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Abstract

Self-supervised learning (SSL) has empirically shown its data
representation learnability in many downstream tasks. There
are only a few theoretical works on data representation learn-
ability, and many of those focus on final data representation,
treating the nonlinear neural network as a “black box”. How-
ever, the accurate learning results of neural networks are cru-
cial for describing the data distribution features learned by
SSL models. Our paper is the first to analyze the learning
results of the nonlinear SSL model accurately. We consider
a toy data distribution that contains two features: the label-
related feature and the hidden feature. Unlike previous linear
setting work that depends on closed-form solutions, we use
the gradient descent algorithm to train a 1-layer nonlinear SSL
model with a certain initialization region and prove that the
model converges to a local minimum. Furthermore, different
from the complex iterative analysis, we propose a new analysis
process which uses the exact version of Inverse Function
Theorem to accurately describe the features learned by the
local minimum. With this local minimum, we prove that the
nonlinear SSL model can capture the label-related feature and
hidden feature at the same time. In contrast, the nonlinear su-
pervised learning (SL) model can only learn the label-related
feature. We also present the learning processes and results of
the nonlinear SSL and SL model via simulation experiments.

1 Introduction
In recent years, self-supervised learning has become an im-
portant paradigm in machine learning because it can use
datasets without expensive target labels to learn useful data
representations for many downstream tasks (Devlin et al.
2018; Radford et al. 2019; Wu et al. 2020).

At present, contrastive learning, a common self-supervised
learning method, has shown superior performance in learning
data representations and outperformed supervised learning in
some downstream tasks (He et al. 2020; Chen and He 2021;
Grill et al. 2020; Caron et al. 2020; Wang et al. 2022). Con-
trastive learning methods usually form a dual pair of siamese
networks (Bromley et al. 1993) and use data augmentations
for each datapoint. They treat two augmented datapoints of
the same datapoint as positive pairs and maximize the sim-
ilarity between positive pairs to learn data representations.

*Corresponding author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

However, the siamese networks often collapse to a trivial
solution during the training process, rendering the learned
representation meaningless.

To avoid the above problem, earlier contrastive learn-
ing methods such as MoCo (He et al. 2020) and SimCLR
(Chen et al. 2020) treat augmented datapoints from differ-
ent datapoints as negative pairs and prevent model collapse
by the trade-off between positive and negative pairs. How-
ever, obtaining high-quality negative pairs is difficult (Khosla
et al. 2020), which in turn requires additional changes to the
model. Recently, other classes of the SSL model, such as
BYOL (Grill et al. 2020) and SimSiam (Chen and He 2021),
which do not use negative pairs, have been studied. These
models will not collapse to a trivial solution because they
construct subtle asymmetry in the structure of the siamese
network and create a dynamic buffer area (Tian, Chen, and
Ganguli 2021). SimSiam further simplifies the structure of
BYOL and only retains the core asymmetry. The simplified
model makes training and analysis more convenient while
obtaining competitive and meaningful data representations.

Despite the empirical success of SSL (He et al. 2020; Chen
et al. 2020; Chen and He 2021; Zhong et al. 2022), there are
only a few works that focus on data representation learnabil-
ity (Arora et al. 2019; Tosh, Krishnamurthy, and Hsu 2021;
Lee et al. 2021; HaoChen et al. 2021, 2022; Tian 2022a,b;
Wen and Li 2021; Liu et al. 2021). However, studying the
learnability is helpful in understanding why SSL models can
obtain meaningful data representations. Many of the above
works used final data representation to study the data repre-
sentation learnability. Arora et al. (2019) obtained the data
representation function by minimizing the empirical SSL loss
in a special data representation function class. HaoChen et al.
(2021) and HaoChen et al. (2022) studied final data represen-
tation by closed-form solutions. They viewed the nonlinear
neural network as a “black box” and ignored the learning
result of the nonlinear neural network. Thus their results do
not describe the features accurately captured by SSL models
and explain the encoding process of neural networks.

Wen and Li (2021) and Tian et al. (2020) tried to under-
stand the learning results of nonlinear SSL models by analyz-
ing a relatively overparameterized neural network. However,
their results do not provide an accurate answer to whether
SSL models could exactly capture the important features of
data distribution or just capture a mixture of features.
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Liu et al. (2021) studied the learning results of SSL mod-
els, and it is the most relevant work to us. They proved that
SSL models could learn the label-related features and hidden
features at the same time. However, their work is a linear
framework, and their results depend on the closed-form solu-
tions of the learning results. When considering a nonlinear
SSL model, we can not get closed-form solutions due to
the nonconvexity. Therefore, which features can be exactly
learned by nonlinear SSL models remains an important open
question. We need a new analysis process to analyze the
specific learning results of the nonlinear SSL model.

