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Abstract
Offline reinforcement learning (RL) enables the agent to
effectively learn from logged data, which significantly ex-
tends the applicability of RL algorithms in real-world scenar-
ios where exploration can be expensive or unsafe. Previous
works have shown that extracting primitive skills from the re-
curring and temporally extended structures in the logged data
yields better learning. However, these methods suffer greatly
when the primitives have limited representation ability to re-
cover the original policy space, especially in offline settings.
In this paper, we give a quantitative characterization of the
performance of offline hierarchical learning and highlight the
importance of learning lossless primitives. To this end, we
propose to use a flow-based structure as the representation for
low-level policies. This allows us to represent the behaviors
in the dataset faithfully while keeping the expression ability
to recover the whole policy space. We show that such lossless
primitives can drastically improve the performance of hier-
archical policies. The experimental results and extensive ab-
lation studies on the standard D4RL benchmark show that
our method has a good representation ability for policies and
achieves superior performance in most tasks.

Introduction
Online reinforcement learning has succeeded dramati-
cally in various domains, including strategy games (Ye
et al. 2020), recommendation systems (Swaminathan and
Joachims 2015), and continuous control (Lillicrap et al.
2015). However, it requires extensive interaction with the
environment to learn through trial and error. In many real-
world problems, like robot learning and autonomous driv-
ing, access to an interactive environment can be severely
limited due to safety concerns or huge costs (Shalev-
Shwartz, Shammah, and Shashua 2016; Singh et al. 2020b).
However, in these applications, a large amount of pre-
collected data is usually available, including human demon-
strations and data from hand-engineered policies. This
makes offline RL (Levine et al. 2020; Fu et al. 2020) an
appealing approach for effectively learning from such pre-
viously logged data.
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Leveraging the temporally extended and recurring struc-
ture has long been an effective paradigm to solve complex
and diverse tasks (Dietterich et al. 1998; Sutton, Precup,
and Singh 1999; Kulkarni et al. 2016) by facilitating explo-
ration (Pertsch, Lee, and Lim 2020). For example, a kitchen
robot may need to finish many sub-tasks to cook a dish: slide
cabinet door, move kettle, and open microwave (Gupta et al.
2019). However, such structure in the agent’s logged behav-
ior is less appreciated in the offline setting. Especially, there
is little theoretical justification for extracting low-level skills
and learning a high-level policy with offline datasets, and it
is unclear how offline-learned skills affect the overall perfor-
mance. This naturally leads to the following question:

Is there provable benefit from extracting temporally
extended primitive skills in the offline setting, and how to

extract useful skills to maximize such benefit?

In this paper, we give an affirmative answer to the first
question by analyzing the performance of hierarchical of-
fline learning in linear MDPs. We show that there are prov-
able benefits in learning a hierarchical structure when the
low-level skills are well-learned, in the sense that such skills
can faithfully represent the logged behavior and be expres-
sive to recover the original policy space. As for the second
question, we find that current skill-based offline RL methods
are significantly compromised by the limited representation
ability of the learned low-level skills to recover the origi-
nal policy space. Such loss of representation capacity can
greatly harm some powerful offline algorithms’ optimiza-
tion, rendering skill-based methods less impractical in gen-
eral usage. To recover the policy space in a lossless way and
learn more effective skills, we propose to learn an invertible
function to map latent embeddings to temporally extended
actions. Since the mapping is invertible, the RL agent re-
tains full control over the original policy space while faith-
fully representing the original dataset’s behavior. We name
our method offline Lossless Primitive Discovery (LPD) and
evaluate LPD on the standard D4RL benchmark. Exper-
imental results indicate that LPD achieves superior per-
formance on challenging tasks. Extensive ablation studies
demonstrate the strong representation ability of the LPD. To
the best of our knowledge, our work is the first study ana-
lyzing the representation error in offline hierarchical RL.
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Figure 1: The general description of offline hierarchical learning. The agent makes a decision for every c step and then follows
the behavior-cloned primitive skills for c steps. The temporally extended primitive skills help the agent to reduce the estimation
error and make the right decision by reducing the planning horizon.

