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Abstract

Multivariate time series (MTS) analysis and forecasting are
crucial in many real-world applications, such as smart traf-
fic management and weather forecasting. However, most ex-
isting work either focuses on short sequence forecasting or
makes predictions predominantly with time domain features,
which is not effective at removing noises with irregular fre-
quencies in MTS. Therefore, we propose WAVEFORM , an
end-to-end graph enhanced Wavelet learning framework for
long sequence FORecasting of MTS. WaveForM first utilizes
Discrete Wavelet Transform (DWT) to represent MTS in the
wavelet domain, which captures both frequency and time do-
main features with a sound theoretical basis. To enable the
effective learning in the wavelet domain, we further propose
a graph constructor, which learns a global graph to repre-
sent the relationships between MTS variables, and graph-
enhanced prediction modules, which utilize dilated convo-
lution and graph convolution to capture the correlations be-
tween time series and predict the wavelet coefficients at dif-
ferent levels. Extensive experiments on five real-world fore-
casting datasets show that our model can achieve consid-
erable performance improvement over different prediction
lengths against the most competitive baseline of each dataset.

Introduction
Multiple interconnected streams of data, also known as mul-
tivariate time series (MTS), have pervasive presence in real-
world applications. Examples of MTS include the recorded
traffic flows from various roadway sensors and the weather
observations from multiple weather stations over time. Mul-
tivariate time series forecasting, which makes predictions
based on historical MTS observations, has attracted exten-
sive interest as it can integrate multiple sources of obser-
vations to provide a global view of applications and help
make meaningful and accurate application-wide predictions.
For example, to predict the future power consumption of a
household, it is beneficial to consider and integrate the usage
observations of multiple sectors, such as kitchen, laundry,
and the average current intensity of the household.

Early solutions (Box and Jenkins 1970), which utilize
statistical models, generally assume linear dependencies
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among variables, thus failing to capture complex non-linear
patterns, which frequently occur in MTS. In recent work,
researchers have proposed a series of graph neural network
(GNN)-based models to capture interconnections and inter-
dependencies (also known as spatial dependencies) among
MTS due to GNN’s strength in modeling complex struc-
tures of graph data. For example, STGCN (Yu, Yin, and Zhu
2017) skillfully utilizes both graph convolution and gated
causal convolution to tackle the MTS prediction problems in
the traffic domain. Graph Multi-attention Network (GMAN)
(Zheng et al. 2020) extends STGCN with an encoder-
decoder architecture and incorporates attention mechanisms
to better capture spatial-temporal relations in traffic data.
The use of GNN in STGCN and GMAN relies on the as-
sumption that prior knowledge of stable relationships among
variables is available, and such knowledge is represented
in a pre-defined graph structure. MTGNN (Wu et al. 2020)
focuses on learning and recovering the latent dependencies
(graph structure) among variables for tasks without explic-
itly defined graph structures by using a graph learning mod-
ule, leading to better interpretability and performance for
MTS forecasting tasks.

However, the existing work still overlooks long sequence
forecasting (LSF) of MTS, which uses a given length of
MTS to predict longer future sequences. LSF of MST is
crucial for facilitating long-term planning and offering early
warning in various real-world applications. However, pre-
dicting long sequences is challenging as long-term MTS are
often composed of more entangled temporal patterns than
short-term ones, and overlooking this may lead to unreli-
able discoveries of temporal dependencies (Wu et al. 2021).
Recently, transformer-based architectures have proven their
effectiveness in modeling sequential data owing to the use of
self-attention mechanisms (Zaheer et al. 2020), empowering
MTS forecasting models for long-term prediction (Wen et al.
2022). However, these models frequently suffer from high
computational cost in LSF. The existing transformer-based
LSF approaches mainly focus on developing sparse self-
attention schema to improve model efficiency, inevitably
sacrificing the rate of information utilization and resulting
in a bottleneck for MTS LSF.

In comparison, this paper proposed a novel solution for
effective long sequence forecasting in MTS.

In practice, MTS can be analyzed in the time domain,
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which studies how signals change over time, and/or fre-
quency domain, which studies signals from the perspec-
tive of their frequencies. However, we noticed that most ex-
isting work with deep learning models centers on extract-
ing and utilizing time-domain features from MTS, leaving
frequency domain analysis generally unattended. Although
some models, such as Autoformer (Wu et al. 2021) and
FEDFormer (Zhou et al. 2022), utilize time-frequency trans-
formations, such as Fourier transform, they mainly aim to re-
duce the time complexity of the Transformer models rather
than fully exploit the rich features in the frequency domain.
Autoformer (Wu et al. 2021) and FEDFormer (Zhou et al.
2022) demonstrated their effectiveness in leveraging addi-
tional frequency domain features with Fourier transform or
discrete wavelet transform. However, they generally simply
utilize the extracted frequency domain features as a comple-
ment to the representations in the time domain. They feed
the combined/concatenated features to deep learning mod-
els for forecasting. We argue that such a simple combina-
tion of features from two different domains cannot provide
clear and sufficient information to the deep learning models
and diminish the effect of features in frequency domain. It
lacks a theoretical basis and may even introduce noises to
the models and lead to sub-optimal performance.