In this work, for the first time, we use gradient descent to
train a nonlinear SSL model and analyze the data represen-
tation learnability by using the learning results of neural net-
works. We accurately describe the data distribution features
captured by the SSL model. Specifically, we accomplish:

1. With a designed data distribution, we use gradient descent
(GD) to train a 1-layer nonlinear SSL model and prove
that the model can converge to a local minimum under a
certain initialization region. Using locally strong convex-
ity, we also obtain the convergence rate of the algorithm.

2. We describe the properties of the local minimum using
the exact version of Inverse Function Theorem. Using
these properties, we prove that the SSL model learns the
label-related feature and hidden feature at the same time.

3. We prove that the nonlinear SL model can only learn the
label-related feature. In other words, SSL is superior to SL
in learning data representation. We verify the correctness
of the above results through simulation experiments.

2 Related Work
Theoretical analyses for final data representation. For
the analysis of the data representation learnability, many
works focus on the final data representation (the optimal so-
lution of the pretext task) and measure the quality of the final
data representation in the downstream tasks by using a linear
classifier (HaoChen et al. 2021, 2022; Arora et al. 2019; Lee
et al. 2021; Tosh, Krishnamurthy, and Hsu 2021). The main
difference in this line of work is how to obtain the final data
representation. Arora et al. (2019) assumed that the data repre-
sentation function class contains a function with low SSL loss
and minimized the empirical SSL loss in this class. HaoChen
et al. (2021) constructed the population positive-pair graph
with augmented datapoints as vertices and the correlation
of augmented datapoints as edge weights. Then they proved
that the closed-form solutions of the data representations are
approximately equivalent to the eigenvectors of the adjacency
matrix of the above graph. Lee et al. (2021) used the nonlin-
ear canonical correlation analysis (CCA) method to obtain
the final data representation. The above works viewed the
nonlinear neural network as a “black box” and ignored the
learning results of the neural network. However, the learning
results are crucial for analyzing which features are exactly
captured by SSL methods. Hence we need to propose a new
method to analyze the learning results.

Theoretical analyses for learning results of SSL. Liu
et al. (2021) analyzed the learning results of SSL methods.

With a 1-layer linear SSL model, similar to SimSiam, they
demonstrated that the SSL models could learn label-related
and hidden features simultaneously. Because of the linear
structure and the objective function with a designed quartic
regularization, they can directly obtain the closed-form solu-
tions of the learning results by using spectral decomposition
of the matrix related to the data distribution. Tian (2022a)
and Tian (2022b) dealt with the learning results of the nonlin-
ear SSL model by analyzing an objective function similar to
traditional Principal Component Analysis (PCA). However,
their results were extended by a hidden neuron. Hence their
results can not definitively answer which data features are
captured by the model and which are ignored. Wen and Li
(2021) and Tian et al. (2020) tried to understand the learning
results of the nonlinear SSL by using stochastic gradient de-
scent (SGD). However, their results relied heavily on special
data augmentation and relatively overparameterized neural
networks. Furthermore, their results only showed that with a
large number of neurons, the neural networks contain all data
features. They did not accurately characterize the learning
result of each neuron. In other words, these results did not
show the features exactly captured by the SSL methods.

Theoretical guarantees for supervised learning. For the
analysis of the supervised learning, researchers focus on (1)
How to characterize the landscape of the objective function;
(2) How to converge to the local minima through algorithms
(such as GD and SGD); (3) How fast the algorithm converges
to the local minimum (Allen-Zhu, Li, and Song 2019; Du
et al. 2017; Li and Yuan 2017; Brutzkus and Globerson 2017;
Du et al. 2019). Hence they focus on characterizing the rela-
tionship between the objective function and its gradient and
less on the specific form or the properties of local minima.
However, the specific forms of local minima are helpful to
determine whether SSL methods can capture important data
distribution features.

3 Problem Formulation
In this section, we introduce the data distribution and the
nonlinear SSL and SL model to be studied in this paper.