Related Work
Offline RL. Current offline RL methods mainly address
the extrapolation error issue in value estimation, and they
can be roughly divided into policy constraint (Yang et al.
2021; Peng et al. 2019; Nair et al. 2020; Ma et al. 2021),
pessimistic value estimation (Kumar et al. 2020; Ma, Jayara-
man, and Bastani 2021), and model-based methods (Yu et al.
2021; Kidambi et al. 2020; Hu et al. 2022). Policy constraint
methods aim to keep the policy close to the behavior under a
probabilistic distance. Pessimistic value estimation methods
enforce a regularization constraint on the critic loss to pe-
nalize over-generalization. Model-based methods attempt to
learn a model from offline data with minimal modification to
the policy learning (Argenson and Dulac-Arnold 2020). Dif-
ferently, we focus on the offline dataset’s temporal structure
and explore how to improve these modern offline methods
by extracting temporally extended primitive behaviors.

Hierarchical learning. Learning primitive skills is
closely related to hierarchical models (Dietterich et al.
1998; Sutton, Precup, and Singh 1999; Kulkarni et al.
2016): the low-level policy is the primitive policy extracted
from the offline datasets, while the high-level policy is
trained using modern offline RL. This structure is similar to
online skill discovery works (Sharma et al. 2019; Eysenbach
et al. 2018; Shankar and Gupta 2020; Singh et al. 2020a),
which use unsupervised objectives to discover skills and
use the discovered skills for planning (Sharma et al. 2019),
few-shot imitation learning (Nam et al. 2022), or online
RL (Nachum et al. 2018). In contrast to these works
designed for online settings, we focus on settings where a
large dataset of diverse behaviors is provided, but access
to the environment is restricted. There are some variants of
the above works in offline RL. For example, OPAL (Ajay
et al. 2020) explores hierarchical offline learning by

adopting VAE-based primitive policies and achieves sound
performance. In the following sections, we briefly name the
hierarchical offline RL method incorporated with OPAL as
x+OPAL (e.g., IQL+OPAL).

Preliminaries
We consider infinite-horizon discounted Markov Decision
Processes (MDPs), defined by the tuple (S,A,P, r, γ),
where S is a state space, A is an action space, γ ∈ [0, 1)
is the discount factor and P : S ×A → ∆(S), r : S ×A →
[0, rmax] are the transition function and reward function, re-
spectively. We also assume a fixed distribution µ0 ∈ ∆(S)
as the initial state distribution. The goal of an RL agent is to
learn a policy π : S → ∆(A) under dataset D, which max-
imizes the expectation of a discounted cumulative reward:
J(π) = Eµ0,π [

∑∞
t=0 γ

tr(st, at)]. We assume the dataset
is generated by an unknown behavior policy β(a|s, z), with
prior z ∼ Z. Note that this assumption on data collection
is implicit and we do not assume an additional structure of
the dataset. We define the dataset for learning primitives as
Dlow

.
= {τi = (sit, a

i
t)
c−1
t=0}Ni=1, where τi is the sub-trajectory

and c is the skill length. We also create a dataset for high-
level policy learning as Dhi = {(si0, zi,

∑c−1
t=0 γ

trit, s
i
c)}Ni=1,

where zi are learned labels for each sub-trajectory. When
learning from the low-level dataset, we consider a finite can-
didate function class Πθ. Further, we assume β ∈ Πθ, i.e.,
the true low-level policy is realizable in the function class
Πθ.

To make things more concrete, we consider the linear
MDP (Yang and Wang 2019; Jin et al. 2020) as follows,
where the transition kernel and expected reward function are
linear with respect to a feature map.