Therefore, we propose to model MTS in the “wavelet do-
main” to effectively capture and exploit wavelet domain fea-
tures, leveraging the capability of Discrete Wavelet Trans-
form (DWT) (Shensa et al. 1992) which captures both the
frequency-domain and time-domain features of MTS in a
theoretically guaranteed framework. More specifically, we
utilize DWT to decompose MTS into different frequency
bands (wavelets) with different resolutions, which are rep-
resented as wavelet coefficients, to enable more sophisti-
cated time series feature extraction. Thereafter, we propose
to adapt a Graph-enhanced Prediction module (GP) to model
the changes of the wavelet coefficients with the same resolu-
tion over time. The graph convolution in GP is used to tackle
the inter-dependencies among variables. Thus, the inter-
dependency relationship can be captured at different resolu-
tions in the wavelet domain. More importantly, we inject the
same/global graph structure across all GP modules, indicat-
ing that variables in different views in the wavelet domain
share the same basic message-passing behavior and avoid
model overfitting. Once we obtain the predicted wavelet co-
efficients, we utilize Inverse Discrete Wavelet Transform
(IDWT) to enable supervised learning in the training set.
Note that the global graph in the framework is learned end-
to-end from data, which leads to a better interpretation of the
inter-dependencies among variables.

The novel contributions of this research is as follows:

1. We propose a DWT-based end-to-end framework that
transforms MTS into a wavelet domain for MTS long se-
quence prediction tasks. Owing to the features of DWT,
our model is capable of fully exploiting the inherent fea-
tures of MTS in both frequency and time domains.

2. We propose a global graph constructor to extract global
information on the interrelationship among variables in
the wavelet domain, preventing the framework training

from overfitting.
3. We conducted comprehensive experiments on long se-

quence forecasting tasks in MTS and the results show
our model consistently/effectively outperforms the state-
of-the-art models for LSF tasks by a large margin.

Related Work
MTS forecasting can be considered a typical seq2seq task
and various deep sequence models have been proposed.
DeepAR (Salinas et al. 2020) combines the idea of autore-
gression with recurrent neural networks (RNNs) to model
the probability distribution of sequences. Besides RNN
models, convolutional neural networks (CNNs) are also used
for MTS forecasting. For example, Graph WaveNet (Wu
et al. 2019) utilizes the dilated causal convolution to force
the model to focus only on historical information and ex-
pands the perspective field to obtain a broader range of pe-
riodic and tendency patterns. However, most of the existing
models are not designed for LSF of MTS.

Transformer-based models for MTS predictions have re-
ceived increasing attention (Wen et al. 2022) with two
strands of research along this line. One strand, such as Log-
Trans (Li et al. 2019) and Autoformer (Wu et al. 2021), fo-
cuses on developing sparse attention mechanisms to replace
the original attention mechanism which has been recognized
as the computational bottleneck for long sequence MTS pre-
dictions due to its O(L2) complexity in both time and space.
Another strand, such as Informer (Zhou et al. 2021) and
Pyraformer (Liu et al. 2021), focuses on reducing the com-
putational complexity by improving the attention mecha-
nism at the decomposed structural level by introducing dif-
ferent resolution representations for the original sequences
through convolution operators and/or Fourier transform to
obtain the time dependence of the original sequences at dif-
ferent scales. However, such resolutions are solely or mostly
performed in the time domain. Their purpose is to reduce
the sequence length and thus improve computational effi-
ciency. Therefore, the frequency domain information is not
fully exploited as it is used as a supplementary or a means
of reducing computational complexity.

Spatial-temporal GNNs have also been proposed for
MTS forecasting tasks. They model each variate in MTS
as a graph node and then represent the interdependen-
cies between nodes with a latent graph. The features of
each node are obtained by mainly considering the tempo-
ral dependency among each time series. Specifically, Graph
WaveNet (Wu et al. 2019) designs a self-adaptive matrix to
reveal the spatial dependencies with node embeddings. MT-
GNN (Wu et al. 2020) and GTS (Shang, Chen, and Bi 2021)
extend Graph WaveNet by jointly learning the latent graph
and spatial-temporal GNN in an end-to-end framework with
more sophisticated designs.

Autoformer (Wu et al. 2021) and FEDFormer (Zhou et al.
2022) utilized Fourier Transform to extract frequency do-
main features, which are then simply concatenated with time
domain features for further processing in deep learning mod-
els. However, as we have argued before, the simple mixture
of features from completely different domains may intro-
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duce additional noises or phantom dependencies as there is
no general theoretical guide for the cross-domain concatena-
tion/combination in deep learning. Thus, this paper proposes
to center the analysis on the wavelet domain, which theo-
retically reflects both time and frequency features, to better
exploit the complex patterns in MTS.

