
USDNL: Uncertainty-Based Single Dropout in Noisy Label Learning

Yuanzhuo Xu1, Xiaoguang Niu1,4*, Jie Yang1, Steve Drew2, Jiayu Zhou3, Ruizhi Chen4

1School of Computer Science, Wuhan University, China
2 Department of Electrical and Software Engineering, University of Calgary, Canada

3 Department of Computer Science and Engineering, Michigan State University, USA
4 LIESMARS, Wuhan University, China

xyzxyz, xgniu, csyangjie, Ruizhi.chen@whu.edu.cn, steve.drew@ucalgary.ca, jiayuz@msu.edu

Abstract

Deep Neural Networks (DNNs) possess powerful predic-
tion capability thanks to their over-parameterization design,
although the large model complexity makes it suffer from
noisy supervision. Recent approaches seek to eliminate im-
pacts from noisy labels by excluding data points with large
loss values and showing promising performance. However,
these approaches usually associate with significant compu-
tation overhead and lack of theoretical analysis. In this pa-
per, we adopt a perspective to connect label noise with epis-
temic uncertainty. We design a simple, efficient, and theoret-
ically provable robust algorithm named USDNL for DNNs
with uncertainty-based dropout. Specifically, we estimate the
epistemic uncertainty of the network prediction after early
training through single dropout. The epistemic uncertainty
is then combined with cross-entropy loss to select the clean
samples during training. Finally, we theoretically show the
equivalence of replacing selection loss with single cross-
entropy loss. Compared to existing small-loss selection meth-
ods, USDNL features its simplicity for practical scenarios
by only applying dropout to a standard network, while still
achieving high model accuracy. Extensive empirical results
on both synthetic and real-world datasets show that USDNL
outperforms other methods. Our code is available at https:
//github.com/kovelxyz/USDNL.

Introduction
Deep neural networks (DNNs) have shown impressive ca-
pability (Krizhevsky, Sutskever, and Hinton 2012; He et al.
2016) to capture complicated patterns between instances
and labels when trained with large-scale datasets. The sheer
amount of data collected from Web-based image crawl-
ing, crowdsourcing, and other possible sources in scale, in-
evitably brings label noise and severely impacts model per-
formance due to the memorization of noisy labels by DNNs
(Arpit et al. 2017; Yao et al. 2020).

General regularization methods (Zhang et al. 2021) fail in
noisy label learning due to the strong fitting ability of the
model. To alleviate such problems, existing works (Patrini
et al. 2017; Xia et al. 2019; Natarajan et al. 2013) focused
on correcting the loss by estimating the latent noisy tran-
sition matrix, with the requirement of prior knowledge or
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a subset of data to be correctly labeled for reaching high
accuracy. Prior art with theoretically supported algorithms
(Liu and Guo 2020; Cheng et al. 2020; Englesson and Az-
izpour 2021; Wu et al. 2021) guaranteed the robustness of
noisy labels by constructing a loss function or a regular-
ization scheme while still failing at high noise rates. An-
other large family of methods (Cheng et al. 2020; Zhou,
Wang, and Bilmes 2020; Nishi et al. 2021; Berthon et al.
2021; Qu, Mo, and Niu 2021) focused on distilling a sub-
set of clean samples from the training data by leveraging
the gradient flow or the statistical error of the network on
false positive samples. The state-of-the-art stream of meth-
ods (Han et al. 2018; Yu et al. 2019; Wei et al. 2020; Yao
et al. 2021b; Xia et al. 2022) generated two models from the
same sample to select a small subset of samples with small
losses as clean labels. While achieving promising perfor-
mance gains with noisy labels, the small-loss sample selec-
tion strategy still faces challenges. Performance-wise, train-
ing two models double the parameter quantity and compu-
tational overhead. In resource-constrained or time-sensitive
environments, the additional time and resource costs are un-
acceptable due to the resource and latency constraints. Ad-
ditionally, these selection strategies are often heuristic and
lack rigorous theoretical support.

To address the challenges introduced by the small-loss
sample selection strategy, in this paper, we adopt a perspec-
tive on label noise learning with epistemic uncertainty es-
timation. Inspired by this connection, we propose USDNL,
a simple yet effective algorithm based on a single network
with a single dropout (i.e., forward once with dropout) to
combat label noise. Specifically, we model the network pre-
diction confidence for noisy and clean samples after early-
stage training with epistemic uncertainty estimation. This
model is then implemented in DNNs via multiple Monte
Carlo dropout samplings. Further, we combine the epistemic
uncertainty estimation with prediction cross-entropy to se-
lect clean samples. Finally, we theoretically demonstrate the
count of dropout required for epistemic uncertainty estima-
tion and cross-entropy computation can be reduced to just
one in the clean samples selection task.