Definition 1 (Linear MDP). We say an episodic MDP
(S,A,P, r, γ) is a linear MDP with known feature map
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(a) IQL+OPAL (c = 1) (b) IQL+LPD (c = 1)
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Figure 2: Impact of limited representation on performance. (a) and (b) visualization of the similarity ϵ between the agent’s
decision a and datasets D in the antmaze medium task, which is calculated by ϵ = minâ∈C ∥a − â∥1, where C = {(ŝ, â) |
∥s − ŝ∥1 ≤ 20, (ŝ, â) ∈ D} is the similar state set to the agent. Darker colors correspond to the lower similarity. We find
the decoded actions of OPAL are limited to the datasets (red circle), which is opposed to the LPD. (c) Performance on the
antmaze-medium-diverse-v0 task with skill length c = 1.

Ψ : S × A × S → Rd,Φ : S × A → Rd if there exist
an unknown vector ω ∈ Rd such that

P(s′ | s, a) = Ψ(s, a, s′)⊤ω, E
[
r(s, a)

]
= Φ(s, a)⊤ω (1)

for all (s, a, s′) ∈ S×A×S . And we assume ∥Φ(s, a)∥∞ ≤
1, ∥Ψ(s, a, s′)∥∞ ≤ 1 for all (s, a, s′) ∈ S × A × S and
∥ω∥2 ≤

√
d.

We also consider the every-c-step hyper-MDP, where we
act every c step to determine the next primitive z and keep
the reward and the dynamics the same. Then we have the
following proposition (See Appendix for proof).
Proposition 1. The every-c-step hyper-MDP induced by the
linear MDP M and the primitive policy β(·|s, z) is also a
linear MDP.

For the theoretical analysis, we use the pessimistic value
iteration (PEVI) for high-level policy learning in the hyper-
MDP. Please see Algorithm in Appendix for more details.
The learned primitive skills πθ(a|s, z) and the policy learned
from PEVI together comprise a hierarchical policy π̂θ. Sim-
ilarly, We use π̂β to denote the composition of the high-
level policy π̂ from PEVI and the ground-truth low-level
policy β. π∗

β is the optimal policy in the hyper-MDP with
β as primitive skills and π∗ is the optimal policy inM. We
consider the suboptimality as the evaluation metric, which
is defined as the performance difference between the opti-
mal policy π∗ and the given policy π. Formally, we have
SubOpt(π) = J(π∗)− J(π).

Theoretical Analysis
In this section, we analyze the benefit of learning a hierarchi-
cal structure in the context of offline RL and linear MDPs.
To derive a performance bound and examine how a prim-
itive learning method affects the overall performance, we
consider the following decomposition:

SubOpt(π̂θ) = J(π̂β)− J(π̂θ)︸ ︷︷ ︸
Primitive Error

+

J(π∗
β)− J(π̂β)︸ ︷︷ ︸

Offline Error

+ J(π∗)− J(π∗
β)︸ ︷︷ ︸

Representation Error

.

The primitive error comes from the generalization error of
a learned low-level policy πθ and the ground-truth low-level
policy β. The offline error comes from learning in a high-
level offline dataset. The representation error comes from the
limited representation ability of the hierarchical structure. In
the following, we upper bound the three different kinds of
error, respectively.

The primitive error comes from limited samples of the
low-level dataset, which makes the learned low-level policy
different from the original primitive. This can be seen as a
standard machine learning problem and can be characterized
as follows.
Lemma 1. With high probability 1− δ,

J(π̂β)− J(π̂θ) ≤
γc(c+ 1)rmax

(1− γ)(1− γc)
εθ, (2)

where εθ =
√

ln |Πθ|/δ
N . |Πθ| is the size of the policy class

and N is the number of training samples.
On the contrary, the offline error comes from limited sam-

ples of the high-level dataset. With proper pessimism (Jin
et al. 2020), we have the following offline-learning bound in
the hyper-MDP.
Lemma 2 (Informal). Suppose there exists an finite concen-
tration coefficient c† w.r.t. the optimal policy, then with prob-
ability 1− δ, the policy π̂ generated by PEVI satisfies

J(π∗
β)− J(π̂β) ≤

2Crmax

(1− γ)(1− γc)

√
c†d3ζ

N
, ∀s ∈ S,

where C is a constant, d is the dimension of the linear MDP,
N is the size of the dataset and ζ = log (4dN/(1− γ)δ).
Please refer to the Appendix for the Formal description.

