show that i-Code outperforms the
previous best model by 7.5% and video pretraining shows
the best performance.
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Model i-Code
D+M

i-Code
NP+M

i-Code
D+C

i-Code
NP+C

i-Code
V+M

i-Code
DV+M MulT MISA MultiBench BBFN LMF TFN

Acc. 76.94 73.16 77.00 73.6 79.17 79.67 70.55 70.61 66.7 71.68 67.53 68.57

Table 3: Results on the UR-FUNNY test set.

Model i-Code
D+M

i-Code
NP+M

i-Code
D+C

i-Code
V+M HERO Craig.Starr GVE (C3D) GVE (ResNet) DF-BERT

Acc. 72.90 71.60 72.09 72.61 68.59 69.43 68.15 68.39 67.84

Table 4: Results on the VIOLIN test set.

5.2 Multimodal Inference
To better assess how i-Code reasons across modalities, we
evaluate i-Code on a multimodal inference dataset VIOLIN
(Liu et al. 2020). The input is a video clip from a television
show. This clip consists of frames V , aligned subtitles T and
sound S. The clip is paired with a text hypothesis H and the
task is to decide whether the hypothesis contradicts or entails
the video clip. We append the video subtitles to the text hy-
pothesis H , separated by the [SEP] token. The multimodal
representation is the average of the outputs from the fusion
network. A binary classifier is trained on the ensuing rep-
resentation. Results are summarized in Table 4. Baselines
include HERO, Craig.Starr, GVE (Chen and Kong 2021),
and DF-BERT (Liu et al. 2020). i-Code improves upon the
previous best model by 3.47%.

5.3 Video Question & Answering
We then test on video question answering (VQA) datasets.
We concatenate the question, a candidate answer, and subti-
tles together (separated by [SEP]) as the text input. The text
input, visual frames and speech waveforms are fed together
to the i-Code model to average the outputs across modali-
ties as the multimodal representation of the QA pair {q, ai}
conditioned on the clip. A projection layer transforms the
representation to the logit, followed by softmax.

How2QA dataset (Li et al. 2020) contains 31.7k video
clips. Baseline models include HERO (Li et al. 2020), the
2021 ICCV VALUE winner Craig.Starr (Shin et al. 2021),
DUKG (Li, He, and Feng 2021), CLIP (Radford et al. 2021),
CLIP+SlowFast and ResNet+SlowFast (Li et al. 2021). Re-
sults on the public test split are listed in Table 5. KnowIT
is a knowledge-based VQA dataset with 24,282 human-
annotated question-answer pairs (Garcia et al. 2020). We
compare i-Code with DiagSumQA (Engin et al. 2021), vari-
ants of knowledge based VQA models ROCK (Garcia et al.
2020) and ROLL (Garcia and Nakashima 2020). As shown
in Table 6, i-Code sets the new state-of-the-art.

5.4 Single Modality Evaluations
In Table 7, we compare i-Code (D+M) against previously
published multimodal models (FLAVA (Singh et al. 2022),
UNITER (Chen et al. 2020)) on the language-only bench-
mark GLUE (Wang et al. 2018). i-Code has set a new state-
of-the-art for multimodal models by a significant margin

of 11% on the average performance. Even compared to
language-only models, i-Code still shows stronger perfor-
mance and outperforms DeBERTa v3 base (which the i-
Code language encoder is initialized from) on 7 out of 8
tasks. As indicated in Table 7, previous multimodal mod-
els, especially V+L models, usually exhibit inferior per-
formance compared to language models. The performance
gap is typically attributed to the inferior quality of lan-
guage data in multimodal datasets (e.g., image captions).
We conjecture that the MLM objective and language-speech
contrastive learning improve our encoder quality. i-Code
pretrained with DeBERTa-v3 large also outperforms large-
configuration language encoders (Table 12).

We also evaluate on vision-only action recognition dataset
Kinetics-600 (Carreira et al. 2018). We test the vision en-
coder from i-Code pretraining (on video data with merge
attention). As shown in Table 8, i-Code improves upon
Florence-base, the model that i-Code vision encoder is ini-
tialized from, as well as previous models of similar or large
model size, e.g., VATT (Akbari et al. 2021), X3D-XL (Fe-
ichtenhofer 2020), TimeSformer-L (Bertasius, Wang, and
Torresani 2021), SlowFast-R101-NL (Feichtenhofer et al.
2019) and LGD-3D-101 (Qiu et al. 2019).