3.1 Data Distribution
The classification problem is a typical downstream task in
machine learning, which can be used to measure the quality
of data representation. We start with a simple binary clas-
sification and want to explore the differences in the data
representations learned by SSL and SL models.

To train models, we first build the data distribution. In most
cases, the data distribution contains not only label-related
features but also some hidden features. These hidden features
may not be helpful for the current task but may be useful for
other downstream tasks. We want to determine whether the
nonlinear SSL models capture hidden features, resulting in a
richer data representation. At the same time, we also wonder
whether the SL models only learn label-related features.

For the simplicity of analysis, we consider the label-related
features as a group, represented by the feature e1. We also use
e2 to represent the hidden features. Inspired by previous work
(Liu et al. 2021), which solved the above question in the linear
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setting, we construct a data distribution containing four kinds
of datapoints. The number of these four kinds of datapoints
are n1, n2, n3, n4 and n = n1 + n2 + n3 + n4. Every time
we generate a datapoint, we draw among the four kinds of
datapoints with a probability of 1/4, which means E[nl] =
n/4, ∀l ∈ [4]. Let τ > 1, ρ > 0 are two hyperparameters of
the data distribution and ξ1, ..., ξn ∈ Rd are datapoint noise
terms sampled from a Gaussian distribution N (0, I). Define

D1 = {xi|xi = e1 + ρξi}n1
i=1 ,

D2 = {xi|xi = e1 + τe2 + ρξi}n1+n2
i=n1+1 ,

D3 = {xi|xi = −e1 + ρξi}n1+n2+n3
i=n1+n2+1 ,

D4 = {xi|xi = −e1 + τe2 + ρξi}ni=n−n4+1 , (1)
as the datasets of four kinds of datapoints, where e1, e2 ∈
Rd are two orthogonal unit-norm vectors. Then, the data
distribution in this paper is D = D1 ∪ D2 ∪ D3 ∪ D4.

Because labels are required during the SL model training
process, we modify the data distribution. Specifically, we de-
note the class label by y = {0, 1}. When xi ∈ D1

⋃
D2, y =

0, otherwise y = 1. After the above steps, we obtain the data
distribution DSL of the nonlinear SL model.

It is clear that the binary classification task can be com-
pleted using only the representative label-related feature e1.
However, since τ ≥ 1, e2 is also an important hidden feature.

Although this data distribution is a toy setting, it is suffi-
cient to distinguish the learnability of the SSL and SL models.
This data distribution is also representative. In Sec 4.2, we
explain that the proof process can be easily extended to a
more general data distribution containing many label-related
and hidden features.

3.2 Model
In this section, we introduce the activation function and then
the nonlinear SSL and SL model.

In this paper, we analyze nonlinear models, so it is neces-
sary to introduce activation functions. We discuss two acti-
vation functions: sigmoid function σ(x) = 1

1+e−x and tanh

function σ2(x) =
ex−e−x

ex+e−x .

The SSL model. We focus on a variant of SimSiam (Chen
and He 2021). SimSiam has shown impressive performance
in various downstream experiments using only positive pairs
and has become a representative SSL model. Fig. 1 shows
the structure of the model in this paper. The datapoint xi is
augmented by data augmentation ξaug and ξ′aug to obtain two
augmented datapoints x′

i and x′′
i . The data representations

z′i and z′′i of x′
i and x′′

i are obtained through the nonlinear
encoder σ(Wx′

i) and σ(Wx′′
i ). We use inner product ⟨z′i, z′′i ⟩

to measure the similarity between z′i and z′′i . Tian, Chen, and
Ganguli (2021) showed that a regularizer is essential for the
existence of the non-collapsed solution. Hence, α∥W∥2F is
added in L. The objective function L is defined as

min
W

L = α ∥W∥2F

− 1

n

n∑
i=1

Eξaug,ξ′aug

[ 〈
σ(W (xi + ξaug)), σ(W (xi + ξ′aug))

〉 ]
,

(2)

Figure 1: The structure of SSL model.

where α is the coefficient of regularizer, W = [w1, w2]
⊤ ∈

R2×d and ξaug, ξ
′
aug ∼ N

(
0, ρ2I

)
. W is the weight matrix of

the encoder containing two neurons, and the parameters of
the encoder are the same on both sides.