Finally, we bound the representation error by quantify-
ing how many of the possible low-level policies can be re-
covered by different choices of z. Following Nachum et al.
(2018), we make use of an auxiliary inverse primitive model
Ω(s, a), which aims to predict which primitive z will cause
β to yield an action ã = β(s, z) that induces a next state dis-
tribution P (s′|s, ã) similar to P (s′|s, a). Formally, we have
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Figure 3: The framework of LPD. We first train the invertible primitive policies fψ by the unsupervised learning. Next, we use
f−1
ψ to create Dataset Dhi and further train high-level policy πϕ. LPD-based primitive policies have adequate control over the

original policy space due to their strong representation ability. On the contrary, the control space of the OPAL-based primitives
is limited to the vicinity of the dataset (seen points).

Lemma 3. Consider a mapping Ω : S × Π → Z and let
β̃ = β(st,Ω(s, π)). We define εk : S×Π→ R for k ∈ [1, c]
as

εk(st, π) = DTV(Pπ(st+k|st+k−1)||Pβ̃(st+k|st+k−1)),

If
max

π∈Πθ,k∈[1,c]
Eπ[εk(s, π)] ≤ εΩ,

Then we have

J(π∗)− J(π∗
β) ≤

γc(c+ 1)rmax

(1− γ)(1− γc)
εΩ. (3)

Together, we have the following theorem.

Theorem 1. Under the condition in Lemma 1, 2 and 3, the
suboptimality of a policy learned in the hyper-MDP with Al-
gorithm ?? satisfies

SubOpt(π̂θ) ≤
2Crmax

(1− γ)(1− γc)

√
c†d3ζ

N
+

γc(c+ 1)rmax

(1− γ)(1− γc)
(εΩ + εθ), (4)

with high probability 1− 2δ.

The proofs for all the above lemmas and theorems are pro-
vided in Appendix. From Theorem 1, we can see that there
is a provable benefit in leveraging the temporal structure in
the offline dataset, since a large skill length c effectively re-
duces the offline error by a factor of 1−γ

1−γc . However, a large
skill length also incurs large representation errors and prim-
itive errors, which forms a trade-off with different choice
of c. We can see that it is crucial to choose a skill learn-
ing method that can faithfully represent the original behav-
ior policy while keeping the policy representation ability. It
is also important to choose a suitable skill length c to bal-
ance the two errors. Theorem 1 gives a qualitative guidance
in choosing the proper length. When the dataset has a bad
coverage c† or a large dimension d, we may use a larger
skill length. The general description of offline hierarchical
learning is shown in Figure 1.

Method
Following the above theoretical analysis, we find that cur-
rent skill-based offline RL methods are significantly clipped
by the limited representation ability of low-level learned
skills to recover the original policy space. Thus, we propose
to learn a lossless primitive discovery, which helps the RL
agent retain full control over the original policy space while
faithfully representing the original dataset’s behavior.