Our proposed noisy label learning framework USDNL is
easy to deploy with no change to existing network structures.
USDNL incurs substantially lower computational overhead
and latency, and outperforms other state-of-the-art methods
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after experiments on MNIST, CIFAR-10, CIFAR-100, and
Clothing1M datasets with various noise settings.

Related Literature
Noise transition matrix estimation. Earlier research fo-
cused on estimating the noise rate to construct the noise tran-
sition matrix (Patrini et al. 2017; Xia et al. 2019; Natarajan
et al. 2013; Zhang, Niu, and Sugiyama 2021). T-Revision
(Xia et al. 2019) learned the noise transition matrix utilizing
transition-revision. Further, the authors in (Zhu, Song, and
Liu 2021) proposed a method for estimating anchor points
using cluster representations. The transition matrices were
identified in (Li et al. 2021) when the clean class posteri-
ors were sufficiently dispersed. Zhang, Niu, and Sugiyama
(2021) proposed a method to estimate the transition matrix
with the total variation regularization. Nevertheless, these
noise rate estimation methods have constraints and usually
fail at high noise rates.

Deep learning methods. There have been numerous arti-
cles leveraging deep learning methods (Goldberger and Ben-
Reuven 2017; Yi and Wu 2019; Yao et al. 2021a; Zhang,
Lee, and Agarwal 2021; Xia et al. 2021) to deal with the
label noise. For composite multi-module networks, PEN-
CIL (Yi and Wu 2019) supervised network training by mod-
eling noisy labels and updating the noise distribution dur-
ing back-propagation. Yao et al. (2021a) introduced a struc-
tural causal model to instance-dependent label noise model-
ing through VAE to train robust classifiers. During the early
training of a network, the side effects of noisy labels could
be reduced by dividing the critical and non-critical parame-
ters (Xia et al. 2021). Li et al. (2022) proposed Sel-CL to
select confidence pairs from the noisy datasets for super-
vised contrastive learning. For network predictions, a sim-
ple method was presented (Zhang, Lee, and Agarwal 2021)
without any changes to the training but only performed class
probability estimation (CPE) on the noisy examples. More
lightweight, rectified loss functions were used in (Wu et al.
2021; Hendrycks et al. 2018; Liu and Guo 2020; Zhou et al.
2021; Liu et al. 2021) to robustify the classifiers with little
overhead.

Clean samples selection. Another class of methods for
label noise learning is to select clean samples for the clas-
sifier to learn. Previous work (Arpit et al. 2017) showed
that the networks preferentially fit clean samples, making
it possible for small-loss selection. Among these methods,
the most representative category is called co-training strat-
egy (Wei et al. 2020; Yao et al. 2021b; Han et al. 2018; Yu
et al. 2019). JoCoR (Wei et al. 2020) used two networks to
make predictions on the data in the same mini-batch. It ap-
plied co-regularization constraints and computed a joint loss
for each training example to filter out small loss samples.
CNLCU (Xia et al. 2022) adopted interval estimation com-
bined with loss uncertainty for sample selection. Other se-
lection methods did not employ dual network training. RCL
(Sun et al. 2020) exploited the divergence and agreement be-
tween multiple network learning to combat label noise. Kim
et al. (2021) focused on latent representation dynamics and
filtered instances by using eigendecomposition to measure

the distance between the latent distribution and each repre-
sentation. UniCon (Karim et al. 2022) introduced the unified
selection mechanism of Jensen-Shannon divergence to avoid
the class imbalance problem of selected clean sets. Com-
pared with these selection methods, USDNL, derived from
uncertainty estimation, uses a single network with a single
dropout sampling to select clean samples, which is simple in
practice and has little overhead.

Preliminaries
Problem setting Suppose (x, ỹ) is a sample pair
with label noise drawn from H̃, denoted by H̃ :=
{(x1, ỹ1) , · · · , (xn, ỹn)} ∈ (X × Ỹ ), where xn ∈ X de-
notes the target data space and ỹ ∈ Ỹ is the correspond-
ing noise label. Each noise example (xn, ỹn) ∈ H̃ has an
unobservable clean pair (xn, yn) ∈ H. This paper targets
to propose a progressive approach capable of distilling and
learning clean samples, resulting in a classifier robust to la-
bel noise.

