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Abstract

Successful machine learning methods require a trade-off be-
tween memorization and generalization. Too much memoriza-
tion and the model cannot generalize to unobserved examples.
Too much over-generalization and we risk under-fitting the
data. While we commonly measure their performance through
cross validation and accuracy metrics, how should these algo-
rithms cope in domains that are extremely under-determined
where accuracy is always unsatisfactory? We present a novel
probabilistic graphical model structure learning approach that
can learn, generalize and explain in these elusive domains
by operating at the random variable instantiation level. Using
Minimum Description Length (MDL) analysis, we propose
a new decomposition of the learning problem over all train-
ing exemplars, fusing together minimal entropy inferences
to construct a final knowledge base. By leveraging Bayesian
Knowledge Bases (BKBs), a framework that operates at the in-
stantiation level and inherently subsumes Bayesian Networks
(BNs), we develop both a theoretical MDL score and associ-
ated structure learning algorithm that demonstrates significant
improvements over learned BNs on 40 benchmark datasets.
Further, our algorithm incorporates recent off-the-shelf DAG
learning techniques enabling tractable results even on large
problems. We then demonstrate the utility of our approach
in a significantly under-determined domain by learning gene
regulatory networks on breast cancer gene mutational data
available from The Cancer Genome Atlas (TCGA).

Introduction
Since popularization by Pearl (1986), learning Bayesian Net-
works (BNs) has solidified into a steadfast research area for
40 years. It has become an important paradigm for model-
ing and reasoning under uncertainty and has seen applica-
tions from stock market prediction (Malagrino, Roman, and
Monteiro 2018) and medical diagnosis (Shih, Choi, and Dar-
wiche 2018) to Gene Regulatory Networks (GRNs) (Sauta
et al. 2020). Despite Bayesian Network Structure Learning
(BNSL) being NP-hard (Chickering, Heckerman, and Meek
2004) and even simpler structures like polytrees being NP-
hard(er) (Dasgupta 1999), new constraints (Grüttemeier and
Komusiewicz 2020), improvements (Trösser, de Givry, and
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Katsirelos 2021), and scalings (Scanagatta et al. 2015) are
presented at major AI conferences every year. This is because
BNs and affliated structures like Markov (Koller and Fried-
man 2009) and Dependency Networks (DNs) (Heckerman
et al. 2000) offer a quality that other methods such as deep
learning do not; explainability (Došilović, Brčić, and Hlupić
2018; Burkart and Huber 2021).

The optimization that occurs in Probabilistic Graphical
Model (PGM) structure learning is

G∗ = argmax
G

F (G,D)

subject to G ∈ Ω

where D is a database, G is a graph structure such as a BN,
F is a scoring function that yields the goodness of fit of the
structure G, and Ω is the set of allowed structures for G; for
BNs this would be the space of all possible Directed Acyclic
Graphs (DAGs).

Scoring functions are essential to the structure learning
problem and should have a theoretical justification in in-
formation theory or otherwise. For instance, the most com-
mon scoring functions such as Bayesian Information Criteria
(BIC) (Schwarz 1978), Minimum Description Length (MDL)
(Rissanen 1978), and Akaike Information Criterion (Akaike
1974) are all based on information theoretic criteria or can be
viewed from this perspective. While we will spend part of this
paper in theoretically justifying our model scoring approach,
our goal is not to present a better scoring function. Instead,
our goal is to illustrate that no matter the scoring function
or learning algorithm, an over-generalization is encountered
when modeling at the Random Variable (RV) level.

By operating at the RV level, models force a complete
distribution, as is the case with BNs. While a complete
distribution is often desired, this has an unintended over-
generalization consequence, particularly in under-determined
domains. This phenomenon even occurs in deep learning sys-
tems, and is generally referred to as fooling (Szegedy et al.
2014; Nguyen, Yosinski, and Clune 2015; Kardan and Stanley
2018). However, we will limit our scope to PGMs as our end
goal is to analyze and/or hypothesize structural dependency
relationships. Given this goal, such over-generalization could
yield non-optimal structures, biasing analysis and derived
hypotheses leading to misguided conclusions. To illustrate
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this over-generalization and provide intuition for learning at
the RV instantiation level, we provide a motivating example
taken from real-world data.