Lossless Primitive Discovery
We would like to extract a continuous space of temporally-
extended primitives πθ(a|s, z) fromDlow which we can later
use as an action space for learning downstream tasks with
offline RL. A common practice (Ajay et al. 2020) adopts the
following objective for learning πθ, which maximizes the
evidence lower bound (ELBO):

max
θ,ψ,w

J(θ, ϕ, w) = Êτ∼Dlow,z∼qψ(z|τ)

[
c−1∑
t=0

log πθ(at|st, z)

−DKL(qψ(z|τ)||ρw(z|s0))]

where qψ(z|τ) denotes the encoder, which encodes the
trajectory τ of state-action pairs into distribution in latent
space; πθ(a|s, z) denotes the decoder, which maximizes the
conditional log-likelihood of actions in τ given the state
and the latent vector; ρw(z|s0) denotes the prior, which pre-
dicts the encoded distribution of the sub-trajectory τ from
its initial state. The KL-constraint enforces the distribution
qψ(z|τ) to be close to just predicting the latent variable z
given the initial state of this sub-trajectory. The condition-
ing on the initial state regularizes the distribution qψ(z|τ) to
be consistent over the entire sub-trajectory.

Following the analysis of Theorem 1, we want to mini-
mize the representation error in addition to the primitive er-
ror in the low-level policy learning. However, simple VAE-
based models can lead to enormous representation errors, as
verified in the experiment. To solve this issue, we propose to
learn an invertible mapping between skill space and original
policy space fψ : Z × S → Ac to replace qψ(z|τ), which
guarantees our primitive policy is lossless over the original
policy space, and the overall objective can be written as
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Figure 4: The framework of the flow-based structure. The
decoding is fψ and the encoding is f−1

ψ . The whole process
is invertible and lossless.

min
ψ,w

J(ψ,w) = Êτ∼Dlow

[
− log pz(f

−1
ψ (a0:c−1; s0))

− log

∣∣∣∣∣det
(
∂pz(f

−1
ψ (a0:c−1; s0))

∂a0:c−1

)∣∣∣∣∣
]

s.t. Êτ∼Dlow

[
DKL(f

−1
ψ (a0:c−1; s0)||ρw(z|s0))

]
≤ ϵKL

where fψ are parameterized by ψ and f−1
ψ : Ac×S → Z

is the partial inverse of fψ . The a0:c−1 = fψ(z; s0) de-
notes the action sequence generated by fψ when given the

latent variable z and state s0, and vice versa. det
(
∂f(x)
∂xT

)
represents the Jacobian determinant. Based on the works on
normalizing flow (Dinh, Sohl-Dickstein, and Bengio 2016;
Dinh, Krueger, and Bengio 2014), we can easily represent
the invertible function with a neural network and deal with
the Jacobian term neatly. Note that our design is general and
not limited to flow-based structures. Other designs to repre-
sent such an invertible f for primitive skills can be an inter-
esting avenue for future work. The framework of flow-based
structure is shown in Figure 4. Please refer to Appendix for
the implementation details.

High-Level Offline Policy Learning

As for the high-level offline policy optimization, we would
like to use the learned invertible mapping fψ(z; s0) and
prior ρ(z|s0) to improve offline RL for downstream tasks.
Similar to Ajay et al. (2020), we relabel the dataset
D in terms of temporally extended transitions using
f−1
ψ (a0:c−1; s0). Specifically, we create a dataset Dhi =

{(si0, zi,
∑c−1
t=0 γ

trit, s
i
c)}Ni=1 to learn high-level offline pol-

icy, where zi ∼ f−1
ψ (a0:c−1; s0). Next, we adopt the strong

offline RL algorithm IQL (Kostrikov, Nair, and Levine 2021)
to learn πϕ(z|s):

Algorithm 1: IQL+LPD algorithm
Input: Offline dataset D.
Parameter: ϕ, φ, ϑ, ψ, w.
Output: policy πϕ.

