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Abstract

Recent development of deep neural networks (DNNs) for
tabular learning has largely benefited from the capability of
DNNs for automatic feature interaction. However, the hetero-
geneity nature of tabular features makes such features rela-
tively independent, and developing effective methods to pro-
mote tabular feature interaction still remains an open prob-
lem. In this paper, we propose a novel Graph Estimator,
which automatically estimates the relations among tabular
features and builds graphs by assigning edges between re-
lated features. Such relation graphs organize independent
tabular features into a kind of graph data such that inter-
action of nodes (tabular features) can be conducted in an
orderly fashion. Based on our proposed Graph Estimator,
we present a bespoke Transformer network tailored for tab-
ular learning, called T2G-FORMER, which processes tab-
ular data by performing tabular feature interaction guided
by the relation graphs. A specific Cross-level Readout col-
lects salient features predicted by the layers in T2G-FORMER
across different levels, and attains global semantics for fi-
nal prediction. Comprehensive experiments show that our
T2G-FORMER achieves superior performance among DNNs
and is competitive with non-deep Gradient Boosted Decision
Tree models. The code and detailed results are available at
https://github.com/jyansir/t2g-former.

Introduction
Data in the form of table structures are ubiquitous in many
fields, e.g., medical records (Johnson, Pollard et al. 2016;
Hassan, Al-Insaif et al. 2020) and click-through rate (CTR)
prediction (Covington, Adams, and Sargin 2016; Song et al.
2019). It was observed that Gradient Boosted Decision Trees
(GBDT) (Chen and Guestrin 2016; Ke, Meng et al. 2017;
Prokhorenkova, Gusev et al. 2018) were dominating mod-
els for tabular data tasks in machine learning and industrial
applications. Due to big successes of deep neural networks
(DNNs) in various fields, there has been increasing develop-
ment of specialized DNNs for tabular data learning (Popov,
Morozov, and Babenko 2019; Arik and Pfister 2021; Wang,
Shivanna et al. 2021; Gorishniy, Rubachev et al. 2021; Chen,
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Liao et al. 2022). Such studies either leveraged ensembling
of neural networks (Popov, Morozov, and Babenko 2019;
Arik and Pfister 2021; Katzir, Elidan, and El-Yaniv 2020)
to build differentiable tree models, or explored diverse inter-
action approaches (Guo, Tang et al. 2017; Wang, Fu et al.
2017; Song et al. 2019; Wang, Shivanna et al. 2021; Gorish-
niy, Rubachev et al. 2021; Chen, Liao et al. 2022) to learn
comprehensive features by fusing different tabular features.

However, different from images and texts, it is challeng-
ing for fusion-based models to handle tabular feature inter-
action due to the feature heterogeneity problem (Borisov
et al. 2021). DANets (Chen, Liao et al. 2022) suggested
the “selection & abstraction” principle that processes tabu-
lar data by first selecting and then interacting the selected
features. Known neural feature selection schemes can be
categorized into soft and hard versions. The soft selection
essentially exerts fully connected interactions among fea-
tures (see Fig. 1(b)), such as multiplicative interaction (Guo,
Tang et al. 2017), feature crossing (Wang, Fu et al. 2017;
Wang, Shivanna et al. 2021), and attention-based inter-
action (Song et al. 2019; Huang et al. 2020; Gorishniy,
Rubachev et al. 2021). However, tabular features by nature
are heterogeneous, and fully connected interaction is a sub-
optimal choice since it blindly fuses all features together.
DANets (Chen, Liao et al. 2022) performed hard selec-
tion by grouping correlative features and then constraining
interactions among grouped features (Fig.1(c)). Although
DANets achieved promising results, its feature selection op-
eration cannot thoroughly address intra-group interactions
(see Fig. 1(c)), and thus features assigned in a same group
are indiscriminately fused, making the model inferiorly ex-
pressive.

There are numerous daily applications that exemplify the
significance of selective interaction for heterogeneous tab-
ular features. The left part of Fig. 1 gives an example of a
medical data table. Using underlying medical knowledge, a
static graph can be formed to indicate relations of reason-
able feature pairs. For instance, the relation of height and
weight gives a probability representing a high-level seman-
tic physique. Also, the relation between weight and blood
pressure (BP) is likely to indicate a semantic cardiovascular
health. Besides, there might be some “inert features” that
are unrelated to any other features, such as the features rep-
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ID height
(cm)

weight
(kg)

BP
(mmHg)

HIV-Ab
(s/co)

1 173.6 82.3 146/95 0.03

2 185.8 65.4 123/78 1.86
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Figure 1: An example of medical data tables. The values in different columns are located in heterogeneous feature spaces.
Underlying medical knowledge sparsely links feature pairs. (a) Original separated features without any interactions, which are
often used in non-deep models. (b) Fully connected interactions by softly selecting all the features. (c) Selective interactions
among grouped features by hard selection. (d) Selective interactions according to a weighted relation graph. “BP” denotes blood
pressure; “HIV-Ab” indicates the level of HIV antibody.