Dropout regularization Dropout (Wager, Wang, and
Liang 2013) is a common regularization technique used in
deep learning to prevent overfitting and improve the gener-
alization ability of the model. We denote Pw(y|x) the net-
work with parameters w. With dropout, we sample variables
in Bernoulli distribution for every unit of the network with
the possible rate Φ (i.e., dropout rate) and obtain the sub-
model Pŵ(y|x). A unit is dropped once its corresponding
variable takes 0. Given a sample set {xi,yi}M1 , we apply L2

regularization in NN training, resulting in the minimization
objective with dropout as follows:

L̃ =
1

M

∑M

i=1
− logPŵi(yi|xi) + λ ∥ŵi∥22 (1)

A Perspective from Epistemic Uncertainty to
Noisy Label Learning

Uncertainty of Neural Network
The uncertainties of neural networks in deep learning
include aleatoric uncertainty and epistemic uncertainty
(Kendall and Gal 2017). For a fully trained model, given a
test sample outside the training set, the aleatoric uncertainty
is determined by the inherent noise of the observation. In
contrast, the epistemic uncertainty captures the ignorance of
the samples beyond the training distribution. For epistemic
uncertainty, we have the following property.

Property 1 The epistemic uncertainty demonstrates the
confidence of the network in a prediction. Given a sample
x and trained network f on learned distribution S, perform
the epistemic uncertainty estimation H(x) of x. Then H(x) is
lower (i.e., more confident) while x is highly correlated with
S and higher (i.e., less confident) on the contrary.

Property 1 reveals that the relevance between an input
sample and the learned distribution can be estimated from
the epistemic uncertainty of the network prediction, i.e.,
whether or not the features of inputs have been learned in
past training.
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Uncertainty in Noisy Label Learning

In noisy label learning tasks, aleatoric uncertainty is not our
main consideration because the network always traverses the
same training set. In early learning stages, the network pref-
erentially fits clean labels (Arpit et al. 2017). After the early
learning phase, we can divide the training set distribution S
into two subspaces: learned distributions Sc, and unlearned
distributions Sd. When the network traverses the training set
again, it will exhibit higher confidence on samples from the
learned distributions Sc, while lower confidence on those
from unlearned distributions Sd. Therefore, we can select
samples with higher confidence (i.e., more likely to be clean)
by estimating their epistemic uncertainty after early train-
ing stages based on Property 1. We demonstrate this process
through a toy example.

Intuition. Given a noisy dataset D = {(x, yc), (x,
yn), (xood, y)} and a network f , where (x, yc) denotes a
clean sample and (x, yn) represents its noisy version. De-
fine (xood, y) as a sample outside the clean distribution. In
the early training stage, f preferentially fits (x, yc). We im-
plement the epistemic uncertainty estimation of f on D. Ac-
cording to Property. 1, the uncertainty score of (x, yc) and
(x, yn) is low as the x is learned, and H(xood) is high as
xood is not learned in the early training. Thus, we can select
the (x, yc), (x, yn) by the epistemic uncertainty estimation.

Estimate Epistemic Uncertainty in DNNs

Uncertainty estimation generally needs to be carried out un-
der the framework of Bayesian networks. Fortunately, the
work by Kendall and Gal (2017) allows us to implement the
epistemic uncertainty estimation in DNNs training via mul-
tiple Monte Carlo (MC) dropout samplings.

Suppose there are T sampled masked model weights
ŵt ∈ qθ(w), where qθ(w) is the dropout distribution (i.e.,
Bernoulli distribution). The prediction uncertainty can be
approximated using Monte Carlo integration with the fol-
lowing conditional probability:

p(y = k | x,X,Y,T) ≈ 1

T

T∑
t=1

Softmax
(
Pŵt(y | x)

)
(2)

Further, the epistemic uncertainty can be summarized by
calculating the average entropy value of the probability vec-
tor p:

H(p) = −
K∑

k=1

pk log pk (3)

As shown in the toy example, the epistemic uncertainty
H(p) can help us weed out samples outside the clean distri-
bution (i.e., xood). However, the low epistemic uncertainty
(or high prediction confidence) does not indicate that the
sample (xi, ỹi) has a clean label because ỹi may not match
the prediction.