Motivating Example It is well known in cancer research
that the genes TP53 and TTN have somatic mutations that
affect chemotherapy responses (Xue et al. 2021). To demon-
strate a real-world effect of BN over-generalization, we
learned a simple BN for this interaction over the TCGA
(Tomczak, Czerwińska, and Wiznerowicz 2015) mutational
dataset as seen in Figure 1a. This BN encodes four possible
worlds represented by distinctly styled arrows in Figure 1b.
For this example we have reduced the state space of each
gene to just mutated or not mutated. Assume our goal is to
minimize the entropy or uncertainty of each world or expla-
nation. Then the conditional entropy of the model is the sum
over each world’s conditional entropy which is inherently
direction dependent. Since there exists many possible world
edge configurations (RV instantiation dependencies), there
may exist a better set of edges than those induced by the BN.
Figure 1c shows this is true and illustrates the best collection
of minimal entropy inferences for this example.

Contributions To address the over-generalization de-
scribed we develop a structure learning algorithm leveraging
the Bayesian Knowledge Base (BKB) framework as it inher-
ently operates on the RV instantiation level. We accomplish
this by detailing a necessary scoring metric to rank BKB
models based on an MDL analysis and show theoretically
that our MDL score takes over-generalization into account.
Leveraging this theoretical result, we then develop our BKB
Structure Learning (BKBSL) algorithm to minimize MDL
and demonstrate empirically both competitive accuracy and
better data fit compared to learned BNs. Further, we show that
our algorithm can utilize existing optimization frameworks
for DAG learning bringing BKBSL into the realm of these
well studied off-the-shelf methods. Lastly, we conclude by
utilizing a learned BKB to explain possible gene associations
over TCGA breast cancer data.

Related Work and Preliminaries
As the MDL principle will be our guiding force in both
theoretical and empirical analysis, we provide a brief review
of its applications to directed PGMs, e.g. Bayesian Networks,
as these models are most applicable to our study of BKBs.
Lam and Bacchus (1994) first presented an MDL learning
approach for BNs based on a heuristic search method seeking
to spend equal time between simple and more complex BN
structures. This was accomplished by extending Chow and
Liu’s (1968) result on recovering polytrees to general BNs via
Kullback-Leibler cross entropy minimization allowing them
to develop a weighting function over nodes. Their approach
demonstrated that minimizing the MDL of BNs performs an
intuitive trade-off between model accuracy and complexity.
In their work, they also eluded to a potential subjectivity
in choosing a model encoding strategy leading to research
for improved MDL scores for BNs (Yun and Keong 2004;
Drugan and Wiering 2010). Hansen and Yu (2001) detail a
complete review of various MDL formulations.

Empirical evaluation of MDL as a scoring function for
BN learning has also been well studied. Yang and Chang
(2002) analyzed the performance of five scoring functions:
uniform prior score metric (UPSM), conditional uniform
prior score metric (CUPSM), Dirichlet prior score metric
(DPSM), likelihood-equivalence Bayesian Dirichlet score
metric (BDeu), and MDL. They showed that MDL was able
to correctly identify ground-truth network structures from a
variety of possible candidates, yielding the highest discrim-
ination ability. Liu et al (2012) also performed empirical
BN learning analysis over different scoring function, namely:
MDL, Akaike’s information criterion (AIC), BDeu, and fac-
torized normalized maximum likelihood (fNML). Their ap-
proach tested the recovery accuracy of each scoring method
over various gold standard networks as compared to the ran-
dom networks used by Yang and Chang. Their results confirm
the utility of MDL as it performed best in recovering the op-
timal networks when sufficient data was given.

To our knowledge there has been no work in structure
learning on the RV instantiation level, likely due to the desire
to learn complete distributions. Further, we have limited our
comparisons to BNs as they are a predominant model in
literature and provide a comparison to judge empirical results.

Bayesian Networks
A BN is a DAG G = (V,E) that represents the factorized
joint probability distribution over random variables X =
(X1, . . . , Xn) of the form:

Pr(X) =

n∏
i

P (Xi | Π(Xi)) (1)

such that Π(Xi), or more concisely πi, are the structural
parents of the random variable Xi according to G and each
node Vi ∈ V correspond directly to a random variable Xi

and n is the number of random variables in X . As the BN
MDL formulation is well known in the literature, we point
the reader to Appendix D.1 for a review.