resenting the level of HIV antibody (HIV-Ab). In the right
part, Fig. 1(a) presents the original tabular features whose
relations are not specified, and higher-level semantics can-
not be directly obtained if the feature relations are not deter-
mined. Fig. 1(b) illustrates the fully connected interactions
of soft selection, which may introduce some noisy relations
in feature fusion (e.g., the “inert feature” connects with the
other features). Hard selection with a grouping operation
(e.g., used in DANets) achieves partially selective interac-
tions by grouping related features (see Fig. 1(c)), but is still
likely to include noisy interactions. It can only group related
features but fails to handle the feature relations within the
same group. In Fig. 1(c), the grouping design can only put
the features height, weight, and BP together for mutual inter-
actions, but cannot exclude the meaningless height-BP pair.
It is intuitive that a precise health condition assessment can
be made based on both the data-specific record values (e.g.,
173.6 cm for height in Fig. 1) and the underlying knowledge
represented by the edges of the relation graph. For the first
sample in the medical table (ID = 1), considering the val-
ues of height and weight jointly can suggest a symptom of
overweight. Similarly, combining the values of weight and
BP indicates a risk of cardiovascular problems. The second
sample (ID = 2) directly indicates a risk of HIV infection
solely based on the feature of HIV-Ab. Hence, we argue that
an ideal way to handle such complex decision processes is to
build a graph with adaptive edge weights. The edge weights
(represented by different colors and widths in Fig. 1(d)) in-
dicate the strengths of relations based on specific feature val-
ues, and the static graph topology represents the underlying
knowledge to constrain meaningful relations.

Inspired by the above observations, in this paper, we pro-
pose to build graphs for tabular features to guide feature
interaction. We develop a novel Graph Estimator (GE) for
organizing independent tabular features into a feature rela-
tion graph (FR-Graph). Further, we present a bespoke Trans-
former network for tabular learning, called T2G-FORMER,
by stacking GE-incorporated blocks for selective feature in-
teraction. GE models an FR-Graph by assembling (i) a static

graph topology depicting underlying knowledge of the task
and (ii) data-adaptive edge weights for graph edges. The
static graph depicts the underlying knowledge (the relations
of feature pairs), while the data-adaptive edge weights repre-
sent the strengths of relations based on specific feature val-
ues. Using the FR-Graph, we can effectively capture more
subtle interactions which may be mishandled by grouping
strategies (as shown in Fig. 1(c)). In our proposed T2G-
FORMER, each layer employs the FR-Graph to transform
layer input features into graph data, and heterogeneous fea-
ture interactions are performed in an orderly fashion based
on the specification of graph edges. Besides, a special Cross-
level Readout collects salient features from each level and
attains global tabular semantics for the final prediction.

The workflow of T2G-FORMER proceeds as follows. An
FR-Graph, whose edges represent the static relations of fea-
tures with data-adaptive weights (predicted by the GE mod-
ule), guides the processing of the tabular feature interaction
to predict higher-level features. Then another FR-Graph for
higher-level tabular features is built to organize the feature
interaction, and the process continues. T2G-FORMER can
output comprehensive semantics from different feature lev-
els by repeating the above process. The shared Cross-level
Readout is used to aggregate semantics from different fea-
ture levels, and takes all these features into consideration in
the final prediction.

Overall, the main contributions of our work are as fol-
lows:

• We first utilize feature relation graphs to handle hetero-
geneous feature interaction for tabular data, and propose
a novel GE module for feature relation organization.

• We adapt feature relation graphs in the Transformer ar-
chitecture, and build a specialized tabular learning Trans-
former T2G-FORMER for tabular classification and re-
gression.

• Comprehensive experiments show that T2G-FORMER
consistently outperforms state-of-the-art tabular DNNs
on many datasets, and is competitive with GBDTs.

10721



Tabular
features

F
ea

tu
re

 T
ok

en
iz

er

T2G Block T2G Block T2G Block

Prediction

Cross-level Readout

!" #"MatMul

LN

GEDense

LN

$"

$"%&

# (
)*+
, {

(a) T2G-Former Architecture (b) Basic Block & GE Workflow

# layers

Edge
Weights

Static view Adaptive view

Knowledge
Topology

FR-Graph

Assembling

Figure 2: (a) The architecture of T2G-FORMER for tabular learning. Each T2G block builds an FR-Graph for a feature level
and performs selective interaction. A global readout node collects salient features from each layer to form tabular semantics.
(b) Illustrating a basic block in Sec. and GE in Sec. .