Note that when Liu et al. (2021) took expectation over
ξaug, ξ

′
aug, they canceled the effect of ξaug, ξ

′
aug due to its linear

framework. In other words, the variance of ξaug, ξ
′
aug can be

arbitrarily large. However, Jing et al. (2021) showed that
strong augmentation causes dimensional collapse. Hence it is
necessary to consider the variance of the data augmentation.
In our formulation, ξaug and ξ′aug can not be canceled due to
the nonlinear model. Thus our setting is more reasonable and
more in line with the models in practice. To deal with data
augmentation operation, we adopt ξaug, ξ

′
aug ∼ N

(
0, ρ2I

)
.

The SL model. We consider a simple two-layer nonlinear
SL model to deal with the above 2-classification problem.

Define fF,W SL(x) ≜ Fσ
(
W SLx

)
with F ∈ R1×2 as the

projection matrix and W SL ≜ [wSL
1 , wSL

2 ]⊤ ∈ R2×d as the
weight matrix of the feature extractor. The usual process
is to use sigmoid function to transform fF,W SL(xi) to ŷi ∈
(0, 1), ∀i ∈ [n]. Then, a binary cross-entropy loss function
can be constructed with ŷi and label information yi, ∀i ∈ [n].

However, in this paper, we focus on the performance of the
feature extractor σ

(
W SLx

)
. Therefore an objective function

that minimizes the norm of feature extractor matrix W SL with
margin constraint is used:

min
W SL

LSL =
∥∥wSL

1

∥∥2
2
+
∥∥wSL

2

∥∥2
2
,

s.t.σ
(
(wSL

y+1)
⊤x

)
− σ

(
(wSL

y′+1)
⊤x

)
≥ σ(2)− σ(−2)− 5ρd

1
10 , ∀(x, y) ∈ DSL, y ̸= y′ . (3)

The SL objective function in this paper is similar to the
linear SL model in Liu et al. (2021). We set this SL objective
function mainly out of intuition: If a supervised learning
model is good enough to complete the classification task, it
should satisfy the above margin constraint.

Definitions and notations. To characterize the objective
functions, we give the following definitions and notations.
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Definition 1 (Locally strong convexity and smooth on B0).
Function f : Rd → R is locally µ-strongly convex and Lm-
smooth if

µI ⪯ ∇2f(x) ⪯ LmI, ∀x ∈ B0, (4)

where B0 := {x : ∥x − x∗∥2 ≤ ∥x(0) − x∗∥2} and x∗ ∈
argminx∈X f(x).
Definition 2 (LH -Lipschitz continuous Hessian). Function
f : Rd → R is LH -Lipschitz continuous Hessian if∥∥∇2f(x)−∇2f(y)

∥∥
2
≤ LH∥x− y∥2, ∀x, y ∈ Rd. (5)

Notations. For x ∈ Rd, we denote by ∥x∥2 the vector’s
Euclidean norm. For A ∈ Rd×d, we denote by ∥A∥F the
standard Frobenius norm and define ∥A∥2 =

√
λ where

λ is the largest eigenvalue of A⊤A. For x ∈ Rd and
∇3f(x) ∈ Rd×d×d, we give an upper bound of ∥∇3f(x)∥2
by considering ∇3f(x) as a matrix-vector. Each element
of the matrix-vector is ∂∇2f(x)

∂xi
∈ Rd×d. It is clear that∥∥∇3f(x)

∥∥2
2
≤

∑d
i=1

∥∥∥∂∇2f(x)
∂xi

∥∥∥2
F

. We denote by O(·) stan-
dard Big-O notations, only hiding constants. We denote by
z(k) the k-th element of z ∈ Rd and z(t) the t-th iteration of
the gradient descent algorithm.

4 SSL is Superior to SL in Learning
Representation

In this section, we show that the nonlinear SSL model can
capture the label-related feature and the hidden feature of data
distribution at the same time. In contrast, the nonlinear SL
model can only learn the label-related feature. For simplicity,
we assume e1 = (1, 0, ..., 0)⊤, e2 = (0, 1, ..., 0)⊤ ∈ Rd.

4.1 The Learning Abilities of SSL and SL
For the convenience, we define D1(τ) = {x⃗ ∈ Rd|x(1) ∈
(3.1, 3.9), τx(2) ∈ (8.5, 9), x(k) ∈ (− 3

d0.49 ,
3

d0.49 ), ∀k ∈
[3, d]} and D2(τ) = {x⃗ ∈ Rd|x(1) ∈ (−3.9,−3.1), τx(2) ∈
(8.5, 9), x(k) ∈ (− 3

d0.49 ,
3

d0.49 ), ∀k ∈ [3, d]} as the initializa-
tion region of w1 and w2 in Theorem 1.