Bayesian Knowledge Bases
Santos, Jr. and Santos (1999) developed the BKB framework
to generalize BNs to the random variable instantiation level
and to offer knowledge engineers a semantically sound and in-
tuitive knowledge representation. BKBs unify “if-then” rules
with probability theory to provide several modeling bene-
fits compared to BNs, fuzzy logics, etc. First, BKBs do not
require complete accessibility and can even leverage incom-
plete information to develop potentially more representative
models. Second, since BKBs operate at the instantiation level,
they can handle various types of cyclic knowledge. Lastly,
BKBs have both robust tuning algorithms to assist in model
correction/validation (Santos, Gu, and Santos 2013; Yaka-
boski and Santos 2018) and information fusion algorithms
to incorporate knowledge efficiently and soundly from dis-
parate knowledge sources (Santos, Wilkinson, and Santos
2011; Yakaboski and Santos 2021).

BKBs consist of two components: instantiation nodes
(I-nodes) which represent instantiations of random vari-
ables of the form Xi = xik where k is the k-th state of
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(a) (b) (c)

Figure 1: (a) A simple learned BN over the TCGA gene mutation dataset using GOBNILP (Cussens, Haws, and Studeny 2015)
where the variable states are either mutated or not mutated. (b) A graph of all corresponding worlds represented in (a) delineated
by different line styles. (c) A better orientation of intra-world dependency relationships that lead to a lower total conditional
entropy. All values are conditional entropies calculated from the TCGA gene mutational dataset.

Xi, and support nodes (S-nodes) that represent the condi-
tional probabilities between I-node relationships of the form
Xi = xik → q = 0.87→ Xj = xjl. The collection of these
(in)dependencies describe the BKB correlation graph. For a
precise definition and a graphical depiction see Appendix D.

While BKBs can handle incompleteness and various forms
of cyclicity, it is necessary that all S-nodes in a BKB obey
mutual exclusivity (mutex) and associated probability seman-
tics. Mutex guarantees that mutually exclusive events cannot
be true at the same time. Concretely, we say that two sets
of I-nodes, I1 and I2, are mutex if there exists an I-node
Xi = xik1

∈ I1 and Xi = xik2
∈ I2 such that k1 ̸= k2. We

say that two S-nodes are mutex if the two I-node parent sets
of each S-node are mutex.

BKBs use a weight function to map S-node weights to
associated conditional probabilities associated with the con-
ditional dependence relationship described by the S-node.
This weight function is analogous to the conditional proba-
bility tables (CPTs) of BNs except that BKBs do not require
complete information. This weight function along with the
correlation graph defines the BKB.

Bayesian Knowledge Base A Bayesian Knowledge Base
(BKB) is a tuple K = (G,w) where G is a correlation graph
G = (I ∪S,E) where I and S are the sets of I- and S-nodes,
E ⊂ {I × S} ∪ {S × I}, and w : S → [0, 1] is a weight
function, such that the following properties are met:
1. ∀q ∈ S, the set of all incident I-nodes to q, denoted

Π(q), contains at most one instantiation of each random
variable.

2. For distinct S-nodes q1, q2 ∈ S that support the same I-
node, denoted HeadG(qi), the sets Π(q1) and Π(q2) must
be mutex.

3. For any Q ⊆ S such that (i) HeadG(q1) and HeadG(q2)
are mutex, and (ii) Π(q1) and Π(q2) are not mutex, then
∀q1, q2 ∈ Q,

∑
q∈Q w(q) ≤ 1.

The probability of an inference (world) in a BKB, denoted
τ , is the product of all S-node weights w(q) consistent with
that world (Appendix D.2). The joint probability distribution
of a BKB is the sum of all inference probabilities consistent
with an evidence set Θ represented as IΘ and given by

P (Θ) =
∑
τ∈IΘ

∏
q∈τ

w(q) (2)

The BKB Minimum Description Length
To construct a BKB structure learning algorithm, we first
need to define a scoring function that can rank BKB structures
as well as provide a theoretical justification for its utility.
For these reasons we focus our attention on a Minimum
Description Length (MDL) score as it is a well studied tenet
of learning theory (Rissanen 1978). The idea is that the best
model given data should minimize both (1) the encoding
length of the model and (2) the length of encoding the data
given the model. This is akin to applying Occam’s Razor
to model selection, i.e., choose the simplest model that still
describes the data reasonably well.