Methodology
This section explains the details of the proposed WAVE-
FORM , the overview of which is illustrated in Fig. 1.
WAVEFORM is a multi-resolution analysis (MRA) model
based on discrete wavelet transforms, and it forecasts MTS
in the wavelet domain. WAVEFORM consists of three main
components: discrete wavelet transform (DWT) module,
global graph constructor (GGC), and graph-enhanced pre-
diction (GP) modules.

As an MRA model, WAVEFORM relies on the scaling and
translation of the DWT module to obtain the detail coeffi-
cients (cDi) and approximate coefficients (cAi) of different
levels (i = 1, 2, . . . ) in the wavelet domain. The GP modules
utilize dilated convolution and graph convolution to capture
the correlations between time series and predict the wavelet
coefficients at different levels, and all these modules share
the same graph that is learned from GGC. With the use of an
inverse DWT module, the framework is trained end-to-end.

The technical details of each component are presented in
the rest of this section.

Problem Definition
An MTS is denoted as X = [x⊺

1 ;x
⊺
2 ; · · · ;x

⊺
N ], where X ∈

RN×T represents N -variate time series. xi ∈ RT represents
the time series of the i-th variable, which consists of sequen-
tial recordings at T timestamps.

For an MTS forecasting task, we set an observation win-
dow H for historical time series and a forecasting win-
dow P for prediction. Accordingly, for each time step t,
its historical series Ht = Xt−H+1:t and forecasting series
Pt = Xt+1:t+P are defined as follows:

Ht = [x⊺
1,t−H+1:t;x

⊺
2,t−H+1:t; · · · ;x

⊺
N,t−H+1:t], (1)

Pt = [x⊺
1,t+1:t+P ;x

⊺
2,t+1:t+P ; . . . ;x

⊺
N,t+1:t+P ]. (2)

Specifically, to be considered as a long sequence MTS
forecasting task, H ≪ P .

Given a historical series Ht, the goal is to learn a map-
ping function f that is capable of predicting the next P time
steps P̂t = f(Ht,Θ) accurately, where Θ is the learnable
parameter set.

Discrete Wavelet Transform Module and Its
Inverse Version
DWT module transforms an input MTS into its correspond-
ing multi-scale frequency representations with DWT.

DWT is generally used to decompose input signals into
a set of wavelets, which captures both the frequency and
time features of the original signals and enables the follow-
ing prediction modules to make predictions in parallel.

As depicted in Fig. 1, DWT can be performed multiple
times, and each DWT uses a high-pass filter h and a low-
pass filter g to decompose a time series signal x into differ-
ent resolutions. The outputs of the high-pass and low-pass
filters at layer l are denoted as (cDl) and (cAl), respec-
tively: cDl, cAl = DWT (cAl−1), where l indicates the
l-th decomposition and cA0 = x. Specifically, we have
cDl = h ⋆ cAl−1

=
M∑

m=1

h[2s−m]cAl−1[m], s = 1, 2, · · · , M
2
,

(3)

cAl = g ⋆ cAl−1

=
M∑

m=1

g[2s−m]cAl−1[m], s = 1, 2, · · · , M
2
,

(4)

where M represents the length of cAl−1 after decompos-
ing (l − 1) times and s represents the scale. One feature
of DWT is that after passing through h and g (namely h
and g perform convolution operation (⋆) with cAl−1, re-
spectively), only half the number of samples characterizes
the original signal cAl−1 owing to the double scale. There-
fore, according to Nyquist’s rule, we can remove half of the
samples with downsampling while keeping the original in-
formation. Besides, the selection of h and g depends on the
form of the wavelet basis. In theory, once the wavelet ba-
sis is determined1, the form of h and g are determined as
well. The detail coefficients cD depict the short-term trend
of the series and carry the signal nuances, while the approx-
imate coefficients cA describe the signal’s long-term trend
which characterizes its identity. In addition, the frequency
resolution of the original signal increases as the decomposi-
tion goes deeper.

After l layers of decomposition, for each xi, the DWT
module outputs a set of l + 1 coefficients p(i) =

{cD(i)
1 , cD

(i)
2 , ..., cD

(i)
l , cA

(i)
l }. Different levels of DWT

represent different resolutions of the original signal.
Let C = {C1,C2, . . . ,Cl,Cl+1} represent the layered

wavelet coefficients where each layer contains each vari-
able’s corresponding coefficients, denoted as follows:

Cj = [cD
(1)
j ; cD

(2)
j ; . . . ; cD

(N)
j ] ∈ RN×Hj , j ∈ [1, l]

(5)

Cl+1 = [cA
(1)
l ; cA

(2)
l ; . . . ; cA

(N)
l ] ∈ RN×Hl , (6)

where Hj = H
2j , H is the length of the input MTS, and N

denotes the number of variables.
Note that after the following graph-enhanced modules

output the i-th variable’s coefficients for future P time steps,

denoted as p̂(i) = {ĉD
(i)