Single Dropout to Combat Label Noisy
Selection Loss with the Epistemic Uncertainty
Samples with lower epistemic uncertainty do not automat-
ically get a pass to have clean labels, as their observed la-
bels may not match the network predictions. We measure
the matching gap between a prediction and its observed label
by checking the cross-entropy loss. We subsequently mark a
sample as clean once it has both low epistemic uncertainty
and low matching loss, illustrated below:

Lsl = Lnll + αH(p), (4)
where Lnll = 1

n

∑n
i=1 − logPŵi (ỹ | x) is the negative

log-likelihood loss function between the observed labels ỹ
and network predictions. Additionally, α is the coefficient
weight to control H(p).

Single Dropout to Estimate Selection Loss
According to Equation (4), we need to perform multiple
dropout to evaluate epistemic uncertainty during the train-
ing process. However, multiple dropout are computationally
expensive and time-consuming with large datasets. In this
section, we first theoretically prove that we only need single
dropout while still maintaining its efficiency for both epis-
temic uncertainty estimation and cross-entropy computation
on a clean distribution. We also simplify the selection loss
as a single cross-entropy based on the positive correlation of
uncertainty and the cross-entropy in a task. Finally, we ana-
lyze the efficiency of single dropout on samples outside the
clean distribution. Then we give the progressive selection
strategy.

Single dropout on clean distribution We first reveal the
consistency of a dropout’s submodels on a clean distribution
(a.k.a learned distribution) in the early learning stages.
Lemma 1 For a closed dataset training, once the lin-
ear model well-fit the clean samples in training set, i.e.,
Et

(
logPŵt (yc | xc)

)
≤ ϵ , for the fixed learned clean sets

{xc, yc}, we have:

Et1,t2

(
∥Pŵt1 (yc | xc)− Pŵt2 (yc | xc) ∥

)
≤ c1ϵ, (5)

where c1 is the Lipschitz constant.
Lemma 1 indicates the existence of an upper bound on the
difference in prediction of the sub-models on the learned dis-
tribution (detailed proof in the appendix). This allows us to
measure the gap between finite dropout and multiple dropout
of epistemic uncertainty estimation.
Theorem 1 (Finite dropout on epistemic uncertainty)

Define a linear model Pw (y|x) and its sub-model
Pŵ (y|x) with w and Bernoulli sampling ŵ, respectively. We
denote H as the truncated entropy loss function of the sub-
model with ŵ. For the fixed learned clean sets {xc, yc}, we
have:

Ec

(∣∣∣∣H( 1

N

∑
N
i=1

(
Pŵi(yc | xc)

))
−H

(
E
(
Pŵ(yc |xc)

))∣∣∣∣)
≤ c2ϵ,

(6)
where N is a finite integer (at least 1) and c2 is the Lipschitz
constant.
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Theorem. 1 shows that we can represent the epistemic un-
certainty of a sub-model by observing a finite number of
sub-models (detailed proof in the appendix), This fact makes
it possible to evaluate the epistemic uncertainty through a fi-
nite number (at least one) of dropout.

The following theorem shows that under the same con-
straints of Lemma. 1, the gap of the empirical loss between
the average of finite sub-models and the expectation of sub-
models is also bounded (detailed proof in the appendix).

Theorem 2 (Finite dropout on empirical loss) Define a
linear model Pw (y|x) and its sub-model Pŵ (y|x) with
w and Bernoulli sampling ŵ, respectively. We denote
L (P (ỹ|x)) = − log (P (ỹ|x)) as the cross-entropy loss
function of the sub-model with dropout applied on w. For
the fixed learned clean sets xc, yc, we have

Ec

(∣∣∣∣ 1N∑N
i=1

(
L
(
Pŵi(ỹc | xc)

))
−E

(
L
(
Pŵ (ỹc | xc)

))∣∣∣∣)
≤ c3ϵ,

(7)
where N is a finite integer (at least 1) and c3 is the Lipschitz
constant satisfying the empirical loss function.

With Theorem 1 and 2, we can limit the count of dropout
samplings in Equation (4) to a finite number:

Lsl =
1

N

N∑
i=1

L
(
Pŵi (ỹ | x)

)
+ αH

(
1

N

N∑
i=1

(
Pŵi (y | x)

)) (8)

where N is a finite integer (at least 1). We set N = 1, and the
selection loss becomes the weighted sum of epistemic uncer-
tainty and empirical loss with a single dropout. We further
show the agreement between the empirical loss term and the
epistemic uncertainty estimation with single dropout in the
noisy label learning task (detailed proof in the appendix).

Proposition 1 In a selection task of clean samples (xc, ŷc),
for a well-trained linear model Pw (yc|xc), the empirical
loss L

(
Pŵ (ỹc | xc)

)
and the epistemic uncertainty H (p)

with single dropout sampling are positively correlated on
clean label samples in the learned distribution space.