Encoding the BKB
The minimum length needed to encode a BKB is related
directly to the number of S-nodes modeled by the BKB. The
encoding of each S-node will contain a probability value
and a parent set of I-nodes. For a problem with n RVs such
that each RV can have ri number of instantiations, to encode
all I-nodes we would need log2(m) number of bits where
m =

∏
i ri. The general BKB MDL is∑

q∈S

(
(|Π(q)|+ 1) log2(m) + δ

)
−N

∑
τ

pτ log2(qτ ) (3)

where δ is the number of bits needed to store the proba-
bility value and the first term is the BKB model encoding
length. From Equation 3 it is clear that we incur a modeling
cost for the BKB based on the finer granularity of the model.
This cost is derived in Appendix C.1. Therefore, if we know
that the distribution factorizes to a BN, there is no reason
to use a BKB. However, rarely in practice do we know the
true distribution of the data and in most cases the data we
learn from is incomplete. This eludes to a natural rationale
for using a BKB that will be theoretically justified.
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Encoding the Data with a BKB
The task of encoding dataset D is centered on learning a
joint distribution over random variables X = (X1, . . . , Xn).
As we are focused on the discrete case, each variable Xi

will have ri discrete states and every unique choice of ran-
dom variable instantiations defines a complete world τ of
the ground-truth distribution of the data and is assigned an
associated probability value, pτ .

We will make several standard statistical assumptions. We
assume that each data instance in D is a complete world such
that each data instance specifies a value for every random
variable in X1. We assume that each data instance is a result
of independent random trails and expect that each world
would appear in the dataset with a frequency ≈ Npτ .

The main theme of the MDL metric is to efficiently com-
press N data instances as a binary string such that we mini-
mize the string’s encoding length. There are many different
coding and compression algorithms we can use, but since
we simply care about comparing different MDLs as a metric
we can limit our focus to just symbol codes (MacKay 2005).
Symbols codes assign a unique binary string to each world in
the dataset. For instance, the world {X1 = 1, X2 = 1, X3 =
0} might be assigned the symbol 0001. We can then encode
the dataset as just the concatenation of all these world sym-
bols and judge our compression effectiveness by calculating
the length of this final binary string.

Research in information theory has proved that for symbol
codes it is possible to minimize the length of this encoded
data string by leveraging the probability/frequency of each
world symbol occurring. Specifically, Huffman’s algorithm
generates optimal Huffman codes (MacKay 2005), i.e., op-
timal symbol code mappings, that yield a minimum length.
The key intuition for Huffman codes is that we should give
shorter code words to more frequently occurring worlds and
longer ones to less probable worlds. Lam and Bacchus (1994)
proved that the encoding length of the data is a monotoni-
cally increasing function of the cross-entropy between the
distribution defined by the model and the true distribution.

Therefore, if we have a true distribution P and a model
distribution Q over the same set of worlds, τ1, . . . , τt, where
each world τi is assigned the probability pi by P and qi by
Q, then the cross entropy between these distributions is

C(P,Q) =

t∑
i=1

pi log2
pi
qi

=
t∑

i=1

pi(log2 pi − log2 qi) (4)

Calculating Equation 4 is not appealing as the number of
worlds is combinatorial in the number of variables. Chow and
Lui (1968) developed a famous simplification of Equation 4
as just a local computation over low-order marginals when Q
has a tree factorization. Lam and Bucchus (1994) extended
their result to models that have a general DAG structure.
Their main result concludes that C(P,Q) is a monotonically
decreasing function of the sum of each random variable’s
mutual information with their parents, I(Xi; Π(Xi)). Their
exact result is restated in Appendix Theorem 3.

1Only for simplicity do we make the assumption that a data instance
must be complete, i.e., not contain any missing values.

Further generalizing these results to the instantiation level,
we can now show that an optimally learned BKB can encode
the distribution as well or better than a BN. Consider again
the fundamental MDL problem of learning the dataset en-
coding. Equation 4 says that we need to minimize the total
cross-entropy between P and Q. However, in terms of data
encoding, we only need to minimize the difference between
each pi and qi for unique worlds that are actually in D. In this
sense, our database encoding doesn’t care about the worlds
that aren’t in the dataset, but for which a model like a BN nat-
urally defines and generalizes. Therefore, BKBs handling of
incompleteness gives us an opportunity to more tightly fit the
data we actually know. Consider the following cross-entropy

C(P,Q) =
d∑

i=1

pi(log2 pi − log2 qi)

+
t∑

i=d+1

pi(log2 pi − log2 qi) (5)

where worlds τ1, . . . , τd are represented by the unique ex-
emplars in D that we hope to encode, i.e., {τi, . . . , τd} =
{d1, d2, d3, . . . }̸= ⊆ D, and worlds τd+1, . . . , τt are worlds
that our model induces. In terms of encoding length we can
narrow our focus to only considering worlds present in D.
As Lam and Bacchus (1994) proved the encoding length of
the data is a monotonically increasing function cross-entropy,
it is trivial to prove the following corollary.