We then experiment on the speech benchmark SUPERB
(Chen et al. 2022b), including Speaker Identification (SID),
Keyword Spotting (KS), Automatic Speaker Verification
(ASV). Results are in Table 9 and baselines include TERA
(Liu, Li, and Lee 2021), wav2vec, HuBERT and WavLM.
Recall that the speech encoder in i-Code is instantiated from
WavLM-large. i-Code speech encoder outperforms WavLM-
large on SID by 1.68% and ASV. It is on par with it on other
tasks. Compared with other baselines, i-Code exhibits much
stronger performance. Evaluation results on more SUPERB
tasks can be found in Table 13 in the appendix.

6 Analysis
In this section, we present the exploration on the effective-
ness of model size on i-Cod performance, modality effusive-
ness, how composable i-Code model design is, and the effec-
tiveness of multimodal pretraining.

MoE Multimodal Fusion Encoder To further investigate
the relationship between i-Code scale and performance, we
pretrained a i-Code model using sparsely activated Mixture-
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Model i-Code
D+M

i-Code
NP+M

i-Code
D+C

i-Code
NP+C

i-Code
V+M

i-Code
DV+M Craig.Starr HERO DUKG CLIP CLIP-SF ResNet-SF

Acc. 75.41 74.41 75.52 74.76 75.73 75.21 74.74 74.32 73.92 69.34 72.87 74.32

Table 5: Results on the HOW2QA dataset.

Model i-Code
D+M

i-Code
NP+M

i-Code
D+C

i-Code
NP+C

Acc. 80.5 78.1 80.5 79.8

Model i-Code
V+M DiagSumQA ROLL ROCK

concepts

Acc. 80.0 78.1 71.5 65.4

Model ROCK
image

ROCK
facial

ROCK
caption

-

Acc. 65.4 65.4 63.5 -

Table 6: Results on the KnowIT video Q&A dataset.

of-Experts (MoE) encoder for multimodal fusion (Jacobs
et al. 1991; Shazeer et al. 2017). Similar to Fedus, Zoph,
and Shazeer (2022), we replaced the final feed-forward lay-
ers of each transformer block in the merge-attention fusion
encoder (Figure 1) with a routing block employing top-1
gating and 32 experts, each expert consisting of a pair of
feed-forward layers separated by a GELU activation func-
tion. The MoE version of the fusion encoder has 483 million
parameters, compared to the 154 million parameters of the
dense model. As shown in Table 10, using MoE for multi-
modal fusion further improves i-Code performance.

Modality Effectiveness & Flexibility. We investigate
how effective modalities are in multimodal datasets. E.g.,
in MOSEI Emotion Recognition (Table 11), we find the
speech (S) modality to be the most effective. This observa-
tion is reasonable considering the emotional quality of hu-
man speech (Peerzade, Deshmukh, and Waghmare 2018).
Leveraging dual modalities improves upon using the single-
modality, and using all modalities produces the best over-
all performance. These competitive results also demonstrate
that i-Code can infer with any combinations of modalities,
e.g., text-less or speech-only emotion analysis.

Switching the Single-modality Encoder. After i-Code is
pre-trained, one may want to switch the single-modality en-
coder with another one, e.g., a newly developed model. Can
we leverage the pretrained i-Code model without having
to pretrain from scratch? E.g., we first pretrain an i-Code
model using DeBERTa as the language encoder, and then
we switch the DeBERTa model with the BERT-base-uncased
model and continue pretraining. Its performance on the UR-
FUNNY development set is plotted with blue in Figure 2.
We pretrain another i-Code model with the same BERT en-
coder from scratch, with performance plotted with orange
in Figure 2. Utilizing previous checkpoints converges faster.
This shows switching the single-modality encoder in a pre-

trained i-Code model without pretraining from scratch is
feasible. More analysis are available in the appendix, e.g.,
Tables 18 and 19 on pretraining i-Code with different en-
coders.

Figure 2: Experiment of switching the language encoder
from DeBERTa to BERT after pretraining the i-Code model.

Pretraining Effectiveness. As shown in Tables 1 to 6, pre-
training improves upon without pretraining (NP+M). We ex-
plore the impact of pretraining objectives, presented in Ta-
ble 20. Training with either contrastive learning or masked
units modeling yields competitive performance.