The proposition is intuitively obvious because the em-
pirical loss and epistemic uncertainty exhibit consistency
for samples already learned. Therefore, we can replace the
whole selection loss with a single empirical loss and eventu-
ally get the final selection loss with a single dropout:

Lsl = L
(
Pŵ (ỹ | x)

)
(9)

Analysis of single dropout on samples outside the clean
distribution We have demonstrated the effectiveness of
single dropout on clean distributions, i.e., the noise corrupts
the label, but the instance is uncontaminated. Most of the ex-
isting works focused on clean distributions. However, there
is another class of datasets whose noisy samples are outside
the clean distribution (a.k.a OOD datasets), such as when

Algorithm 1: The training pipeline of USDNL

Input: Noisy training set D̃, Network f with w, learning rate
η, fixed τ , warm-up epoch Tk and total training epoch Tmax,
total iteration of each epoch Imax;

1: for t = 1, 2, · · · , Tmax do
2: Shuffle the training set D̃;
3: for n = 1, 2, · · · , Imax do
4: Fetch mini-batch D̃n from D̃ and a sub-model with

ŵ;
5: ŷ = f ŵ (x), ∀x ∈ D̂n;
6: Calculate the selection loss Lsl by Equation (9)

using ŷ and ỹ;
7: Obtain the small-loss set D̂n by Equation (10)

from D̃n;
8: Calculate the final loss L̂ on D̂n by Equation(11);
9: Update w = w − η∇L̂;

10: end for
11: Update R (t) = 1−min

{
t
Tk

τ, τ
}

12: end for
Output: w.

CIFAR-10 samples are added to MNIST dataset in the clas-
sification task. The possible situations lead us to analyze the
performance of single dropout on samples outside the clean
distribution.

The network still preferentially fits clean-label samples in
the early training stage. In the loss selection stage, for OOD
samples, the predictions of the sub-model have a certain de-
gree of randomness due to the dropout. This indicates the
sub-model may have low uncertainty with a single dropout.
However, based on Equation (9), the OOD sample must also
achieve small empirical before it is finally selected. Such
condition is difficult to achieve. Even in the worst case, i.e.,
the OOD sample is selected in this forward pass, it is not
overfitted by the model in a single backward.

In general, before an OOD sample is overfitted by the net-
work, it needs to be selected in consecutive forward-pass.
This is equivalent to performing multiple dropout while
showing low selection loss in every training iteration, which
is extremely unlikely. Therefore, the effectiveness of a single
dropout is also guaranteed on the OOD dataset. We conduct
experiments on OOD datasets to corroborate our analysis.

Progressive Clean Sample Selection
We employ a progressive decay learning schedule similar
to JoCoR (Wei et al. 2020) for small error sample selection
w.r.t. Equation (9). Applying a single dropout to the net-
work during training, we reserve more small error samples
for warm-up training and gradually reduce the number of
reserved samples to avoid the network fitting noisy samples:

D̂n = arg min
D′

n:|D′
n|≥R(t)|D|

Lsl (D
′
n) (10)

where D is the whole dataset, and R(t) is the selected
ratio decay schedule. After getting a small error sample set
D̂n, we compute its error and feed it into the network for
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Type Dataset Method Sym-20% Sym-50% Sym-80% Asym-20% Asym-45%

CCN

MNIST

Standard 82.66 ± 0.38 60.35 ± 0.40 26.33 ± 0.43 90.25 ± 0.18 75.76 ± 0.04
Co-teaching 97.86 ± 0.01 94.04 ± 0.10 86.84 ± 0.36 99.25 ± 0.05 85.68 ± 4.66

Co-teaching+ 97.86 ± 0.01 96.43 ± 0.06 71.81 ± 0.16 97.88 ± 0.03 82.41 ± 2.88
JoCoR 98.23 ± 0.04 96.54 ± 0.12 84.58 ± 4.34 98.29 ± 0.47 92.19 ± 1.14
CDR 98.95 ± 0.07 98.44 ± 0.03 84.44 ± 0.25 99.17 ± 0.02 94.39 ± 0.15

USDNL 99.20 ± 0.03 98.76 ± 0.03 96.61 ± 0.15 99.28 ± 0.03 98.99 ± 0.01

CIFAR-10

Standard 69.54 ± 0.14 42.53 ± 0.54 16.07 ± 0.32 78.87 ± 0.17 67.36 ± 0.21
Co-teaching 82.26 ± 0.10 73.18 ± 0.19 25.45 ± 2.20 86.63 ± 0.07 62.49 ± 2.61