Theorem 1. For α = 1/800, τ = max{7, d 1
10 }, ρ = 1/d1.5

and n = d2, with probability 1−O
(
e−d

1
10

)
, the SSL objec-

tive function L exists a local minimum W ∗ = (w∗
1 , w

∗
2)

⊤ :

∥w∗
1 − w̃∗

1∥2 ≤ O(d−
1
2 ) ,

∥w∗
2 − w̃∗

2∥2 ≤ O(d−
1
2 ) ,

where w̃
∗(1)
1 ∈ [3.1, 3.9], w̃

∗(1)
1 = −w̃

∗(1)
2 , τ w̃

∗(2)
1 =

τw̃
∗(2)
2 ≥ 9, w̃

∗(k)
1 = w̃

∗(k)
2 = 0, ∀k ∈ [3, d].

Furthermore, when
(
w1(0), w2(0)

)
∈ D1(τ) × D2(τ),

using the gradient descent algorithm and choosing learning
rate η = 2

4α+τ2+1.5 , κ = 1 + τ2+1.5+2d−0.1

2α−d−0.1 , we have

∥w1(t)− w∗
1∥2 ≤

(
κ− 1

κ+ 1

)t

∥w1(0)− w∗
1∥2 ,

∥w2(t)− w∗
2∥2 ≤

(
κ− 1

κ+ 1

)t

∥w2(0)− w∗
2∥2 .

The projection of e1 and e2 on the space spanned by w∗
1

and w∗
2 is very close to 1, i.e.,

|Πe1| ≥ 1−O(τ3d−
1
2 ) ,

|Πe2| ≥ 1−O(τ3d−
1
2 ) .

Theorem 1 shows that using GD to train the nonlinear
SSL model under a certain initialization region D1(τ) ×
D2(τ), the model can converge to a local minimum (w∗

1 , w
∗
2).

Further, the projection of e1, e2 on the space spanned by
w∗

1 , w
∗
2 is almost 1. In other words, the nonlinear SSL model

has simultaneously learned e1 and e2, which are the label-
related and hidden features.

Theorem 2. Let wSL,∗
1 and wSL,∗

2 be the optimal solution of

LSL. Then with probability 1−O(e−d
1
10 ),(

w
SL,∗(2)
1

)2

+
(
w

SL,∗(2)
2

)2

≤ O
(
ρd

1
10

)
.

When ρ = 1/d1.5,
(
w

SL,∗(2)
1

)2

+
(
w

SL,∗(2)
2

)2

≤ O
(
1/d1.4

)
.

From Theorem 2, we show that (wSL,∗(2)
1 )2 + (w

SL,∗(2)
2 )2

is very small, which means SL model can only learn label-
related feature and some noise terms.

Note that the previous works (Tian 2017; Zhang et al.
2019; Li and Liang 2018) used the gradient-based algorithm
to analyze the SL model with one hidden layer and obtained
asymptotic convergence guarantees. They did not analyze the
specific form of the learning results. Hence, Theorem 2 is
different compared with the previous results. We obtain the
bounds of each dimension of the learning results by construct-
ing margin constraints. These bounds accurately describe the
features learned by the SL model and help to characterize the
representation learnability of the SL model.

Finally, Theorem 1 and Theorem 2 show that the nonlinear
SSL model is superior to the nonlinear SL model in capturing
important data features, which means SSL can obtain a more
competitive data representation than SL.

4.2 Discussion
The extension to more general data distributions. As
described in Sec 3.1, we treat label-related features as a
group, represented by e1 (e2 represents hidden features),
and obtain Theorem 1. In this part, we show that Theo-
rem 1 can be extended to data distributions with many label-
related and hidden features. Suppose there are P label-related
features EL = {e1, . . . , eP } and Q + 1 hidden features
EH = {eP+1, . . . , eP+Q, 0⃗}, where E = {EL, EH} is
column-orthogonal matrix. Each datapoint consists of a label-
related feature and a hidden feature, xi = zie

L
i +τeHi , where

P (zi = 1) = P (zi = −1) = 1/2. eLi and eHi are features
in EL and EH . This general distribution only considers the
relationship between label-related features and hidden fea-
tures. Hence, the gradient can be decoupled, and the method
of this paper can be applied. Finally, we can know that if W
contains P +Q neurons, the learning results of W will span
the space spanned by {e1, . . . , eP+Q}. This conclusion can
be regarded as the general version of Theorem 1.
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The challenges for nonlinear models. Since the objective
function is non-convex and nonlinear, it is difficult to get
a closed-form solution with a similar process of Liu et al.
(2021). We need to use an optimization algorithm such as
GD to converge to a local minimum (w∗

1 , w
∗
2) and determine

features captured by (w∗
1 , w

∗
2).