1 , ĉD
(i)

2 , . . . , ĉD
(i)

l , ĉA
(i)

l }, we
apply the Inverse Discrete Wavelet Transform (IDWT) to re-
construct their corresponding sequence in the time domain.
The process can be formulated as follows:

ĉAl−1 = IDWT (ĉDl, ĉAl)

= h
′
⋆ ĉDl + g

′
⋆ ĉAl

(7)

1This paper utilizes the Haar wavelet (Pattanaik and Bouatouch
1995) for simplicity and l = 3
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Figure 1: The WAVEFORM framework. The input MTS is decomposed into different coefficients in the wavelet domain and
then fed into separate GP modules sharing the same global graph to make predictions. The learnable global graph is generated
by two embedding layers and shared by all GP modules. The outputs of GP modules are reconstructed into time domain with
the Inverse DWT (IDWT) module.

where h
′

and g
′

are the synthesis version of h and g. When
using the Haar wavelet (Pattanaik and Bouatouch 1995),
h

′
= −h and g

′
= g. Then, x̂i = ĉA0 is the reconstructed

time series of the i-th variable in the time domain.

Global Graph Constructor (GGC)
After obtaining the wavelet coefficients at different scales,
the model intends to forecast the coefficient changes over
time in the wavelet domain. Although the wavelet coeffi-
cients at different layers reflect the time series at different
frequency subbands, we assume the variables share the same
basic interaction structure at different resolutions without
the loss of generality. Using a global graph rather than learn-
ing graphs in each GP module also avoids overfitting and
saves memory. The GGC module learns a global graph to
represent the relationships between variables.

For most real-world tasks, as we do not have the proper
prior knowledge of what the graph looks like, we propose to
utilize a graph constructor to learn the global graph, which in
turn guides the graph-enhanced prediction modules for more
sophisticated feature extraction. Following (Wu et al. 2020),
we use two independent and learnable embedding layers,
E1 and E2, to learn two embedding representations for each
node after assigning each node/variable as an integer scalar.
N = {1, 2, . . . , N} denotes the index set of the nodes/vari-
ables, given as follows: E1 = E1(N ) ∈ RN×d, E2 =
E2(N ) ∈ RN×d, where E1 and E2 denote variable repre-
sentations obtained from two different layers. Then, the ad-
jacency matrix A can be defined as follows:

A = ReLU(tanh(α(E1E
⊺
2 −E2E

⊺
1 ))), (8)

where A ∈ RN×N and α is the hyper-parameter for the ac-

tivation function. It is worth noting that Eq.(8) regularizes
the adjacency matrix A to a uni-directional acyclic graph
so that the influence between the nodes is uni-directional.
This is more consistent with the hypothesis widely adopted
in MTS analysis that the influences between variables are
not mutual. To further reduce the computational cost of the
following graph convolution, we can simply set up a thresh-
old to filter out the linkages with weights smaller than the
threshold to make the graph sparse.

Graph-Enhanced Prediction Modules
Given the learnable adjacency matrix of the variables, we
build Graph-enhanced Prediction (GP) modules to methodi-
cally exploit the graphical information for predictions. A GP
module consists of three main components: a) learning the
multi-scale representation that incorporates the wavelet in-
formation via dilated convolution, b) aggregating neighbor-
hood messages via graph convolution, and c) generating the
final representations by combining skip connection layers.

Dilated Convolution Component Following MT-
GNN (Wu et al. 2020), we pass the input through stacked
1D dilated convolutions, which filter the wavelet coeffi-
cients to incorporate the wavelet information. In general,
the standard convolution layer is ill-suited for dealing with
long sequence forecasting since they require many layers
or large filters to increase the receptive field, while both of
them result in a substantial increase in model complexity.
Alternatively, the dilated convolution (Yu and Koltun 2016),
which is known to be stemmed from the wavelet decom-
position, can capture long-term information/more complex
patterns without sacrificing computational efficiency.
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To better predict the changes of the time series signal in
the wavelet domain, with an assumption that the wavelet co-
efficients contain latent patterns and are by no means the
best raw signal for the following graph convolution compo-
nent, we further utilize multiple dilated convolution filters
with different kernel sizes to capture respective features for
the wavelet coefficients at each level of resolutions. The out-
put representations of these filters are activated by a sigmoid
function and then concatenated to obtain the final represen-
tations of the stacked dilated convolution module. Given an
input z, and G filters f1,f1, · · · ,fG, the dilated convolu-
tion module has the following form:
z = concatenate

(
σ(f1⊗̄z), σ(f2⊗̄z), · · · , σ(fG⊗̄z)

)
,
(9)

where ⊗̄ denotes the dilated convolution operator.