Related Work
DNNs for Tabular Learning
Tabular learning refers to machine learning applications on
tabular data that conducts prediction based on categorical
or continuous features (Dong, Cheng et al. 2022). Clas-
sical non-deep methods (Li et al. 1984; Friedman 2001;
Zhang and Honavar 2003; Zhang, Kang et al. 2006; He, Pan
et al. 2014) are prevalent choices for such tasks (Anghel
et al. 2018), especially the ensemble methods of decision
trees, such as GBDT (Friedman 2001), XGBoost (Chen and
Guestrin 2016), LightBGM (Ke, Meng et al. 2017), and Cat-
Boost (Prokhorenkova, Gusev et al. 2018).

Compared to their shallow counterparts, DNNs enjoy
strong abilities of automatic feature learning (Thawani, Pu-
jara et al. 2021), and hence offer a good potential to exploit
hidden features. Recently, increasingly more studies applied
DNNs to tabular data (Guo, Tang et al. 2017; Yang, Morillo,
and Hospedales 2018; Song et al. 2019; Feng, Yu, and Zhou
2018; Hazimeh et al. 2020; Popov, Morozov, and Babenko
2019; Arik and Pfister 2021; Chen, Liao et al. 2022), which
can be roughly categorized into differentiable tree models
and fusion-based models.

Differentiable Tree Models. DNNs of this type (Popov,
Morozov, and Babenko 2019; Arik and Pfister 2021; Katzir,
Elidan, and El-Yaniv 2020) were inspired by the successes
of the ensemble tree frameworks (Kontschieder, Fiterau
et al. 2015; Feng, Yu, and Zhou 2018; Yang, Morillo, and
Hospedales 2018). NODE (Popov, Morozov, and Babenko
2019) combined differentiable oblivious decision trees (Lou
and Obukhov 2017) with multi-layer hierarchical represen-
tations and achieved competitive performances as GBDT.
TabNet (Arik and Pfister 2021) employed an attention mech-
anism (Vaswani, Shazeer et al. 2017) to sequentially select
salient features for tree-like decision. Net-DNF (Katzir, El-
idan, and El-Yaniv 2020) introduced bias of a disjunctive

normal form to select and aggregate feature subsets in each
block. NODE and Net-DNF largely benefited from model
ensembles but did not take advantage of the feature repre-
sentation capability of DNNs (Chen, Liao et al. 2022). Tab-
Net designed non-interactive transformer blocks for feature
representation and selection without feature fusion. All these
DNNs function as feature selectors and splitters, but neglect
underlying interactions among tabular features.

Fusion-based Models. Fusion-based models (Guo, Tang
et al. 2017; Song et al. 2019; Huang et al. 2020; Wang, Shiv-
anna et al. 2021; Gorishniy, Rubachev et al. 2021; Chen,
Liao et al. 2022) leveraged DNNs to fuse higher-level fea-
tures via feature interaction. DeepFM (Guo, Tang et al.
2017) performed multiplicative interaction on encoded fea-
tures for CTR prediction. DCN (Wang, Fu et al. 2017; Wang,
Shivanna et al. 2021) combined DNNs with cross com-
ponents to learn complex features with high-order interac-
tions. Recently, attention module (Vaswani, Shazeer et al.
2017) became a popular choice due to its interactive bias
and remarkable performance (Kenton and Toutanova 2019;
Dosovitskiy, Beyer et al. 2020). AutoInt (Song et al. 2019)
used multi-head self-attention to interact low-dimension
embedded features. TabTransformer (Huang et al. 2020)
directly transferred Transformer (Vaswani, Shazeer et al.
2017) blocks to tabular data but neglected interaction
between categorical features and continuous ones. FT-
Transformer (Gorishniy, Rubachev et al. 2021) addressed
this problem by tokenizing these two types of features and
processing them equally. DANets (Chen, Liao et al. 2022)
selected correlative tabular features and attentively fused the
selected features into higher-level ones.

Tabular Feature Interaction
Most of the previous fusion-based work simply trans-
ferred successful neural architectures (e.g., MLP (Guo, Tang
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et al. 2017), self-attention (Song et al. 2019), and Trans-
former (Huang et al. 2020; Gorishniy, Rubachev et al. 2021))
into tabular data and interacted features with soft selec-
tion. However, feature heterogeneity (Borisov et al. 2021;
Popov, Morozov, and Babenko 2019) led to gap of induc-
tive bias and made these models (which were designed
for homogeneous data, e.g., images and texts) sub-optimal.
DANets (Chen, Liao et al. 2022) first adapted selective
feature interaction by hard selection, constraining interac-
tions in a feature group, and achieved promising results;
but, relations of intra-group features were still not managed
well. Hence, this paper proposes feature relation graphs and
adapts them into a tailored Transformer network.