Corollary 1. Let’s Define the cross-entropy CD(P,Q) =∑d
i=1 pi(log2 pi − log2 qi) between two distributions P and

Q over the same set of worlds τ1, . . . , τd s.t. these worlds
must be included in a dataset D. Then the encoding length of
the data D is monotonically increasing function of CD.

Combining Corollary 1 with Lam and Bacchus mutual
information theorem (Appendix D Theorem 3) we arrive at
our main theoretical result.

Theorem 1. CD(P,Q) is a monotonically decreasing func-
tion of ∑

τ∈D ̸=

n∑
i=1

p(xiτ , πiτ ) log2
p(xiτ , πiτ )

p(xiτ )p(πiτ )
(6)

where xiτ is the instantiation of random variable Xi deter-
mined by data instance τ , πiτ is the parent set instantiation
of random variable Xi governed by τ , and D ̸= is the set of
unique data instances (worlds) represented in D. Therefore,
CD(P,Q) will be minimized when Equation 6 is maximized.

We leave the proof of this theorem to Appendix B.1 as
the intuition is fairly straightforward from Lam and Bacchus’
theorem (Appendix D Theorem 3). We have established that
the encoding length of the data is a increasing function solely
of CD and that maximizing Equation 6 minimizes CD and
thereby the encoding length. With these results, we can de-
duce the existence of a theoretical BKB that will have an
equal to or better data encoding length than the induced
worlds of a BN given D.
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Theorem 2. Given a BN G learned over a dataset D as
to maximize the weight WG =

∑
i I(Xi; Π(Xi)) given the

structure G, there exists a BKB K with a weight WK accord-
ing to Equation 6 such that WK ≥WG.

We defer a detailed proof of Theorem 2 to Appendix B.2
and provide a more concise proof sketch. The key insight
is that any BN G can be transformed into a corresponding
BKB KG as BKBs subsume BNs. We are only interested
in the data encoding length which can now be calculated
over KG by summing over the complete worlds represented
in G. Consider a single random variable Xi and it’s asso-
ciated parent set Π(Xi). For each instantiation of Xi and
Π(Xi) there will be an associated S-node created in KG

with an instantiated weight according to Equation 6. Since
the choice of parent set for each random variable instan-
tiation in Π(Xi) ∪ {Xi} is governed by G, we don’t con-
sider other S-node configurations of the same instantiated
random variable set that may have greater weight. The BN
structure constrains our S-node structures. Therefore, if we
start with a optimal BN, transform it into a BKB KG, and
analyze every permutation of each S-node’s possible con-
figurations taking the permutation that maximizes the in-
stantiated weight, we will end up with a BKB K with the
same number of S-nodes that has a total weight equal to or
greater than the BN representation KG. This result allows
us to also state the following corollary based on the fact that
I(Xi; Π(Xi)) = H(Xi)−H(Xi|Π(Xi)).
Corollary 2. Since I(Xi;Pi(Xi)) = H(Xi) −
H(Xi|Π(Xi)) ≥ 0. We can maximize Equation 6 by min-
imizing the instantiated conditional entropy H(xiτ |πiτ ) =

p(xiτ , πiτ ) log2
p(xiτ ,πiτ )

p(πiτ )
.

BKB Structure Learning
Theorem 1 dictates that for every random variable instanti-
ation xiτ in a data instance (world) τ ∈ D ̸= where D ̸= is
the set of unique data instances in D, we should assign an
instantiated parent set πiτ such that the instantiated condi-
tional entropy is minimized according to Corollary 2. The
key insight of our structure learning approach is that we can
decompose our learning over the worlds represented in the
data. In each world, we will have at most a single instantia-
tion of each RV and our goal is to select a set of S-nodes with
a structure that minimizes instantiated conditional entropy for
that world. We can view each world in the data as a separate
complete inference which form an acyclic subgraph of their
respective encompassing BKB. A precise definition of a BKB
inference can be found in Appendix D.