Graph Convolution Component The purpose of the
graph convolution module is to aggregate the node infor-
mation with its neighbors’ information to capture the global
dependencies among different variables. It is widely known
that vanilla GCNs are susceptible to over-smoothing issues
due to the simplification of convolution as a neighborhood
averaging operator, resulting in limited distinguishable rep-
resentations of the nodes (Li, Han, and Wu 2018; Abu-El-
Haija et al. 2019; Huang et al. 2020). To mitigate the is-
sue, we utilize the MixHop layer proposed by (Abu-El-Haija
et al. 2019; Wu et al. 2020) to capture complex relationships
of neighbors at various hops instead of simply aggregat-
ing information from immediate neighbors. Concretely, the
graph convolution includes two main steps: i) the message
propagating step (Eq.(10)), and ii) the message aggregating
step (Eq.(11)). These two steps recursively pass the local in-
formation to the nodes in the global graph structure. Given
the adjacency matrix A, the process of K-layer MixHop can
be formulated as follows:

MixHop(Hin,A) =
K∑

k=1

HkWk, (10)

Hk = β(Hk−1 · Ã) + (1− β)Hin, (11)
where H1 = Hin, Hin is the representations outputted from
the previous layer, Ã = D−1 · (A+ I) is the normalized ad-
jacency matrix, Dii = 1+

∑
j Aij , and β is a hyperparam-

eter that controls the proportion of information maintained
from the previous representation, which helps to alleviate
the over-smoothing problem. Following (Wu et al. 2020), we
use two MixHop layers to obtain exhaustive information by
processing inflow and outflow information passed through
nodes separately.

Eventually, given the dilated convolution component’s
output Z, the process of graph convolution compo-
nent can be described as Hout = MixHop1(Z, Ã) +

MixHop2(Z, Ã
⊺).

Skip Connection and Output A naive combination of the
dilated convolution component and the graph convolution
component is shown to be prone to gradient vanishing is-
sues. The proposed GP module uses skip-connections to im-
prove its representational capability by preserving original

information. Given the wavelet coefficients C ∈ RN×L, we
first initialize two factors:

Y0 = W0⊗̄C, (12)
Yskip0 = Wskip0⊗̄C, (13)

where W0 is a 1 × 1 convolution kernel for the con-
volution module in GP, and Wskip0 is a 1 × L con-
volution kernel for a skip connection layer. Then we
take the adjacency matrix A and these two factors as
the input to pass through a K-layer stacked GP modules:

Yk,Yskipk = GPk(Yk−1,Yskipk−1
,A),for k ∈ {1, · · · ,K}.

(14)
In this process, the skip-output of the previous GP module,
represented as Yskipk−1

, joins the output of the current
dilated convolution module, represented as Zk, forming
Yskipk :

Yskipk = τWskipk⊗̄Zk + (1− τ)Yskipk−1
, (15)

where τ is a hyperparameter to control the balance. Sim-
ilarly, the other output factor of the previous GP module,
Yk−1, joints the skip-output of the current GP module,
Yskipk , to form Yk:

Yk = τWk⊗̄Yskipk + (1− τ)Yk−1. (16)
After passing through all K-layer stacked GP modules,

we can obtain the final output representation as the predic-
tion of the wavelet coefficients. It is worth noting that in this
process, wavelet coefficients at different scales are predicted
separately by different GP modules while sharing the same
global graph adjacency matrix.

Experiments
This section reports the experiments on WAVEFORM and
state-of-the-art (SOTA) baselines with five public datasets.

Datasets and Settings
We applied widely used datasets in the experiments:
Electricity (Wu et al. 2021), Traffic (Lai et al. 2018),
Weather (Wu et al. 2021), and Solar-Energy (Lai et al. 2018).
Each dataset was split in chronological order with 70% for
training, 20% for validation, and 10% for testing. Following
(Wu et al. 2019, 2020), we set the length of input sequence
(I) as 96 to predict the next 96, 192, 336, and 720 future
steps (O), and utilized mean absolute error (MAE) and mean
squared error (MSE) to assess the long sequence forecasting
performance of WAVEFORM and baselines. More detailed
descriptions of the datasets, evaluation metrics, and experi-
mental settings are provided in the Appendix. Code is avail-
able at https://github.com/alanyoungCN/WaveForM.