Graph Estimator
We propose Graph Estimator (GE) (Fig. 2(b)) for auto-
matically building Feature Relation Graphs (FR-Graphs),
which treats tabular features as nodes in a graph and es-
timates the feature relations as edges. The GE design is
inspired by knowledge graph completion (KGC) (Shi and
Weninger 2018; Wu et al. 2021) that might use semantical
similarity of two entities to estimate their relation plausibil-
ity. A basic form to measure semantical similarity (Nickel
et al. 2011) is:

fr(h, t) = hTMrt, (1)

where h, t ∈ Rn are an encoded head entity node and a tail
one, and a learnable matrix Mr ∈ Rn×n represents rela-
tion r in a knowledge graph (KG). Various following meth-
ods (Yang et al. 2015; Trouillon, Welbl et al. 2016; Nickel,
Rosasco, and Poggio 2016) followed this idea, which dif-
fered from one another solely in relation embeddings and
score functions.

Different from KGC models that only compute static re-
lation plausibility for entities, GE estimates the feature re-
lations by a static underlying graph topology with data-
adaptive edge weights. We take each tabular feature as
a node, and first perform semantic matching to estimate
the soft plausibility of pair-wise interactions between tab-
ular features, which are referred to as data-adaptive edge
weights in this section. Second, a static knowledge topol-
ogy is learned based on tabular column semantics to pre-
serve interactions of salient feature pairs. At the end, edge
weights are assembled with the knowledge topology to form
an FR-Graph.

FR-Graph Structure Components
To mine the relations among tabular features, we build FR-
Graph by treating tabular features as graph node candi-
dates and predicting the edges among them. The edges were
yielded from two perspectives: adaptive edge weights repre-
senting data-specific information, and static edge topology
for all the data representing the underlying knowledge. Note
that some features are isolated from the FR-Graph if no other
nodes connected with them.

Adaptive Edge Weights. Given two tabular feature em-
bedding vectors xi, xj ∈ Rn (i, j ∈ {1, 2, . . . , N}), where

N is the number of input features (table columns), we eval-
uate their interaction plausibility using the following pair-
wise score function:

Gw[i, j] = gw(f
h
i , f

t
j ) = fh

i

T
diag(r)f t

j , (2)

fh
i = Whxi, f

t
i = W txi,

{
Wh ≡ W t if symmetric,
Wh ̸= W t if asymmetric,

(3)
where two learnable parameters Wh,W t ∈ Rm×n de-
note transformations for a head feature and a tail one, and
diag(r) ∈ Rn×n is a diagonal matrix parameterized by
learnable relation vectors r ∈ Rn that semantically repre-
sent feature interaction relations. Here Wh and W t share
parameters if the pair-wise feature edge weights are symmet-
ric (i.e., Gw[i, j] ≡ Gw[j, i]) and are parameter-independent
in the asymmetric case (i.e., Gw[i, j] ̸= Gw[j, i]). All bias
vectors are omitted for notation brevity. Consequently, the
adaptive weight scores gw of all feature pairs constitute a
fully connected weighted relation graph Gw. Note that the
edge weight score is degraded to an attention score when r
is filled with scalar value 1 (and diag(r) becomes an entity
matrix), and thus it is able to measure weighted feature sim-
ilarity.

Static Knowledge Topology. Although we introduce soft
edge weights for all feature pairs, it is also important to glob-
ally consider the underlying knowledge of the tabular data.
Thus, we use a series of column embeddings to represent the
semantics of the tabular features, and a static relation topol-
ogy score can be computed as follows:

Gt[i, j] = gt(e
h
i , e

t
j) =

ehi
T
etj

∥ehi ∥2∥etj∥2
, (4)

ehi = Eh [:, i] , eti = Et [:, i] ,

where E ∈ {Eh, Et} is learnable column embed-
dings categorized into the head view or tail view, E =
(e1, e2, . . . , eN ) ∈ Rd×N , and d is the embedding di-
mension. Similarly, the relation topology score gt has the
symmetric and asymmetric counterparts, and Eh and Et

share parameters in the symmetric relation topology (i.e.,
Gt[i, j] ≡ Gt[j, i]) but are parameter-independent in the
asymmetric case (i.e., Gt[i, j] ̸= Gt[j, i]). We use L2 nor-
malization in the gt score function to transform embeddings
to be on a similar scale and improve the training stability.