Co-teaching+ 57.35 ± 0.83 48.77 ± 0.08 10.61 ± 0.47 57.91 ± 0.38 46.00 ± 0.41
JoCoR 85.69 ± 0.04 79.26 ± 0.45 28.09 ± 2.08 83.50 ± 0.10 70.02 ± 0.67
CDR 84.10 ± 0.12 71.62 ± 0.32 40.41 ± 0.32 88.01 ± 0.27 75.93 ± 0.26

CNLCU-H 90.21 ± 0.10 66.57 ± 0.08 27.29 ± 0.12 89.09 ± 0.12 79.10 ± 0.19
USDNL 91.91 ± 0.02 87.37 ± 0.12 44.63 ± 0.88 91.85 ± 0.10 82.90 ± 0.24

CIFAR-100

Standard 35.64 ± 0.12 17.53 ± 0.07 4.30 ± 0.17 39.54 ± 0.30 24.49 ± 0.35
Co-teaching 50.62 ± 0.14 37.26 ± 0.29 12.54 ± 0.39 48.80 ± 0.37 29.22 ± 0.25

Co-teaching+ 49.31 ± 0.27 39.95 ± 0.33 12.27 ± 1.43 48.83 ± 0.19 28.90 ± 0.28
JoCoR 53.36 ± 0.13 43.38 ± 0.14 12.96 ± 0.57 47.04 ± 0.20 28.29 ± 0.29
CDR 60.12 ± 0.14 47.17 ± 0.11 23.40 ± 0.11 61.01 ± 0.22 39.60 ± 0.18

CNLCU-H 64.05 ± 0.13 38.92 ± 0.07 8.11 ± 0.03 61.30 ± 0.20 33.92 ± 0.02
USDNL 70.69 ± 0.07 63.42 ± 0.33 27.44 ± 0.32 66.35 ± 0.32 41.24 ± 0.25

OOD CIFAR80N-O

Standard 42.57 ± 0.28 27.06 ± 0.04 9.27 ± 0.07 44.03 ± 0.17 29.81 ± 0.30
Co-teaching 58.97 ± 0.21 45.61 ± 0.48 12.98 ± 0.84 56.76 ± 0.06 37.01 ± 0.26

Co-teaching+ 60.67 ± 0.37 52.23 ± 0.07 3.70 ± 0.84 60.38 ± 0.22 46.58 ± 1.15
JoCoR 58.37 ± 0.31 51.56 ± 0.34 12.83 ± 0.45 55.17 ± 0.14 34.04 ± 0.28
CDR 59.78 ± 0.02 46.96 ± 0.17 22.32 ± 0.20 59.72 ± 0.06 39.14 ± 0.28

CNLCU-H 61.30 ± 0.12 34.10 ± 0.46 6.99 ± 0.47 57.50 ± 0.70 34.89 ± 0.42
USDNL 71.54 ± 0.35 63.98 ± 0.21 26.07 ± 0.36 69.51 ± 0.17 43.74 ± 0.50

Table 1: Average test accuracy (%) on CCN and OOD dataset over the last 10 epochs.

backpropagation w.r.t. Equation (1). USDNL is shown in Al-
gorithm 1.

L̂ =
1

|D̂n|

∑
x∈D̂n

Lsl(x) (11)

Experiment
In this section, we first describe the settings of the experi-
ment, then show and analyze the results compared to other
state-of-art methods. We finally perform the algorithm com-
plexity analysis and the ablation study of the single dropout.

Experiment Setup
Datasets We verify the effectiveness of USDNL on four
manually corrupted datasets, i.e., MNIST (LeCun 1998),
CIFAR-10, CIFAR-100 (Krizhevsky 2009) with artificial cor-
ruption, along with a real-world noisy dataset Clothing1M
(Xiao et al. 2015). The CIFAR-10 and CIFAR-100 datasets
are artificially corrupted into three categories: class condi-
tional noise (CCN), out-of-distribution (OOD) noise, and
instance-dependent noise (IDN). Specifically, we construct
symmetric and asymmetric noise of the CCN dataset, and
then introduce out-of-distribution samples to build an OOD
dataset. We corrupt the labels according to instance features
to construct an IDN dataset. No need to construct manu-
ally, Clothing1M has one million images with real-world

noisy labels and ten thousand images with clean labels. (The
dataset construction details can be found in the appendix)

Baseline and evaluation metrics We compare USDNL
with several state-of-the-art algorithms: Co-teaching (Han
et al. 2018), Co-teaching+ (Yu et al. 2019), JoCoR (Wei
et al. 2020), CDR (Xia et al. 2021), CNLCU-H (Huang et al.
2022) and Standard. We use the hyperparameters specified
in the code provided by the authors. When it comes to the
adjustment of the classifier network, we select the hyper-
parameters according to the requirements of the paper. For
metrics, follow (Wei et al. 2020; Han et al. 2018; Yu et al.
2019; Xia et al. 2019; Yao et al. 2021a,b), we evaluate US-
DNL and other state-of-art methods by comparing the test
accuracy on clean sets and the label precision under all noise
settings.