For nonlinear SSL models, previous work (Wen and Li
2021) used SGD to update the model step-by-step and ob-
served the learning result during the iteration. However, the
step-by-step process is complex, and it is easy to ignore the
change process. Therefore, this procedure makes it difficult
to analyze the learning results of local minima accurately.

Different from the complex iterative analysis of the previ-
ous work, we propose a new analysis process. We first obtain
the approximate region and properties of the local minimum
from the simplified objective function L̃ and then extend it
to the original complex objective function L. For the trans-
formation from L̃ to L, we use the exact version of Inverse
Function Theorem as a bridge, avoiding the direct analysis
of the local minimum of L. In the remainder of this part, we
demonstrate the intuitions and techniques for each part.

Non-convex and nonlinear objective function. At this
step, we consider the structure of the objective function, ig-
nore noise terms, and take expectation over data distribution:

min L̃ = −Ex̃[⟨σ(Wx̃), σ(Wx̃)⟩] + α∥W∥2F ,

where x̃i is the datapoint without noise term ρξi. We use the
intermediate value principle, locally strong convexity of L̃,
and the properties of activation function carefully to prove
the existence of the local minimum (w̃∗

1 , w̃
∗
2) of L̃.

The exact version of Inverse Function Theorem. There
are many noise terms in L, such as ρξi, ∀i ∈ [n] (datapoint
noise), ξaug (data augmentation noise), and the error terms
due to the expectation operation over the data distribution.
After obtaining the upper bound of these noise terms (Sec.
4.3), we need a bridge to deal with the transformation from L̃

to L. Since (w̃∗
1 , w̃

∗
2) is local minimum of L̃ and noise terms

are bounded, L should be µ-strongly convex and Lm-smooth
in the neighborhood of (w̃∗

1 , w̃
∗
2). With these properties, it

is clear that ∂L
∂w1

is one-to-one in a small neighborhood of
w̃∗

1 using the origin Inverse Function Theorem (Rudin et al.
1976). However, we need a exact neighborhood to guarantee
that the solution w∗

1 of ∂L
∂w1

= 0 is in the one-to-one region.
Hence we introduce Lipschitz continuous Hessian constant
LH to build an open ball centered at w∗

1 with radius r =
1

2µLH
as the exact neighborhood and modify the Inverse

Function Theorem to complete our proof.

4.3 Proof Sketch of Main Theorem
Proof sketch of SSL. For the sake of discussion, we respec-
tively define D̃1(τ) = {x⃗ ∈ Rd|x(1) ∈ [3.1, 3.9], τx(2) ∈
[9,+∞), x(k) = 0, ∀k ∈ [3, d]} and D̃2(τ) = {x⃗ ∈
Rd|x(1) ∈ [−3.9,−3.1], τx(2) ∈ [9,+∞), x(k) = 0, ∀k ∈
[3, d]} as the region of w̃∗

1 and w̃∗
2 .

As a beginning, we focus on L̃. To obtain the solution of
∂L̃
∂w1

= 0, we first solve ∂L̃

∂w
(k)
1

= 0, ∀k ∈ [2] separately in

Figure 2: Theoretical Results of Theorem 1

D̃1(τ). Subsequently, we use the intermediate value princi-
ple twice to prove the existence of w̃∗

1 . Finally, we use the
Hessian matrix to prove that w̃∗

1 is a local minimum. We
demonstrate that L̃ is µ̃-strongly convexity and L̃m-smooth
in the region around w̃∗

1 .
To prove Theorem 1, we need to deal with the noise terms

in L. Due to the activation function, we cannot use the noise
matrix to treat the noise terms as in Liu et al. (2021). Hence,
we use the Lagrange’s Mean Value Theorem to separate
ξi, ξaug, ξ

′
aug from the activation function and bound these

noise terms using the tail bound of Gaussian variable. There
are also some error terms due to the expectation operation
over data distribution. With the intuition that nl, ∀l ∈ [4] can
not be far away from n/4, we bound these error terms.