We generate static relation topology based on the Gt

scores in Eq. (4), as:

A = ftop(Gt) = 1 [σ1(Gt + b) > T ] , (5)

where σ1 is an element-wise activation parameterised by a
learnable bias b (like the operation in PReLU (He, Zhang
et al. 2015)), Gt is adjacency matrix scores composed of
the relation topology score gt, T is a constant threshold for
signal clipping, and 1 denotes the indicator function. In this
way, we obtain a global graph topology (an adjacency matrix
A) to constrain feature interactions, and this topology can be
regarded as static knowledge on the whole task.
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Relation Graph Assembling
As we obtain “soft” adaptive edge weights from the data
view and “hard” static relation graph topology from the
knowledge view, we combine them to generate an FR-
Graph, following the idea of “decision on both specific data
and underlying knowledge”. Specifically, we assemble the
two components as follows:

G = σ2(fnsi(A)⊙Gw), (6)

where σ2 is a competitive activation (e.g., Lp normaliza-
tion, softmax, entmax, sparsemax (Martins et al. 2016)) to
restrict the indegree of each “feature node”, and ⊙ denotes
the Hadamard product. The resulted relation graph G is a
weighted graph based on both adaptive feature matching and
static knowledge topology. To help the FR-Graph focus on
learning meaningful interactions between different features,
a “no-self-interaction” function fnsi is performed to explic-
itly exclude self-loops in G. We use the FR-Graph to instruct
subsequent feature interactions. Since both the edge weights
and knowledge topology have the symmetric and asymmet-
ric versions, there are four combinations of FR-Graph cov-
ering the complete relation graph. In experiments, we will
further discuss the impact of the FR-Graph type.

T2G-FORMER
We incorporate GE into the attention-like basic block, and
build T2G-FORMER by stacking multiple blocks for selec-
tive tabular feature interaction (see Fig. 2). T2G-FORMER
uses estimated FR-Graphs to interact features and attain
higher-level features layer by layer. A Cross-level Readout is
sequentially transformed to the feature space of each layer,
and selectively collects salient features for the final predic-
tion. A shortcut path is added to preserve the information
from the preceding layers, resulted in gated fusion in differ-
ent feature levels that promotes the model capability.

Basic Block
A single block is built equipped with GE for selective feature
interaction (see Fig. 2(b)). Given input features X l ∈ Rn×N

to the l-th layer, we obtain higher-level features X l+1 as fol-
lows:

Gl = GE(X l), V l = WvX
l, (7)

H l = GlV l + g(X l), X l+1 = FFN(H l) + g(H l), (8)

where Wv ∈ Rm×n is learnable parameters for feature
transformation, and V l is transformed input features. FFN
denotes a feed-forward network. As self-interaction is ex-
cluded in Gl (see Eq. (6)), a shortcut path g is added to pro-
tect the information from the preceding layers, which is a
simple dropout layer in experiments. Notably, we yield and
use the FR-Graph for feature interactions, and does not in-
fluence the intra-feature update conducted by the shortcut. In
the first layer, we set X0 as the input tabular data encoded
by a simple feature tokenizer (Gorishniy, Rubachev et al.
2021). In this way, higher-level features can be iteratively
obtained with the generated FR-Graphs and selective inter-
action. In implementation, layer normalization is performed
(see Fig. 2(b)) for stable training.

Cross-level Readout
We design a global readout node to selectively collect salient
features from each layer and attain comprehensive seman-
tics for the final prediction. Specifically, we attentively fuse
selected features at the current layer and combine them with
the lower-level features from the preceding layers by a short-
cut path. Given the current readout status zl ∈ Rn, the col-
lection process at the l-th layer is defined by:

αl
i = gw(h

l, f t
i ) · ftop(gt(el, eti)), hl = Whzl, (9)

rl = softmax(αl)TV l + zl, (10)

zl+1 = FFN(rl) + rl, (11)

where αl
i denotes the weight of the i-th feature that con-

stitutes a weight vector αl ∈ RN , el ∈ Rd is a learnable
vector representing the semantics of the readout node at the
l-th layer, f t

i is an encoded feature (Eq. (3)) of each layer,
and eti is a layer-wise column embedding (Eq. (4)). V l is the
transformed input features (Eq. (7)). Here we put zl forward
through the same FFN transformation to transform the cur-
rent readout into the feature space at the (l + 1)-th layer for
the next round of collection. The shortcut paths are directly
added without information drop. This collection process is
repeated from the input features to the highest-level features,
thus encouraging interactions among cross-level features.

The Overall Architecture and Training
Basic blocks are stacked in T2G-FORMER (Fig. 2(a)). If
without special specification, in experiments we use 8-head
GE in each block by default (Fig. 2(b)). Prediction is made
based on the readout status after processing the final layer
L, as:

ŷ = FC(ReLU(LN(zL))),

where LN and FC denote layer normalization and a fully
connected layer, respectively. As for optimization, we use
the cross entropy loss for classification and the mean squared
error loss for regression, as in previous DNNs. We tested
various tasks and observed that continuing to optimize the
static graph topology A in Eq. (5) across the whole train-
ing phase may lead to unstable performance on some easy
tasks (e.g., binary classification, small datasets, or few input
features). Thus, we freeze it after convergence for further
training in a fixed topology manner.