Our structure learning algorithm reduces to finding a di-
rected acyclic inference graph for each world that minimizes∑

τ

∑
i H(xiτ |πiτ ) = p(xiτ , πiτ ) log2

p(xiτ ,πiτ )
p(πiτ )

. Further,
we can use any off-the-shelf DAG learning algorithm to ac-
complish this step so far as our scoring function inherently
minimizes instantiated conditional entropy and BKB encod-
ing length. There has been significant advancements in field
of BN and DAG learning and we make no attempt in covering
all such procedures. Instead we will focus on the state-of-
the-art exact BN (DAG) solver GOBNILP (Cussens 2012;
Cussens, Haws, and Studeny 2015).

Algorithm 1: BKB Structure Learning
Input: Dataset D, Source Reliabilities R, DAG learning algo-
rithm f and hyperparameters Θ

1: K ← ∅
2: for τ ∈ D ̸= do
3: Gτ ← f(τ,R,Θ)
4: K ← K ∪ {Gτ}
5: end for
6: return BKB-Fusion(K,R)

Upon learning each minimal entropy inference, we then
need a method for merging this knowledge together that is
semantically sound. A standard union type operation will
not generally be supported as the unioned BKB would likely
incur many mutex violations as seen in Appendix Figure 4a.
Instead, we can employ a well-studied BKB fusion (Santos,
Wilkinson, and Santos 2011; Yakaboski and Santos 2021)
algorithm that supports the fusion of an arbitrary number
of BKB Fragments (BKFs) by attaching source I-nodes to
every S-node corresponding to the data instance from which
the inference graph originated. A graphical example of this
approach is depicted in Appendix Figure 4b along with addi-
tional information regarding BKB fusion in Appendix D.3.
This procedure ensures that that no mutual exclusion viola-
tions are present in the fused BKB maintaining a consistent
probability distribution over the data and leading to model
generalization. Appendix D.3 provides a detailed explanation
of generalization in fused BKBs.

Aside from forming a mutual exclusive BKB, fusion also
presents us with another degree of freedom during learning.
If each data instance was generated by an i.i.d. process, it is
natural to assume a normalized probability over all source
nodes. However, many processes do not generate truly i.i.d
or representative samples. Therefore, if we view these source
S-nodes as reliabilities that can be tuned, we may be able to
correct errors in higher order inference calculations that arise
due to under-fitting or over-generalization. We leave such
analysis to future work. Combining each of the steps pre-
sented so far, we outline our general BKB structure learning
procedure in Algorithm 1.

Empirical Results
To demonstrate the utility of both our proposed algorithm
as well as our learned BKB models we conducted 40 ex-
periments on benchmark datasets comparing BKBSL and
BNSL in terms of MDL and complexity performance. We
then conducted 22 cross validation classification experiments
to compare accuracy performance with learned BNs as well
as a use-case studying the under-determined bioinformat-
ics domain of structural dependency analysis among single-
nucleotide polymorphism (SNPs) in breast cancer.

Benchmark Analysis
When comparing MDL between our learned BKBs and BNs,
we are only concerned with comparing the data encoding
length, as the model encoding length is only used to penalize
more complex models. Our data MDL results in Appendix
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Table 1 demonstrate that a BKB learned using our BKBSL
algorithm finds a tighter data fit than the best BN in all 40
dataset. Intuitively, this is because the BN must generalize
away from potentially good instantiated scores in favor of the
entire random variable score.

Our MDL experiments also demonstrates a practical
strength of BKBSL over BNSL related to the number of
calls to a joint probability calculator or estimator. In order
to calculate the necessary scores for an exact DAG learning
algorithm like GOBNILP, we needed to calculate empirical
joint probabilities from each dataset. For all experiments we
tracked the number of unique calls to this function by our
BKBSL algorithm and traditional BNSL algorithm. Since
BNSL operates at the RV level, it had to calculate all joint
probabilities governed by a given parent set configuration.
However, BKBSL did not need to calculate the full CPTs as
it operates at the RV instantiation level and decomposes over
each data instance, reducing the number of calls to this cal-
culator. We feel that this is a more representative complexity
performance metric as it is agnostic to equipment config-
urations. This effect is detailed in Appendix Table 1, and
we can see strong correlation between performance savings
over BNs and the number of features (Pearson r = −0.5994,
p-value = 4.363 × 10−5) as well as the number of I-nodes
(r = −0.4916, p-value = 0.0013) in the dataset. All learned
BKBs and BNs are hosted on Github and can be viewed
within in a Jupyter Notebook for easier visualization.