More analysis and experiment results are presented in the
appendix. For example, we conduct video-language cross-
modal retrieval experiments on MSR-VTT dataset. We find
that using audio modality can further improve retrieval per-
formance (Table 14). Moreover, using audio modality alone
to retrieve video already exhibits reasonable performance.
Appendix can be found at https://arxiv.org/abs/2205.01818.

7 Conclusion
We introduced i-Code, a multimodal pretraining frame-
work that jointly learns representations for vision, lan-
guage, and speech. i-Code is integrative and flexible, able
to dynamically process one, two, or three modalities at a
time for the construction of shared representation spaces.
The model leverages novel attention mechanisms and loss
functions to effectively combine information from these
disparate modalities. We show that pretraining on dual-
modality datasets can also yield competitive or even better
performance than pretraining on videos, the data resource
that previous three-modality models were restricted to. i-
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Model CoLA SST-2 RTE MRPC QQP MNLI QNLI STS-B Avg.

Single-modality Language Models

BERT 52.1 93.5 66.4 88.9 71.2 84.6 90.5 85.8 79.1
RoBERTa 63.6 94.8 78.7 90.2 91.9 87.6 92.8 91.2 86.4
DeBERTa V3 69.2 96.2 84.8 90.2 92.5 90.6 94.1 91.4 88.6

Multimodal Models

UNITER 37.4 89.7 55.6 69.3 89.2 80.9 86.0 75.3 72.9
FLAVA 50.7 90.9 57.8 81.4 90.4 80.3 87.3 85.7 78.0
VisualBERT 38.6 89.4 56.6 71.9 89.4 81.6 87.0 81.8 74.5
VL-BERT 38.7 89.8 55.7 70.6 89.0 81.2 86.3 82.9 74.2
ViLBERT 36.1 90.4 53.7 69.0 88.6 79.9 83.8 77.9 72.4
CLIP 25.4 88.2 55.3 69.9 65.3 33.5 50.5 16.0 50.5
i-Code 70.1 96.3 85.6 91.0 92.6 90.5 94.3 91.9 89.0

Table 7: GLUE experiments. Best multimodal models are in bold and the highest of all baselines are underlined.

Model #Params TOP-1 TOP-5

AttentionNAS - 79.8 94.4
LGD-3D-101 - 81.5 95.6
SlowFast-R101-NL - 81.8 95.1
X3D-XL 11M 81.9 95.5
TimeSformer-L 121.4M 82.2 95.6
VATT-Base 87.9M 80.5 95.5
VATT-Medium 155M 82.4 96.1
Florence-Base 91M 82.5 95.9
i-Code 91M 83.0 96.1

Table 8: Results on Kinetics-600 action recognition dataset.

Tasks SID KS ASV
Metrics Acc. Acc. EER↓
TERA 57.57 89.48 15.98
vq-wav2vec 38.80 93.38 7.99
wav2vec2.0 Large 86.14 96.66 5.65
HuBERT Large 90.33 95.29 5.98
WavLM Large 95.46 97.86 3.77
i-Code 97.14 97.57 3.73

Table 9: Results on the speech benchmark SUPERB. The
best results are in bold and the second best are underlined.

MOSEI SA MOSEI EM KnowIT

Dense (152M) 85.4 49.4 80.0
MoE (483M) 85.81 49.7 80.7

HOW2QA UR-FUNNY VIOLIN

Dense (152M) 75.73 79.17 72.61
MoE (483M) 76.40 80.1 72.67

Table 10: Comparison between i-Code dense and MoE fu-
sion encoders, with merge attention and video pretraining.

V L S Acc. F1 Prec. Recall

✓ 45.0 50.0 45.9 54.9
✓ 46.3 52.6 44.5 64.3

✓ 47.3 52.7 46.4 60.1

✓ ✓ 49.0 54.8 49.2 61.8
✓ ✓ 48.0 53.3 47.5 60.7

✓ ✓ 49.2 56.1 48.8 65.8
✓ ✓ ✓ 49.4 55.4 49.4 63.0

Table 11: Vision (V), language (L) and speech (S) modality
effectiveness on MOSEI Emotion Recognition.

Code sets new state-of-the-art on 5 video understanding
tasks and single-modality benchmarks.
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