Note that we introduce additional hyperparameters d
(Eq. (4)) and T (Eq. (5)). In experiments, we adaptively set
d = 2 ⌈log2 N⌉ which is for the minimal amount of in-
formation to present an adjacency matrix with N2 binary
elements, and keep T = 0.5 across all the datasets. We
choose sigmoid as σ1 and softmax as σ2. Straight-through
trick (Bengio, Léonard, and Courville 2013) is used to solve
the undifferentiable issue of the indicator function in Eq. (5).

Experiments
In this section, we present extensive experimental results and
compare with a wide range of state-of-the-art tabular learn-
ing DNNs and GBDT. Also, we conduct empirical experi-
ments to examine the impacts of some key T2G-FORMER
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components, including comparison of the feature relation
graph (FR-Graph) types, ablation study of self-interaction,
and the effect of GE. Besides, we explore the model inter-
pretability by visualizing the FR-Graphs and readout selec-
tion on two semantically rich datasets.

Experimental Setup
Datasets. We use twelve open-source tabular datasets.
Gesture Phase Prediction (GE, (Madeo, Lima, and Peres
2013)), Churn Modeling (CH, Kaggle dataset), Eye Move-
ments (EY, (Salojärvi, Puolamäki et al. 2005)), California
Housing (CA, (Pace and Barry 1997)), House 16H (HO,
OpenML dataset), Adult (AD, (Kohavi et al. 1996)), Helena
(HE, (Guyon, Sun-Hosoya et al. 2019)), Jannis (JA, (Guyon,
Sun-Hosoya et al. 2019)), Otto Group Product Classification
(OT, Kaggle dataset), Higgs Small (HI, (Baldi, Sadowski,
and Whiteson 2014)), Facebook Comments (FB, (Singh,
Sandhu, and Kumar 2015)), and Year (YE, (Bertin-Mahieux,
Ellis et al. 2011)). For each dataset, data preprocessing and
train-validation-test splits are fixed for all the methods ac-
cording to (Gorishniy, Rubachev et al. 2021; Gorishniy,
Rubachev, and Babenko 2022). Dataset statistics are given
in Table 1, and more details are in Appendix A.

Implementation Details. We implement our T2G-
FORMER model using PyTorch on Python 3.8. All the
experiments are run on NVIDIA RTX 3090. In training,
if without special specification, we use FR-Graphs with
symmetric edge weights and asymmetric graph topology
in GE. The optimizer is AdamW (Loshchilov and Hutter
2018) with the default configuration except for the learning
rate and weight decay rate. For DANet-28, we follow its
QHAdam optimizer (Ma and Yarats 2018) and the pre-set
hyperparameters given in (Chen, Liao et al. 2022) without
tuning. For the other DNNs and XGBoost, we follow the
settings provided in (Gorishniy, Rubachev et al. 2021)
(including the optimizers and hyperparameter spaces),
and perform hyperparameter tuning with the Optuna li-
brary (Akiba, Sano et al. 2019) and grid search (only for
NODE). More detailed information of hyperparameters is
provided in Appendix B.

Comparison Methods. In our experiments, we compare
our T2G-FORMER with the representative non-deep method
XGBoost (Chen and Guestrin 2016) and the known DNNs,
including NODE (Popov, Morozov, and Babenko 2019), Au-
toInt (Song et al. 2019), TabNet (Arik and Pfister 2021),
DCNv2 (Wang, Shivanna et al. 2021), FT-Transformer (Gor-
ishniy, Rubachev et al. 2021), and DANets (Chen, Liao et al.
2022). Some other common DNNs such as MLP and SNN
(an MLP network with SELU activation) (Klambauer et al.
2017) are taken into comparison as well.

Main Results and Analyses
Performance Comparison. The performances of the
DNNs and non-deep models are reported in Table 2. T2G-
FORMER outperforms these DNNs on eight datasets, and is
comparable with XGBoost in most the cases. All the mod-
els are hyperparameter-tuned by choosing the best validation
results with Optuna-driven tuning (Akiba, Sano et al. 2019).

The Effect of FR-Graph Types. We compare four types
of FR-Graphs in GE. Table 3 reports the results, from which
one can see that it is often better to choose symmetric edge
weights and asymmetric knowledge topology. This suggests
that mutual interactions between two tabular features are
likely to be the same, and asymmetric topology offers a
larger semantic exploration space that is more likely to yield
useful features. The results on the other datasets are provided
in Appendix C.

The Effect of Self-interaction. One of our key designs in
GE is the “no self-interaction function” that explicitly ex-
cludes self-loops in FR-Graphs. Table 4 reports compari-
son results on several datasets with no self-loop FR-Graphs
(ours) and self-loop FR-Graphs. The results show that in
most the cases, removing self-loops and focusing on in-
teractions with other features slightly benefit performances
in both classification and regression. This may be because
feature self-interaction affects the probabilities of interac-
tions with other features (as we use competitive activation
in Eq. (6)), while our shortcut paths have already preserved
self-information.