To finalize our BKBSL benchmark analysis we performed
accuracy comparisons between our learned BKBs and tra-
ditionally learned BNs using GOBNILP and standard MDL
scoring. We performed a 10-fold classification cross vali-
dation on a subset of only 22 datasets due to the increased
learning and reasoning time incurred by running cross vali-
dation analysis. We can see from Appendix Table 2 that our
BKBSL algorithm is very competitive with BNs in terms of
precision, recall and F1-score. Further, our BKBSL models
even beat BNs in 63% of cases in terms of precision with
greater degradation of performance in terms of recall and
F1-score. The alternative hypothesis that either traditionally
learned BNs or our learned BKBs will outperform each other
in all accuracy categories (Chi2 Statistic χ = 1.0, p-value
= 0.3173) is not statistically significant. Therefore, we fail
to reject the null that learned BNs or BKBs perform better in
these cases owing to approximately equal total performance.

This raises the question: Why does our learned BKB per-
form better in some datasets and not in others? While no
feature of the datasets provided any statistically significant
predictor of superior performance and leaving more in-depth
analysis to future work, we do hypothesize an explanation.
It is a well-known problem that real world datasets are of-
ten unfaithful to DAGs, e.g. BNs, due to the existence of
multiple information equivalent Markov Boundaries (MBs)
(Statnikov, Lemeir, and Aliferis 2013; Wang and Wang 2020).
Since our BKBSL focuses on learning an optimal structure
for every unique exemplar τ , we can view each learned BKF
as an equivalent inference from a hypothetical BN whose
dependency structure matches that of the associated BKF. As
we are only concerned with the specific instantiations of τ ,
the hypothetical BN and BKF will yield the same probabil-

ity for this world as their parameters are governed by the
same dataset. As our prediction task is to determine the most
likely state of a response variable Y given a complete set
of evidence E, e.g., y∗ = argmaxy Q(Y = y | E), then
the closer our joint probability Q(Y = y,E) is to the true
data distribution P (Y = y,E) the more accurate our classi-
fier. This is due to the fact when comparing all conditional
probabilities Q(Y = yi | E) = Q(Y=yi,E)

Q(E) the denominator
cancels out and we are only concerned with the accuracy of
Q(Y = yi, E). If we imagine our learned BKFs deriving
from various hypothetical BNs each with uniquely induced
MBs for every RV, our fused BKB essentially incorporates
a multiplicity of MBs choices for each of these hypothetical
BNs and selects the best performing choice for every world
of interest, i.e., prediction class given evidence. We hypothe-
size that our BKBSL will then perform better on datasets that
induce more information equivalent MBs since a BN must
select only one and our BKBSL can incorporate multiple
in its predictions. Whereas in datasets with fewer MBs, our
BKBSL performance may degrade due to overfitting. We in-
tend to study this area further as it may yield clear indications
about when to use BKBSL over BNSL in practice.

Gene Regulatory Network (GRN) Application in
Breast Cancer
We applied our approach to somatic mutation profiles of
breast cancer cases in TCGA (Tomczak, Czerwińska, and
Wiznerowicz 2015) to study whether our learned model could
still offer utility in this extremely under-determined domain.
Since prediction accuracy would not be a reliable metric of
success in this dataset, we focused our analysis on hypothe-
sizing potentially significant mutational interactions in cancer.
However, if we are to trust any structural hypotheses gener-
ated by our approach, we need to ensure the model captures
two fundamental biological concepts: (1) We can extract two-
or three-hit interactions that are supported in the literature
(Knudson 1971, 2001; Segditsas et al. 2009), and (2) we can
identify and (possibly) handle genomic instability (Bai et al.
2014; Croessmann et al. 2017).

Given the well-regarded two- and three-hit hypotheses for
understanding the role of genetic mutations in cancer devel-
opment, a model attempting to describe a mutational GRN
should be able to capture this concept. The premise behind
the two- or three-hit hypotheses is that because many cancers
are driven by mutations in various tumor suppressor genes
and these loss-of-function mutations are recessive in nature,
in general, at least two mutations in these genes are needed
to develop cancer. There are certain tumor suppressors genes
such as TP53 (Kandoth et al. 2013; Muller and Vousden
2014) that are common in all cancer sub-types and are likely
the first hit for non-hereditary cancers. Looking at the depen-
dence relationship subgraph in our learned BKB between a
first hit tumor suppressor gene such as TP53 and a second
hit tumor suppressor gene related to breast cancer such as
a HER1 or HER2 (Osborne, Wilson, and Tripathy 2004),
we should observe a directed dependency relationship from
TP53 to HER1 or HER2. Figure 2a shows we observe this
relationship adding to the biological validity of our model.
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Figure 2: (a) RV level graph of learned BKB over TCGA breast cancer subgraphed on TP53 SNP relationships with HER genes.
(b) Genomic instability evidence from the RV level cycle between PIK3CA SNP and general TP53 gene variable. To capture
multiple levels of granularity, we included features related to exact positional SNPs as well as including gene level features and
general variant classifications. For details about our naming conventions and feature selection process see Appendix A.