Network setting For a fair comparison, different schemes
use the same network structure on the same dataset. Specif-
ically, we use a LeNet for MNIST, a 9-CNN network for
CIFAR-10 and CIFAR-100, and non-pretrained Resnet-18
for Clothing1M. USDNL adds several dropout layers to the
standard network. Without complex parameter tuning on dif-
ferent datasets like other methods, we incorporate a unified
dropout rate of 0.25.
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Type Dataset Method 20% 30% 40% 50%

IDN

CIFAR10

Standard 71.39 ± 0.41 63.24 ± 0.10 53.98 ± 0.24 43.38 ± 0.54
Co-teaching 85.54 ± 0.04 82.45 ± 0.06 78.70 ± 0.19 64.48 ± 2.90

Co-teaching+ 61.50 ± 0.48 57.63 ± 0.49 52.26 ± 0.17 40.99 ± 5.60
JoCoR 87.46 ± 0.36 84.93 ± 0.55 78.26 ± 0.15 58.14 ± 6.22
CDR 77.24 ± 0.28 68.52 ± 0.50 57.81 ± 0.61 46.55 ± 0.62

CausalNL 81.47 ± 0.32 80.38 ± 0.37 77.53 ± 0.45 77.39 ± 1.24
CNLCU-H 87.79 ± 0.15 83.98 ± 0.03 71.98 ± 0.07 55.24 ± 1.15

USDNL 87.90 ± 0.38 85.23 ± 0.53 80.55 ± 0.65 68.10 ± 3.59

CIFAR100

Standard 39.25 ± 0.66 33.31 ± 0.39 27.89 ± 0.61 22.03 ± 0.05
Co-teaching 55.63 ± 0.11 51.34 ± 0.14 45.37 ± 0.66 36.21 ± 0.32

Co-teaching+ 54.30 ± 0.25 52.85 ± 0.08 49.66 ± 0.15 42.13 ± 0.62
JoCoR 58.57 ± 0.04 54.14 ± 0.94 47.98 ± 0.55 38.15 ± 0.26
CDR 54.34 ± 0.59 47.61 ± 0.41 40.21 ± 0.25 31.85 ± 0.25

CausalNL 41.47 ± 0.32 40.98 ± 0.362 34.02 ± 0.95 32.129 ± 2.23
CNLCU-H 58.03 ± 0.19 50.02 ± 0.18 40.75 ± 1.25 31.84 ± 0.24

USDNL 64.82 ± 0.32 61.35 ± 0.29 55.82 ± 0.56 46.00 ± 0.62

Table 2: Average test accuracy (%) on IDN-CIFAR10 and IND-CIFAR100 over the last 10 epochs.

Method Best Last
Standard 67.22 64.68

co-teaching 69.21 68.51
Decouping 68.48 67.32

JoCoR 70.30 69.70
JoSRC 71.78 70.69

Class2Simi 71.43 71.25
BLTM 71.32 70.89

CNLCU-H 71.08 70.27
USDNL 72.17 71.74

Table 3: Classification accuracy (%) on Clothing1M under
the structure of ResNet-18.

Comparison Results
Results on the CCN dataset Table 1 shows the test ac-
curacy compared with other state-of-art methods on CCN-
MNIST. We achieve the optimal results across all noise set-
tings, especially in the case of Sym-80%, where the test ac-
curacy of USDNL only drops by at most 2%.

Table 1 shows the experimental results on CIFAR-10 and
CIFAR-100 with different noise rates under two types of
noise settings. USDNL achieves the best results in all com-
petitions. It is more beneficial to test accuracy, especially in
medium and high noise conditions. Figure 1 illustrates the
details of test accuracy and label precision v.s. epochs (see
result of CIFAR-100 in the appendix). The high initial test
accuracy proves that the model preferentially fits clean la-
bels in early training stages. Subsequent declines indicate
that overfitting has occurred, but robust methods stopped or
alleviated this trend. USDNL achieves consistently higher
test accuracy with less training time, thanks to the more pre-
cise clean sample selection process compared to other meth-
ods, shown in Figure 1.