The Effect of GEs. We explore the impact of including
GEs at different layers of T2G-FORMER. Table 5 reports
the performances of different model versions which differ
solely in the positions and numbers of GEs used. As for the
layers without GE, we use the ordinary attention score for
substitution. Overall, the positions of GEs show bigger in-
fluence on regression tasks than on classification tasks. As
one can see, in regression tasks, the model incurs larger per-
formance drops when GEs are equipped in higher layers,
while the drops do not seem so large related to GE positions
in classification. Also, the model equipped with only atten-
tion score is better than the one with a single GE in a high
layer (not in the first layer) for regression tasks, but is always
sub-optimal in classification tasks. A probable explanation
is that regression needs a smoother optimization space than
classification, and thus the fully connected attention score
provides the kind of interactions to cope with continuous
feature values, while a single GE in a high layer is difficult
to capture clear relations among features fused in the fully
connected manner. Therefore, it is better to completely use
attention score than a single GE in a high layer for regres-
sion. A single GE in the first layer shows the least perfor-
mance drop in both regression and classification, which can
be explained by the strength of GE in capturing underlying
relations among tabular features with clear semantics.

In summary, the removal of GE in any layers is likely to
cause performance drop, and the best results are achieved by
applying GE to all the layers.

Comparison of Topology Learning Approaches. Apart
from the column embedding approach proposed in Sec. ,
there are some other intuitive straightforward approaches to
get knowledge topology of the RF-Graph, for example, per-
forming threshold clipping on the adaptive edge weights di-
rectly (we call it “adaptive topology”) or learning an N -by-
N adjacency matrix (we call it “free topology”). Concretely,
for learning adaptive topology, we substitute Gt in Eq. (5)
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Dataset GE CH EY CA HO AD OT HE JA HI FB YE

# features 32 9+1 26 8 16 6+8 93 27 54 28 50+1 90
# samples 9873 10000 10936 20640 22784 48842 61878 65196 83733 98050 197080 515345
# classes 5 2 3 - - 2 9 100 4 2 - -
Metric Acc. Acc. Acc. RMSE RMSE Acc. Acc. Acc. Acc. Acc. RMSE RMSE

Table 1: Some details of the 12 public datasets. ”RMSE” denotes root mean squared error (for regression), and “Acc.” means
accuracy (for classification). The number following each “+” in the row of “# features” is the number of categorical features.

GE ↑ CH ↑ EY ↑ CA ↓ HO ↓ AD ↑ OT ↑ HE ↑ JA ↑ HI ↑ FB ↓ YE ↓
XGBoost 68.42 85.92 72.51 0.436 3.169 87.30 82.46 37.47 71.85 72.41 5.359 8.850

MLP 58.64 85.77 61.10 0.499 3.173 85.35 80.99 38.38 71.97 72.00 5.943 8.849
SNN 64.69 85.74 61.55 0.498 3.207 85.40 81.17 37.19 71.94 72.21 5.892 8.901
TabNet 60.01 85.01 62.08 0.513 3.252 84.84 79.06 37.86 72.26 71.97 6.559 8.916
DANet-28 61.63 85.10 60.53 0.524 3.236 85.00 81.04 35.45 70.72 71.47 6.167 8.914
NODE 53.94 85.86 65.54 0.463 3.216 85.77 80.37 35.33 72.78 72.51 5.698 8.777
AutoInt 58.33 85.51 61.07 0.472 3.147 85.66 80.11 37.26 72.08 72.51 5.852 8.862
DCNv2 55.72 85.68 61.37 0.489 3.172 85.48 80.15 38.61 71.56 72.20 5.847 8.882
FT-Transformer 61.25 86.07 70.84 0.460 3.124 85.72 81.30 39.10 73.24 73.06 6.079 8.852
T2G-FORMER 65.57 86.25 78.18 0.455 3.138 85.96 81.87 39.06 73.68 73.39 5.701 8.851

Table 2: Performance comparison on the 12 public tubular datasets. Each result reported is averaged over 15 random seeds.
For standard deviations, see Appendix C. For each dataset, the top performances among the DNNs are marked in bold, and the
second best results are underlined. We also report XGBoost results as a typical representation of GBDT models. ↓ represents
the RMSE metric (the lower the better) and ↑ represents accuracy (the higher the better).