Comparison Models
We compared WAVEFORM with the general sequence
modeling approaches, including LSTM (Hochreiter and
Schmidhuber 1997) and Transformer (Vaswani et al. 2017),
and SOTA MTS forecasting models, including Graph
WaveNet (Wu et al. 2019), Informer (Zhou et al. 2021), Aut-
oformer (Wu et al. 2021), and MTGNN (Wu et al. 2020).
The details of the baseline models can be found in Introduc-
tion & Related Work.
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Models Metrics Electricity(I=96) Solar-Energy(I=96) Weather(I=96) Traffic(I=96)
96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

LSTM MSE 0.457 0.466 0.485 0.689 0.220 0.221 0.539 0.690 0.356 0.400 0.350 0.512 0.873 0.920 1.150 1.486
MAE 0.485 0.493 0.493 0.634 0.256 0.258 0.546 0.709 0.396 0.436 0.386 0.479 0.476 0.500 0.632 0.796

Transformer MSE 0.262 0.264 0.278 0.311 0.194 0.229 0.217 0.211 0.345 0.546 0.655 0.927 0.638 0.643 0.677 0.704
MAE 0.359 0.366 0.374 0.393 0.208 0.247 0.251 0.285 0.396 0.504 0.577 0.706 0.350 0.351 0.365 0.381

Graph WaveNet MSE 0.329 0.333 0.358 0.399 0.224 0.257 0.265 0.264 0.190 0.229 0.287 0.371 0.984 0.973 0.984 1.016
MAE 0.409 0.416 0.436 0.464 0.290 0.320 0.324 0.319 0.246 0.284 0.348 0.410 0.543 0.540 0.542 0.554

MTGNN MSE 0.208 0.217 0.221 0.308 0.179 0.195 0.206 0.238 0.174 0.216 0.284 0.375 0.754 0.752 0.760 0.788
MAE 0.308 0.315 0.319 0.385 0.231 0.263 0.264 0.291 0.243 0.285 0.339 0.401 0.436 0.434 0.435 0.450

Informer MSE 0.274 0.296 0.300 0.373 0.205 0.227 0.252 0.246 0.300 0.598 0.578 1.059 0.719 0.696 0.777 0.864
MAE 0.368 0.386 0.394 0.439 0.228 0.242 0.265 0.302 0.384 0.544 0.523 0.741 0.391 0.379 0.420 0.472

Autoformer MSE 0.199 0.216 0.231 0.295 0.540 0.571 0.778 0.889 0.261 0.316 0.357 0.416 0.604 0.614 0.643 0.668
MAE 0.315 0.328 0.339 0.382 0.521 0.570 0.665 0.709 0.336 0.374 0.389 0.427 0.373 0.388 0.403 0.411

WAVEFORM MSE 0.153 0.172 0.197 0.242 0.165 0.189 0.195 0.204 0.160 0.209 0.278 0.364 0.567 0.565 0.581 0.623
MAE 0.257 0.272 0.294 0.332 0.203 0.233 0.239 0.265 0.227 0.280 0.332 0.399 0.326 0.318 0.323 0.346

Table 1: A comparison of baselines and our model on different datasets and prediction lengths. We used 96, 192, 336, and 720
for prediction lengths, and used 96 for the input length for all cases. We repeated every case three times and used the average
as the final result. Lower MSE and MAE mean higher prediction accuracy. Bold texts indicate the best results.

Main Results
Table 1 shows the experimental results. For each method,
we repeated three runs with different seeds and reported the
averaged results. Our model consistently outperforms SOTA
models on both MSE and MAE metrics (the lower, the bet-
ter) for all datasets, whereas none of the existing models can
consistently serve as the second-best model for all datasets.
For each dataset, our model can roughly achieve 15-20%
performance improvement over different prediction lengths
against the most competitive baseline. We attribute such a
significant improvement to the use of multi-level signals in
the wavelet domain and the global graph.

In general, for the datasets with relatively small num-
bers of nodes/variables, such as Solar-Energy and Weather,
the graph-based MST models, including Graph WaveNet,
MTGNN, and our WaveForM, perform better than the
transformer-based MST models, indicating the capability of
graph-based modeling and GNNs in capturing the interde-
pendence among variables. We also observe that for the
datasets with a large number of nodes/variables, such as
Traffic, graph-based models except WaveForM achieve in-
ferior performance than other models.

Models Metrics Temperature(I=336)
720 1260

Autoformer MSE 0.340± 0.013 0.984± 0.162
MAE 0.457± 0.004 0.774± 0.071

MTGNN MSE 1.005± 0.007 1.009± 0.005
MAE 0.843± 0.006 0.845± 0.008

WAVEFORM MSE 0.307± 0.002 0.346± 0.003
MAE 0.433± 0.004 0.461± 0.005

Table 2: Performance on Temperature Dataset

Note that Traffic has the least number of records but the

largest number of nodes, making it the most challenging
task. We believe the existing graph-based approaches are
somehow underfitting in the Traffic dataset for modeling
such a large graph. Whereas WAVEFORM can discover more
features from signal/data with a more sophisticated design in
wavelet domain, thus enabling better training of the end-to-
end model to capture the complex interdependence among a
large number of variables.

Besides, our global graph modeling can be considered
as further “fine-tuning” the interdependence of variables in
multiple levels using multiple GP modules, thus leading to
better performance. Although Autoformer also utilizes fre-
quency domain features, as we have argued, its inferior per-
formance to ours may be due to the improper mixed use of
features from different domains.