After obtaining the upper bound of the above noise terms,
we characterize the landscape of L by using the Matrix Eigen-
value Perturbation Theory (Kahan 1975). We sum up the
properties of L when w1 around w̃∗

1 as follows.

1. ∂L
∂w1

|w1=w̃∗
1

is very close to 0.
2. L is µ-strongly convex and Lm-smooth. Specifically, we

show that µ̃ − ϵ1 ≤ µ ≤ µ̃ and L̃m ≤ Lm ≤ L̃m + ϵ1
where ϵ1 is a small term related to ρ and d.

3. L is LH -Lipschitz continuous Hessian.
Combined with these properties, we use the exact version

of Inverse Function Theorem to prove the existence of the
local minimum (w∗

1 , w
∗
2) of L. Finally, we show that with

good initialization, specifically initialization around the local
minimum, w1(0) converges to w∗

1 using the gradient descent
algorithm (Bubeck et al. 2015). We remark that the above
process only analyzes w1, we can get w2 through symmetry.

Proof sketch of SL. The proof sketch of SL is similar to
the proof of the linear SL model in Liu et al. (2021). However,
because of the nonlinear SL model in this paper, we need to
perform finer scaling to get a high probability guarantee.

Different activation function. We can easily extend the re-
sults to the case where the activation function is tanh because
sigmoid can be viewed as a compressed version of tanh.

To get similar results with Theorem 1, we just need to
modify the region of the local minimum and the initializa-
tion region. For D̃1(τ), we change the range of x(1) from
[3.1, 3.9] to [2.7, 3.1] and the range of x(2) from [9,+∞)

to [6.1,+∞) to obtain D̃σ2
1 (τ). For D1(τ), we change the
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(a) Final weight matrix W (b) Learning curve (c) The projection of e2

Figure 3: Experiment results of SSL model with d = 10, τ = 7

Figure 4: The experiments results with the correct sign

range of x(1) from (3.1, 3.9) to (2.7, 3.1) and the range of
x(2) from (8.5, 9) to (5.75, 6.1) to obtain Dσ2

1 (τ). With sim-
ilar process, we can get D̃σ2

2 (τ) and Dσ2
2 (τ).

5 Simulation Experiments
In this section, we illustrate the correctness of Theorem 1 and
Theorem 2 experimentally. We conduct experiments for the
nonlinear SSL model in Sec. 5.1 and Sec. 5.2. Furthermore,
we show the training process of the nonlinear SL model with
projection matrix F in Sec. 5.3. In this section, we choose
τ = 7, d = 10, ρ = 1/d1.5, α = 1

800 , n = d2 and learning
rate η = 0.001 if we do not specify otherwise. Experiments
are averaged over 20 random seeds, and we show the average

Figure 5: SSL final weight matrix W with d = 10, τ = 3

results with 95% confidence interval for learning curves.

5.1 SSL Model: the Correctness of Theorem 1
In this part, we validate the correctness of Theorem 1 by
strictly following the settings of the theorem. Define T1 =
4000 as the number of iterations of the SSL model. Fig. 3a
shows the learning result of weight matrix W = [w1, w2]

⊤.
The blue points are learning results of (w(1)

1 (T1), w
(2)
1 (T1))

and the red stars are learning results of w2. It is clear that
w1(T1) and w2(T1) are almost symmetrical about the e2-axis,
which is consistent with the theoretical result (Fig. 2). Fig.
3b shows the learning process of w1 and w2. Because we
initialize w1(0) and w2(0) around the local minimum, w1

and w2 can easily converge to (w∗
1 , w

∗
2). Fig. 3c shows the

projection of e2 on the space spanned by w1(T1) and w2(T1).
We can find the projection is almost 1. These experimental
results show that W learns e1, e2 at the same time. The results
of larger τ are similar to the results of τ = 7.

5.2 SSL Model: Results Beyond Analysis
In this part, we relax requirements in Theorem 1, such as
(w1, w2) must be initialized near (w∗

1 , w
∗
2), τ must be large.

We show that the SSL model still learns the label-related and
hidden feature even if the requirements are relaxed.

Good enough initialization. In Theorem 1, we initial-
ize w1 and w2 around (w∗

1 , w
∗
2). We experimentally show
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(a) Learning curve (b) The projection of e1 (c) The projection of e2

Figure 6: Experiment results of SL model with d = 10, τ = 7

that initialization only need the correct sign (w
(1)
1 (0) >

0, w
(1)
2 (0) < 0, w

(2)
1 (0) > 0, w

(2)
2 (0) > 0) is required. Fig.