FR-Graph EY ↑ HO ↓ FB ↓ YE ↓
AwSt 77.34 3.171 5.736 8.886

AwAt 77.59 3.145 5.718 8.861

SwSt 76.46 3.151 5.723 8.885

SwAt (ours) 78.18 3.138 5.701 8.851

Table 3: Comparison of four FR-Graph types on several
tasks and datasets. “A” means asymmetric, and “S” means
symmetric. “AwSt”, for example, is for asymmetric edge
weights and symmetric graph topology. Likewise, “AwAt”,
“SwSt”, and “SwAt” denote the other three types of FR-
Graphs.

with Gw in Eq. (2). For learning the free topology, we di-
rectly represent Gt by an N -by-N matrix. Table 6 reports
the comparison results of these topology learning strategies.
One can see that, the static knowledge topology shared on
the whole dataset (our approach) attains superior perfor-
mances than the adaptive topology, implying the plausibility
of our underlying knowledge assumption mentioned in Sec. .
Besides, the completely free topology also achieves inferior
performances, which is probably because of the excessive
freedom given to the learnable matrix.

Comparison with DANet Grouped Interactions. As il-
lustrated in Fig. 1, DANets (Chen, Liao et al. 2022) inter-
acted tabular features in the group determined by the “ent-

EY ↑ HO ↓ FB ↓ YE ↓
w/o SL (ours) 78.18 3.138 5.701 8.851

SL 77.89 3.152 5.691 8.856

SL − w/o SL −0.29 0.014 −0.01 0.005

Table 4: Comparison of the effects of FR-Graphs without
(w/o) self-loops and FR-Graphs with self-loops. “SL” means
self-loops.

max” operation. Here we compare our graph-based inter-
action with that group-based one to inspect the benefits of
FR-Graph. Specifically, we substitute the knowledge topol-
ogy A in Eq. (5) with DANet grouped selection mask. The
results in Table 7 suggest that it of greater benefits to orga-
nize tabular features into a graph, since a graph topology is
able to capture relation edges and provide more subtle inter-
actions than a group structure.

Interpretability
In Fig. 3, we visualize the first-layer FR-Graph and the read-
out collecting strategy on the input features (i.e., features
from the feature tokenizer; see Fig. 2(a)). On the CA dataset,
it is reasonable to find that the median income (MedInc, MI)
of the residents within a block group is related to the av-
erage number of the household members (AveOccup, AvO),
and AveOccup can affect the average number of bedrooms
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CA (×100) ↓ JA ↑
All 45.53 73.68

# 1 45.78 73.40

# 2 45.96 73.31

# 3 46.06 73.37

None 45.84 73.23

Table 5: Performances of including GEs in different layers
of T2G-FORMER. All the results are obtained with a 3-layer
T2G-FORMER. “# i” means that only the i-th layer has GE
while the other layers replace GE with the ordinary attention
score, “All” means that all the layers are equipped with GE,
and “None” means that all the layers use ordinary attention.

Topology CA (×100) ↓ JA ↑ Complexity

ours 45.53 73.68 O(N logN )

adaptive 45.88 73.08 O(1)

free 45.87 73.46 O(N2)

Table 6: Performances of different topology learning ap-
proaches. “Complexity” indicates the additional space com-
putational complexity (the amount of extra model parame-
ters) caused by the number of tabular features N .

(AveBedrooms, AvB). Also, there appear to be some rela-
tions such as Longitude (Lon)-HouseAge (HoA), Longitude-
AveRooms (AvR), and Longitude-Population (Pop), which
are probably derived from dataset bias. As for readout, one
can see that solely HouseAge is collected that is a mean-
ingful feature in house price prediction. On the CH dataset,
there are reasonable relations between Balance (Bal, bank
balance of a customer) and EstimatedSalary (ESa), as well
as the age of the customer (Age) and EstimatedSalary. Also,
it is interpretable that the credit score of a customer (Cred-
itScore, CrS) is highly related to that customer’s Age and
Balance. The readout collects only Age in the current level
for predicting whether a customer will leave the bank, which
is intuitive as well.

Conclusions
In this paper, we proposed T2G-FORMER, a new bespoke
Transformer model for tabular learning with a novel mod-
ule Graph Estimator (GE) for promoting heterogeneous
feature interaction based on estimated relation graphs. We
adapted feature relation graphs into the basic blocks of
T2G-FORMER in an attention-like fashion for simplicity
and applicability. Experiments on extensive public datasets
showed that T2G-FORMER achieves better performances
than various DNNs and is comparable with XGboost. We
expect that our T2G-FORMER will serve as a strong base-
line in tabular learning studies and enhance research interest
in handling feature heterogeneity of tabular data.

Interaction CA (×100) ↓ HO ↓ JA ↑
graph (ours) 45.53 3.138 73.68

group (DANet) 45.88 3.215 73.08

Table 7: Comparison with DANet group-based interaction
on several datasets.

Figure 3: Visualization of the FR-Graph edge weights in the
first layer (heat map) and the readout selection (dark bar) on
the datasets CA (left) and CH (right). More details of the
feature descriptions are given in Appendix D.
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