Results on the OOD dataset Table 1 shows the results
on CIFAR-80N-O. The detailed test accuracy and label pre-

cision can be found in the the appendix. USDNL achieves
the optimal performance except for pairflip-45% noise rate.
The small gap in the noise rate of 45% may be due to the
fact that a large proportion of two-class label flips affected
the convergence of the network’s early learning, as the ratio
of correct and incorrect labels is close. The experimental re-
sults verify USDNL’s excellent ability to resist OOD noise
samples, and further justify our previous analysis.

Results on the IDN dataset Tabel. 2 shows the exper-
imental results in the IDN version of CIFAR. Instance-
dependent label noise is more challenging to classify. Never-
theless, USDNL achieves excellent performance on almost
all settings against the IDN dataset, especially under com-
plex classes and high noise conditions. We noticed that the
accuracy of USDNL under the 50% noise rate of CIFAR10
has decreased, and the reason we analyze is that the abil-
ity of uncertainty estimation is reduced in extremely high
noise case of IDN. The results prove the great robustness
of USDNL under instance-dependent noise with no special
network design, as well as better capability to select clean
samples. The detailed test accuracy and label precision v.s.
epochs can be found in the appendix.

Results on the real-world noisy dataset Finally, we test
USDNL against other baselines on the real-world dataset
Clothing1M. We add additional state-of-the-art methods Jo-
SRC (Yao et al. 2021b), Class2Simi (Wu et al. 2021) and
BLTM (Yang et al. 2022) to the baseline. The results are
shown in Table 3. USDNL outperforms all other baselines
with the same classifier ResNet18, further demonstrating the
outstanding robustness of USDNL to real-world noise.

Single Dropout vs Multiple Dropout
In previous sections, we have theoretically proved that the
dropout operation can be constrained to once. To verify
the theory, we conduct experiments with different dropout
times. The network loss under multiple dropout follows
Equation (8). Figure 2 shows the experimental results on
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Figure 1: CCN results on CIFAR-10 dataset. Top: test accuracy(%) vs. epochs; bottom: label precision(%) vs. epochs.

Dropout Times 1 2 3 4 5

Figure 2: The results of dropout times on CIFAR-10.

Without dropout Ours

Figure 3: The ablation results w/o dropout on CIFAR-10.

CCN-CIFAR-10-Sym50%, with the number of dropout in-
creasing from 1 to 5. The results show that there is almost
no difference in the prediction accuracy between multiple
dropout and single dropout, which further validates our the-
ory.

Ablation Study and Complexity Analysis
To verify the effectiveness of the dropout, we conduct abla-
tion experiments on the CIFAR dataset. When the dropout is
removed, USDNL becomes the standard method with label
selection (Wei et al. 2020). Figure 3 shows the results of the

Standard Co-teaching Co-teaching+ JoCoR
29.1±0.7 49.4±2.2 44.6±3.5 54.7±2.0

CDR CausalNL CNLCU-H USDNL
38.7±1.3 112.4±6.2 66.1±1.2 32.3±0.1

Table 4: Training time comparison under 9-CNN network
(second/epoch).

ablation experiments on CCN-CIFAR-10-Sym50%. It is ob-
vious that the models without dropout quickly fit the noisy
labels and eventually affect the selection of clean samples.
The ablation results demonstrate that simply adding dropout
to the general single network will lead to excellent robust-
ness to label noise. To compare algorithm complexity, we
run each algorithm for 5 epochs on the RTX-2080Ti plat-
form and count the mean and standard deviation of a sin-
gle epoch run. Table 4 shows the result on IDN-CIFAR-
10-Sym50%, demonstrating a significantly lower computa-
tional overhead of USDNL.

Conclusion

This paper proposes a simple, effective, and general algo-
rithm named USDNL to combat label noise in DNNs. With
dropout applied on general networks, we demonstrate the-
oretically and experimentally the use of single dropout to
estimate uncertainties. We further select the clean samples
by single cross-entropy loss with the dropout. We conduct
experiments on various artificial datasets (i.e., CCN, IDN,
OOD) and real-world noisy datasets (i.e., Clothing1M). The
results demonstrate that USDNL achieves the best perfor-
mance in almost all settings over other state-of-the-art meth-
ods with less computational overhead. The ablation study on
CIFAR shows the effectiveness of the dropout in USDNL,
which again validates our theorem.
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