1: Learn fψ and ρw with Dlow.
2: Create dataset Drhi using the trained mapping f−1

ψ .
3: while t = 1 to T do
4: Train value function Qϑ, Vφ and policy πϕ.
5: Update target networks:
6: φ′ ← (1− α)φ′ + αφ.
7: ϑ′ ← (1− α)ϑ′ + αϑ.
8: end while

JV (φ) = Êτ∼Dhi

[
Lλ2 (Qϑ′(s0, z)− Vφ(s0))

]
JQ(ϑ) = Êτ∼Dhi

(c−1∑
t=0

γtrt + γVφ(sc)−Qϑ(s0, z)

)2


Jπ(ψ) = ÊDhi [exp(β(Qϑ(s0, z)− Vφ(s0))) log πϕ(z|s0)]

where Lλ2 (u) = |λ − I(u < 0)|u2 indicates the expectile
regression (Dabney et al. 2018). β is an inverse temperature
to control the distribution constraint while maximizing the
Q-values (Yang et al. 2021; Peng et al. 2019). Our complete
method is described in Algorithm 1. The graphic overview
of our method is shown in Figure 3.

Experiments
In this section, we aim to address the following questions:
(1) How does the limited representation issue affect the
agent’s performance, and how does LPD improve on this
problem? (2) How does LPD perform compared to strong
baseline offline methods and other skill-based offline meth-
ods? (3) How does the choice of skill length c and other
factors affect the overall performance of LPD? To answer
these questions, we conduct extensive experiments on D4RL
tasks. Each experiment result is averaged over five random
seeds with a standard deviation.

Task Description

We evaluate our method on a suite of standard and chal-
lenging offline tasks (e.g., D4RL (Fu et al. 2020)) includ-
ing Franka kitchen, Antmaze, and Adroit. Specifically, the
Kitchen tasks involve a Franka robot manipulating multi-
ple objects either in an undirected manner or partially task-
directed manner. The task is to use the datasets to arrange
objects in the desired configuration, with only a sparse 0-
1 completion reward for every object that attains the tar-
get configuration. Antmaze requires composing parts of sub-
optimal and undirected trajectories to solve a specific point-
to-point navigation problem. Adroit tasks require controlling
a 24-DoF robotic hand to imitate human behavior. We adopt
Kitchen-v0, Antmaze-v0, and Adroit-v0 in our experiments.
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Type Env IQL+LPD IQL CQL OAMPI TD3+BC EMAQ
partial kitchen 74.9±1.1 ↑ 46.3 49.8 35.0±3.3 7.5±1.3 74.6±0.6
mixed kitchen 69.2±1.9 ↑ 51.0 51.0 47.5±4.1 1.5±0.2 70.8±2.3
complete kitchen 75.0±0.7 ↑ 62.5 43.8 10.0±1.9 23.5±2.5 36.9±3.7
fixed Antmaze-umaze 93.0±1.3 ↑ 87.5 74.0 64.3±4.6 78.6±4.4 91.0±4.6
play Antmaze-medium 74.7±2.2 ↑ 71.2 10.6 0.0±0.0 33.6±2.2 0.0±0.0
play Antmaze-large 56.2±3.6 ↑ 39.6 0.2 0.3±0.1 21.4±3.3 0.0±0.0
diverse Antmaze-umaze 81.6±2.0 ↑ 62.2 84.0 60.7±3.9 71.4±4.6 94.0±2.4
diverse Antmaze-medium 83.7±1.6 ↑ 70.0 3.0 0.0±0.0 34.7±2.5 0.0±0.0
diverse Antmaze-large 52.8±1.1↑ 47.5 0.0 0.0±0.0 25.9±2.7 0.0±0.0
human door 15.1±2.5 ↑ 4.3 9.9 2.8±0.1 0.0±0.0 -
human hammer 3.3±0.7 ↑ 1.4 4.4 3.9±0.2 0.9±0.1 -
human pen 63.1±1.6 71.5 37.5 54.6±4.6 39.0±3.6 -
cloned door 8.1±1.0 ↑ 1.6 0.4 0.4±0.1 0.0±0.0 0.2±0.3
cloned hammer 2.1±0.2 2.1 2.1 2.1±0.1 0.3±0.1 1.0±0.7
cloned pen 65.8±2.7 ↑ 37.3 39.2 60.0±5.2 25.1±1.9 27.9±3.7

Table 1: Performance of IQL+LPD with six baselines on D4RL tasks with the normalized score metric averaged over five
random seeds. The ↑ denotes that LPD achieves a performance improvement over IQL. The results of IQL, CQL, and EMAQ
are taken from the original papers. We implement OAMPI and TD3+BC according to the official code. Please refer to Appendix
for the detailed implementation of baselines.