4 shows that if the initialization sign is correct, the SSL model
can converge to (w∗

1 , w
∗
2) with high probability. “With high

probability” means there are still a few cases where the SSL
model cannot converge to (w∗

1 , w
∗
2). However, compared with

the learning results (Fig. 6c) of the SL model, the SSL model
with the correct sign still shows the ability to learn e2.

Large enough τ . In the proof process of Theorem 1, we
need τ = max{7, d 1

10 } to use the monotonicity of the solu-
tion of ∂L̃

∂w
(2)
1

. We experimentally show that the SSL model

can get a good result even if τ does not meet this requirement.
Fig. 5 shows even if τ = 3 , the space spanned by w1 and w2

is still very close to the space spanned by e1 and e2.

5.3 SL Experiment Results
In Theorem 2, we mainly focus on the performance of the fea-
ture extractor W SL and ignore the projection matrix F . In this
section, we experimentally show that even if F is considered,
W SL still only learns the label-related feature. Specifically,
we consider the binary cross-entropy loss function:

min L̃SL =− 1

n

n∑
i=1

yi ln(ŷi) + (1− yi) ln(1− ŷi)

+ β∥W SL∥2F + γ∥F∥22 ,

where ŷi = σ(Fσ(W SLxi)), ∀i ∈ [n], β is the coefficient of
W SL regularizer, and γ is the coefficient of F regularizer. In
this section, we choose β = γ = 1/800.

Define T2 = 8000 as the number of iterations of the nonlin-
ear SL model. Fig. 6a shows the learning curve of (w̃SL

1 , w̃SL
2 ).

It is clear that w̃SL(1)
1 (T2) and w̃

SL(1)
2 (T2) are the main terms,

and the other terms w̃SL(k)
j , ∀j ∈ [2], k ∈ [2, d] will converge

to 0. Fig. 6b and Fig. 6c show the projection of e1 and e2
on the space spanned by w̃SL

1 (T2) and w̃SL
2 (T2). It is clear

that the projection of e1 is almost 1, and the projection of
e2 is almost 0. The above experiment results mean that the
nonlinear SL model can only learn label-related feature e1,
which is consistent with the results of Theorem 2.

All experiments are conduct on a desktop with AMD
Ryzen 7 5800H with Radeon Graphics 3.20 GHz

and 16 GB memory. The codes of this section are
available at https://github.com/wanshuiyin/AAAI-2023-The-
Learnability-of-Nonlinear-SSL.

6 Conclusion
Summary. Our paper is the first to analyze the data represen-
tation learnability of the nonlinear SSL model by analyzing
the learning results of the neural network. We start with a
1-layer nonlinear SSL model and use GD to train this model.
We prove that the model converges to a local minimum. Fur-
ther, we accurately describe the properties of this local min-
imum and prove that the nonlinear SSL model can capture
label-related features and hidden features at the same time.
In contrast, the nonlinear SL model only learns label-related
features. This conclusion shows that even though the nonlin-
ear network significantly improves the learnability of the SL
model, the SSL model still has a superior ability to capture
important features compared with the SL model. We verify
the correctness of the results through simulation experiments.

Due to the nonconvexity of the objective function and
noise terms, we propose a new analysis process to describe
the properties of the local minimum. This analysis process
is divided into two steps. In the first step, we focus on the
structure of L by ignoring all noise terms. Then we obtain
the approximate region of the local minimum. In the second
step, we use the exact version of Inverse Function Theorem
as a bridge to connect the simplified objective function L̃
and L. Finally, we prove the existence of the local minimum
(w∗

1 , w
∗
2) and describe the properties of this local minimum.

Compared with linear SSL models, nonlinear alternatives
are closer to the state-of-the-art SSL methods. The conclu-
sions in this paper can guide us further in understanding the
learning results of SSL methods and provide a theoretical
basis for subsequent improvements.

Future work. This paper analyzes a 1-layer nonlinear SSL
model. After that, we plan to expand the scope of the analysis
to a multi-layer nonlinear network. The multi-layer network
analysis requires a more refined exploration of local min-
ima. The weight matrix of each layer needs to be uniformly
processed to analyze the landscape of the objective function,
which we will do in the follow-up work.
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