We further experimented the Temperature
dataset (Grigsby, Wang, and Qi 2021) to assess model
performance for extra longer sequence forecasting, of which
Table 2 presents the results. Only the two most competitive
models from the previous experiments, Autoformer and
MTGNN, are included for comparison. We can observe that
Autoformer’s performance decreases sharply when the pre-
diction steps are extended from 720 to 1260, while MTGNN
shows rather inferior performance under such a setting. We
believe that as the Temperature dataset has an extremely
small number (only six) of nodes but the largest number of
records in all datasets, the graph used in MTGNN might
overfit the interdependence among MTS. In comparison,
WAVEFORM experiences only minor degradation when
processing extra long sequence forecasting and outperforms
other models with 300% performance improvement.

Ablation Study
We conducted an ablation study on the Electricity dataset
to assess the effectiveness of different modules in WAVE-
FORM . The variants of WAVEFORM include:
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Figure 2: The comparison in the wavelet domain. With the Electricity dataset, the trained Autoformer and WAVEFORM were
used for predictions, respectively. The prediction results were transformed by DWT, and the error against the ground truth was
calculated separately. The green areas represent the errors of WAVEFORM , while the red areas represent the additional errors
of Autoformer on top of WAVEFORM . The coefficients from the top to bottom reflect different frequency resolutions, and the
lower means more precise.

• WAVEFORM w/o GGC: Remove the Global Graph Con-
structor module from WAVEFORM , and apply a separate
Graph Constructor in each layer of the GP Module.

• WAVEFORM w/ single GP: After passing the last high-
pass and low-pass filters, concatenate the wavelet coef-
ficients into one single sequence in the same order of
decomposition, and then use only one GP Module to
make predictions. GP’s output is then split manually into
wavelet coefficients of different levels for IDWT.

• WAVEFORM w/o GP: Remove the Graph-enhanced Pre-
diction (GP) module from WAVEFORM and use multiple
affine transforms as a substitute.

Table 3 reports the experiment results. In comparison with
the results in Table 1, WAVEFORM and all its variants out-
perform all other comparison models, proving the effective-
ness of the skillful use of wavelet domain features.

Table 3 also shows that the GGC module plays an impor-
tant role in effectively providing global information among
different wavelet coefficients, which remarkably improves
the prediction performance. In addition, the inferior perfor-
mance of WAVEFORM w/ single GP demonstrates that the
coefficients for different scales obtained with DWT benefit
from being processed separately, so as to guarantee the va-
lidity of the use of IDWT.

Models Metrics Electricity(I=96)
96 192 336 720

WAVEFORM w/o GGC MSE 0.179 0.197 0.216 0.259
MAE 0.274 0.290 0.310 0.350

WAVEFORM w/ single GP MSE 0.159 0.182 0.204 0.254
MAE 0.265 0.283 0.299 0.337

WAVEFORM w/o GP MSE 0.161 0.177 0.211 0.249
MAE 0.268 0.281 0.308 0.342

WAVEFORM MSE 0.153 0.172 0.197 0.242
MAE 0.257 0.272 0.294 0.332

Table 3: Ablation Study on Electricity Dataset

Wavelet-Domain Observations
This section utilizes DWT to explain the performance from
the perspective of wavelet domain. We used a 2-layer DWT
to transform the input to wavelet coefficients cD1, cD2, and
cA2, which represent the correlation between the input and
the wavelet function over time. Specifically, we transformed
the ground truth, the predictions of Autoformer, and the pre-
dictions of WAVEFORM on the Electricity dataset to the
wavelet domain coefficients for comparison.

Fig. 2 shows that the prediction errors of Autoformer (red
and green areas) and WAVEFORM (green areas) against the
ground truth gradually become larger as the wavelet domain
features are gradually refined with more layers (from top to
bottom), which means that it is more difficult for Autoformer
to discover fine-grained, low-frequency features (conveyed
by deeper cD and cA). Meanwhile, the performance gap
(red areas) between Autoformer and WAVEFORM also be-
comes larger as the decomposition goes deeper, which indi-
cates that WAVEFORM is more capable of uncovering com-
plex patterns of MTS.

Conclusion
We proposed WAVEFORM , a novel framework for
long sequence multivariate time series forecasting. WAVE-
FORM uses DWT to transform the time-domain series into
wavelet-domain coefficients at multiple resolutions and then
applies a graph convolution module to model the rela-
tionships between multivariates. Experiments show that the
transformed coefficients in the wavelet domain are more ca-
pable of describing the input series from multiple resolu-
tions, thus allowing the model to learn fine-grained complex
patterns. Experiments on widely used benchmark datasets
show that our model significantly outperforms the SOTA
models with remarkable margins for long sequence forecast-
ing of MTS.

Acknowledgments
This work has been partially supported by NSFC under
Grant No. 62276024, No. 92270125 and No. U19B2020.