It is well known that cancer is also driven by genomic
instability (Negrini, Gorgoulis, and Halazonetis 2010), the
increased tendency for gene mutations to accumulate, dis-
rupting various biological pathways and in turn causing more
mutations. An artifact that we discovered in our BKB net-
work analysis and illustrative of our first example is that in
some cases there exist cyclic relationships on the random
variable level. This is due to separate inferences learning
opposing dependency relationships due to the additional con-
text of their respective inference. This effect can be seen in
Figure 2b. Here we have a cyclic random variable relation-
ship between TP53 and the SNP located at chromosome 17
position 179234297 of the PIK3CA gene. TP53 and PIK3CA
are known drivers of genomic instability (Bai et al. 2014),
affecting the mutational states of many other genes in their
inference contexts. Since our inference level parent set limit
was set to one, our algorithm cannot reliably extract mu-
tual dependency relationship between TP53 and PIK3CA,
thereby causing different inferences to have different direc-
tionalities. This cannot be captured by a BN. Further, this
result is supported by in-vitro research regarding the joint
effect of PIK3CA and TP53 on genomic instability in breast
cancer (Croessmann et al. 2017) and is expected from this
model given that both genes drive many other downstream
mutations. Overall we found 12 of these cyclic relationships
in our learned BKB. Of these 12 associations we found liter-
ature support for four of them, namely, PIK3CA and TP53
(Croessmann et al. 2017), OBSCN and TP53 (Sjöblom et al.
2006; Perry et al. 2013), MAP3K1 and PIK3CA (Avivar-
Valderas et al. 2018), CAD and PIK3CA (Wu et al. 2014).

Limitations and Future Work
The primary limitation of our approach is that we need to
learn a BKB fragment for every instance in the training
dataset. While we have some complexity benefits from mak-
ing fewer calls to a given joint probability calculator, this ben-
efit could be neutralized due to the requirement of having to
run the DAG learning algorithm multiple times. For instance,
once all scores are calculated, BNSL only requires a single
run of the respective DAG learning algorithm, whereas our

BKBSL approach requires running this algorithm N times.
We leave to future work the exploration of this trade off while
hypothesizing that there may be a DAG learning formulation
in which all fragments can be learned in a single pass by
reusing/sharing local scores/structures between fragments.

While our BKBSL algorithm seems to generalize well
to unobserved examples in our benchmark experiments, we
still see instances with significant accuracy degradation. It is
a largely unanswered question as to why machine learning
algorithms perform better or worse on particular datasets
(Pham and Triantaphyllou 2008) and we have detailed a
possible Markov blacket explanation to be explored in future
work. Further, we could also address accuracy degradation
by tuning the source node reliabilities in our model. Such
an approach yields another degree of freedom to adjust the
model and also may highlight the importance/significance of
individual data instances in relation to over model accuracy.
We also leave this direction for future research.

Conclusions
We have presented a new approach for performing Bayesian
structure learning at the random variable instantiation level
by leveraging Bayesian Knowledge Bases. We have detailed
a theoretical justification for our algorithm and learned model
as being the fusion of minimal entropy inferences or explana-
tions over each training exemplar. We demonstrated empiri-
cally that our BKBSL algorithm finds a superior BKB than
an equivalent BN (scored as BKB) on 40 benchmark datasets
using our MDL formulation. Further, we demonstrated the
practical utility of our approach by presenting statistically
competitive accuracy with learned BNs over 22 benchmark
datasets using a 10-fold cross validation. This provides ev-
idence that our algorithm adequately generalizes to unseen
data based on known knowledge rather than over-generalizing
to force a complete distribution. Lastly, we conducted a struc-
tural analysis over a gene regulatory network learned from
breast cancer mutation data taken from TCGA. This analysis
resulted in finding dependency relationships that matched
biological intuition and also revealed associations that are
well known in the bioinformatics community.
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