Baselines
To answer the first question posed at the start of this sec-
tion, we compare IQL+LPD against state-of-the-art model-
free and model-based offline methods, including Implicit Q-
Learning (IQL) (Kostrikov, Nair, and Levine 2021), Con-
servative Q-Learning (CQL) (Kumar et al. 2020), Onestep
RL(OAMPI) (Brandfonbrener et al. 2021), TD3+BC (Fuji-
moto and Gu 2021) and EMAQ (Ghasemipour, Schuurmans,
and Gu 2021). These prior works have achieved superior re-
sults on D4RL.

As for the second question, we compare LPD with
OPAL (Ajay et al. 2020), which is the first study to distill
primitives from the offline dataset before applying offline
methods to learn a primitive-directing high-level policy.

Main Results
Experiments with limited representation issue We con-
duct experiments to show the limited representation issue.
A reasonable approach is to evaluate the performance of
IQL+OPAL and IQL+LPD with skill length c = 1. Exper-
imental results in Figure 2(c) show a large margin between
IQL+OPAL and IQL while the performance of IQL+LPD
is consistent with IQL, which indicates the OPAL limits the
ability of IQL. Furthermore, we visualize the similarity ϵ be-
tween the agent’s decision a and the dataset, which is cal-
culated by ϵ = minâ∈C ∥a − â∥1, where C = {(ŝ, â) |
∥s − ŝ∥1 ≤ 20, (ŝ, â) ∈ D} is the similar state set to the
agent. The results in Figure 2 show the decoded action of
OPAL is limited to the vicinity of the dataset, while LPD can
represent more diverse actions. This result does not contra-
dict the reconstruction accuracy because we want to decode
the action corresponding to the generalized z, which does
not necessarily exist in the dataset.

Performance on D4RL The experimental results in Ta-
ble 1 show that IQL+LPD achieves state-of-the-art perfor-

antmaze (play) umaze medium large
IQL+LPD 93.0±1.3 74.7±2.2 56.2±3.6

IQL+OPAL 83.5±1.9 48.6±1.0 56.9±3.3
antmaze (diverse) umaze medium large

IQL+LPD 81.6±2.0 83.7±1.6 52.8±1.1
IQL+OPAL 70.2±1.8 42.8±3.9 52.4±2.7

kitchen partial mixed complete
IQL+LPD 72.5±1.1 69.2±1.9 75.0±0.7

IQL+OPAL 74.9±0.3 65.7±3.6 11.5±2.0
adroit (human) door hammer pen

IQL+LPD 15.1±2.5 3.3±0.7 63.1±1.6
IQL+OPAL 12.1±2.2 1.9±0.3 52.0±4.6

adroit (cloned) door hammer pen
IQL+LPD 8.1±1.0 2.1±0.2 65.8±2.7

IQL+OPAL 6.0±1.0 1.1±0.4 46.9±3.6

Table 2: Comparison between LPD and OPAL on D4RL
tasks with the normalized score metric averaged over five
random seeds.