10760



References
Abu-El-Haija, S.; Perozzi, B.; Kapoor, A.; Alipourfard, N.;
Lerman, K.; Harutyunyan, H.; Ver Steeg, G.; and Galstyan,
A. 2019. Mixhop: Higher-order graph convolutional archi-
tectures via sparsified neighborhood mixing. In interna-
tional conference on machine learning, 21–29. PMLR.

Box, G. E.; and Jenkins, G. M. 1970. Time Series Analy-
sis Forecasting and Control. Technical report, WISCONSIN
UNIV MADISON DEPT OF STATISTICS.

Grigsby, J.; Wang, Z.; and Qi, Y. 2021. Long-range trans-
formers for dynamic spatiotemporal forecasting. arXiv
preprint arXiv:2109.12218.

Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation, 9(8): 1735–1780.

Huang, W.; Rong, Y.; Xu, T.; Sun, F.; and Huang, J. 2020.
Tackling Over-Smoothing for General Graph Convolutional
Networks. CoRR, abs/2008.09864.

Lai, G.; Chang, W.-C.; Yang, Y.; and Liu, H. 2018. Modeling
long-and short-term temporal patterns with deep neural net-
works. In The 41st international ACM SIGIR conference on
research & development in information retrieval, 95–104.

Li, Q.; Han, Z.; and Wu, X.-M. 2018. Deeper insights into
graph convolutional networks for semi-supervised learning.
In Thirty-Second AAAI conference on artificial intelligence.

Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.-X.;
and Yan, X. 2019. Enhancing the locality and breaking the
memory bottleneck of transformer on time series forecast-
ing. Advances in neural information processing systems, 32.

Liu, S.; Yu, H.; Liao, C.; Li, J.; Lin, W.; Liu, A. X.; and Dust-
dar, S. 2021. Pyraformer: Low-complexity pyramidal atten-
tion for long-range time series modeling and forecasting. In
International Conference on Learning Representations.

Pattanaik, S. N.; and Bouatouch, K. 1995. Haar wavelet: A
solution to global illumination with general surface prop-
erties. In Photorealistic Rendering Techniques, 281–294.
Springer.

Salinas, D.; Flunkert, V.; Gasthaus, J.; and Januschowski, T.
2020. DeepAR: Probabilistic forecasting with autoregres-
sive recurrent networks. International Journal of Forecast-
ing, 36(3): 1181–1191.

Shang, C.; Chen, J.; and Bi, J. 2021. Discrete graph structure
learning for forecasting multiple time series. arXiv preprint
arXiv:2101.06861.

Shensa, M. J.; et al. 1992. The discrete wavelet transform:
wedding the a trous and Mallat algorithms. IEEE Transac-
tions on signal processing, 40(10): 2464–2482.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.

Wen, Q.; Zhou, T.; Zhang, C.; Chen, W.; Ma, Z.; Yan, J.; and
Sun, L. 2022. Transformers in time series: A survey. arXiv
preprint arXiv:2202.07125.

Wu, H.; Xu, J.; Wang, J.; and Long, M. 2021. Autoformer:
Decomposition transformers with auto-correlation for long-
term series forecasting. Advances in Neural Information
Processing Systems, 34: 22419–22430.
Wu, Z.; Pan, S.; Long, G.; Jiang, J.; Chang, X.; and Zhang,
C. 2020. Connecting the dots: Multivariate time series fore-
casting with graph neural networks. In Proceedings of the
26th ACM SIGKDD international conference on knowledge
discovery & data mining, 753–763.
Wu, Z.; Pan, S.; Long, G.; Jiang, J.; and Zhang, C. 2019.
Graph wavenet for deep spatial-temporal graph modeling.
arXiv preprint arXiv:1906.00121.
Yu, B.; Yin, H.; and Zhu, Z. 2017. Spatio-temporal Graph
Convolutional Neural Network: A Deep Learning Frame-
work for Traffic Forecasting. CoRR, abs/1709.04875.
Yu, F.; and Koltun, V. 2016. Multi-Scale Context Aggrega-
tion by Dilated Convolutions. In Bengio, Y.; and LeCun, Y.,
eds., 4th International Conference on Learning Representa-
tions, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.
Zaheer, M.; Guruganesh, G.; Dubey, K. A.; Ainslie, J.; Al-
berti, C.; Ontanon, S.; Pham, P.; Ravula, A.; Wang, Q.; Yang,
L.; et al. 2020. Big bird: Transformers for longer sequences.
Advances in Neural Information Processing Systems, 33:
17283–17297.
Zheng, C.; Fan, X.; Wang, C.; and Qi, J. 2020. Gman: A
graph multi-attention network for traffic prediction. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 34, 1234–1241.
Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.;
and Zhang, W. 2021. Informer: Beyond efficient transformer
for long sequence time-series forecasting. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35,
11106–11115.
Zhou, T.; Ma, Z.; Wen, Q.; Wang, X.; Sun, L.; and Jin,
R. 2022. FEDformer: Frequency enhanced decomposed
transformer for long-term series forecasting. arXiv preprint
arXiv:2201.12740.

10761