mance in many tasks and significantly outperforms IQL
on nearly all tasks. Most model-free offline methods such
as CQL, OAMPI, and TD3+BC cannot perform well on
kitchen and antmaze tasks, which strictly require approx-
imate dynamical programming compared with locomotion
tasks. Although EMAQ is the exiting offline algorithm that
achieves good performance in kitchen-partial and kitchen-
mixed tasks, IQL+LPD achieves similar or better perfor-
mance in most kitchen and antmaze tasks. Moreover, we
find TD3+BC and COMBO have poor performance on
these challenging tasks, although we have tuned hyper-
parameters. We suspect this is due to the following reason:
while TD3+BC and COMBO are strong in mujoco tasks,
they are less effective in more challenging tasks. This is be-
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Figure 5: Impact of skill length on performance.

cause under complex environments, BC loss is insufficient
to preserve conservatism and the learned model is likely to
be inaccurate (Kostrikov, Nair, and Levine 2021) Finally,
we are interested in comparing IQL+LPD and IQL, which
directly demonstrates the superiority of the temporally-
extended primitives. The sources for the scores of the base-
line algorithms and the fine-tuning results are shown in Ap-
pendix.

Comparison with OPAL We conduct a comparison be-
tween LPD and OPAL on D4RL tasks. Experimental results
in Table 2 show LPD outperforms OPAL in most tasks or
achieves the same superior performance. To ensure a fair
comparison, we test the performance of IQL+OPAL with the
most suitable steps c ∈ {1, 10} and fine-tune the expectile
ratio λ and temperature parameter β in IQL. Then, we se-
lect the best parameter combination of IQL+OPAL. We re-
produce OPAL with authors’ providing code via email. Al-
though the results of OPAL are a little different from the
reported results in the original paper, we argue that the re-
sults are convincing and comparable for the following rea-
sons: (1) We incorporate OPAL with IQL. However, this is
reasonable since we want the learned primitive policy to be
general and can be combined with most offline RL methods.
(2) OPAL has the limited representation issue as the above
analysis, which will be discussed in the following ablation
study.

Ablation Study
Impact of skill length on performance We conduct ex-
periments on kitchen-partial-v0 to evaluate how final per-
formance is impacted as a result of the skill length. As one
might expect, the results in Figure 5 show hierarchical of-
fline control achieves better performance than one-level con-
trol. Compared with IQL+OPAL, IQL+LPD can accommo-
date longer steps. Furthermore, we find the optimal skill
length in this task is around 5. We also find two methods
have similar returns when c = 1, which does not contra-
dict the above analysis since IQL has limited performance
in this task. Complete results of the skill length are shown in
Appendix.
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Figure 6: Impact of the hyper-parameters. We evaluate
IQL+LPD in kitchen-partial-v0 task with various parame-
ter λ ∈ [0.45, 0.9] and β ∈ [0.35, 0.8]. The orange square is
the default parameter of IQL and we adopt the normalized
score metric.

Impact of the hyper-parameters We are concerned about
whether the training hyper-parameters of the task policy πϕ
need to be significantly adjusted on hierarchical offline con-
trol. For this reason, we ran IQL+LPD on kitchen-partial-
v0 with various parameters, such as the expectile ratio λ ∈
[0.45, 0.9] and the temperature β ∈ [0.35, 0.8]. The exper-
imental results in Figure 6 show that the performance of
IQL+LPD is robust to the changes of the hyper-parameters.
Furthermore, we only need to finetune β around the original
parameter without tuning λ.

Conclusion
In this paper, we show that there are provable benefits in
learning a hierarchical structure with offline datasets, and it
is crucial for low-level primitive skills to be faithful to the
original behavior and be expressive to recover the original
state space. We empirically show that current skill-based of-
fline RL methods are significantly compromised by the lim-
ited representation ability of the learned low-level skills. To
solve this issue, we propose the offline Lossless Primitive
Discovery (LPD), which learns an invertible function be-
tween latent vectors and temporally extended actions. We
show that our proposed method has a powerful represen-
tation ability to recover the original policy space and it
achieves strong results on various D4RL tasks. Learning
such expressive skills also enables offline few-show learn-
ing for downstream tasks, and we leave this as an interesting
future direction.
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