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Abstract

Vision-Language (VL) models with the TWO-TOWER archi-
tecture have dominated visual-language representation learn-
ing in recent years. Current VL models either use lightweight
uni-modal encoders and learn to extract, align and fuse both
modalities simultaneously in a deep cross-modal encoder, or
feed the last-layer uni-modal representations from the deep
pre-trained uni-modal encoders into the top cross-modal en-
coder. Both approaches potentially restrict vision-language
representation learning and limit model performance. In this
paper, we propose BRIDGETOWER, which introduces mul-
tiple bridge layers that build a connection between the top
layers of uni-modal encoders and each layer of the cross-
modal encoder. This enables effective bottom-up cross-modal
alignment and fusion between visual and textual represen-
tations of different semantic levels of pre-trained uni-modal
encoders in the cross-modal encoder. Pre-trained with only
4M images, BRIDGETOWER achieves state-of-the-art perfor-
mance on various downstream vision-language tasks. In par-
ticular, on the VQAv2 test-std set, BRIDGETOWER achieves
an accuracy of 78.73%, outperforming the previous state-of-
the-art model METER by 1.09% with the same pre-training
data and almost negligible additional parameters and com-
putational costs. Notably, when further scaling the model,
BRIDGETOWER achieves an accuracy of 81.15%, surpass-
ing models that are pre-trained on orders-of-magnitude larger
datasets. Code and checkpoints are available at https://github.
com/microsoft/BridgeTower.

1 Introduction
Vision-Language (VL) tasks aim to perceive, comprehend
and fuse both visual and textual information in our complex
multi-modal world and then produce cross-modal represen-
tations to address difficult cross-modal challenges, such as
visual question answering, visual entailment, and image-text
retrieval (Goyal et al. 2017; Xie et al. 2019; Young et al.
2014). Recently, by pre-training on large-scale image-text
pairs, cross-modal representations have been improved con-
siderably (Su et al. 2020; Lu et al. 2019; Chen et al. 2020;
Zhang et al. 2021; Radford et al. 2021; Wang et al. 2021c; Li
et al. 2021a; Dou et al. 2022; Wang et al. 2022b; Alayrac et al.
2022). Many elaborate Vision-Language Pre-training (VLP)
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objectives are proposed for mining cross-modal knowledge
from image-text pairs, such as Masked Language Modeling
(MLM) and Image-Text Matching (ITM).

Most existing VL models can be unified into the TWO-
TOWER architecture, which consists of a visual encoder, a
textual encoder, and a cross-modal encoder. The models dif-
fer in the design of the three encoders. Benefiting from the
rapid progress and prominent performance of Vision Trans-
former (ViT) (Dosovitskiy et al. 2021) on various vision
tasks, recent VL models can adopt ViT as a cross-modal or
visual encoder without using region features from heavy and
time-consuming pre-trained object detectors.

ViLT (Kim, Son, and Kim 2021) adopts linear projection
and word embedding as lightweight uni-modal encoders, and
uses ViT as the cross-modal encoder to extract, align and
fuse the features of both modalities simultaneously. While
parameter-efficient, it may be difficult for ViLT to learn intra-
and cross-modal interactions concurrently, and thus its per-
formance lags behind state-of-the-art performance on down-
stream VL tasks. METER (Dou et al. 2022) uses ViT and
RoBERTa (Liu et al. 2019b) as pre-trained uni-modal en-
coders and feeds the last-layer uni-modal representations
directly into the top cross-modal encoder. Although METER
achieves performance competitive with the previous region-
based state-of-the-art model VinVL (Zhang et al. 2021), it
ignores and wastes different levels of semantic knowledge
contained in different layers of pre-trained uni-modal en-
coders. Furthermore, the abstract representations from the
last layer of pre-trained uni-modal encoders could be chal-
lenging for the top cross-modal encoder to learn cross-modal
alignment and fusion (Lu et al. 2019; Tan and Bansal 2019).

It has been demonstrated that different layers encode dif-
ferent types of information in both vision (Zeiler and Fergus
2014; Dosovitskiy et al. 2021; Du et al. 2020; Raghu et al.
2021; Naseer et al. 2021) and language models (Peters et al.
2018b; Liu et al. 2019a; Jawahar, Sagot, and Seddah 2019).
Dosovitskiy et al. (2021) and Raghu et al. (2021) find that
lower layers of ViT attend both locally and globally, while
higher layers primarily incorporate global information. Jawa-
har, Sagot, and Seddah (2019) find that the intermediate
layers of BERT (Devlin et al. 2019) encode a rich hierarchy
of linguistic information, starting with surface features at the
bottom, syntactic features in the middle, and then semantic
features at the top. Therefore, it makes perfect sense to utilize
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Figure 1: (a) – (d) are four categories of current TWO-TOWER vision-language models; (e) gives a brief illustration of the
BRIDGETOWER architecture. VE, TE, and CE are short for the Visual Encoder, Textual Encoder, and Cross-modal Encoder,
respectively. The height of each rectangle represents its relative computational cost. VE = TE indicates that the visual encoder
and the textual encoder have the same or a similar number of parameters or computational costs. Illustration inspired by ViLT.

multi-layer uni-modal features to obtain effective improve-
ments in both vision (Lin et al. 2017; Huang et al. 2017; Yu
et al. 2018; Zheng et al. 2021; Xie et al. 2021) and language
tasks (Peters et al. 2018a; Wang et al. 2018; Shen et al. 2018;
Dou et al. 2018; Sun et al. 2019). The question, therefore,
naturally arises: can we build a bridge between different lay-
ers of pre-trained uni-modal encoders and the cross-modal
encoder to utilize multi-layer uni-modal features?

We propose BRIDGETOWER, a novel transformer-based
VL model that takes full advantage of the features of differ-
ent layers in pre-trained uni-modal encoders. By introducing
multiple bridge layers, the top layers of uni-modal encoders
can be connected with each layer of the cross-modal encoder.
This enables effective bottom-up cross-modal alignment and
fusion between visual and textual representations of differ-
ent semantic levels of pre-trained uni-modal encoders in the
cross-modal encoder. Moreover, in principle, the proposed
BRIDGETOWER architecture is applicable to any visual, tex-
tual or cross-modal encoder.

We conduct extensive experiments on different design
choices for BRIDGETOWER and fine-tune it on various down-
stream VL tasks. Experimental results show that with only
4M images for pre-training, our model achieves state-of-the-
art performance on various downstream VL tasks, especially
78.73% accuracy on the VQAv2 test-std set, outperforming
the previous state-of-the-art model METER by 1.09% with
the same pre-training data and almost negligible additional
parameters and computational costs. When further scaling
the model, BRIDGETOWER achieves 81.15% accuracy on
the VQAv2 test-std set, outperforming models that are pre-
trained on orders-of-magnitude larger datasets.

Our contributions are threefold:
• We introduce BRIDGETOWER, a novel transformer-based

VL model that achieves substantial improvements over
previous state-of-the-art model METER both with and
without pre-training.

• We propose using multiple bridge layers to connect the top
layers of uni-modal encoders with each layer of the cross-
modal encoder. Furthermore, we conduct extensive exper-
iments on different design choices for BRIDGETOWER.

• We demonstrate the effectiveness of BRIDGETOWER on
various VL downstream tasks, including visual question
answering (VQAv2), visual entailment (SNLI-VE), and
image-text retrieval (Flickr30K) tasks.

2 Related Work
2.1 TWO-TOWER Vision-Language Models
Following the taxonomy proposed by ViLT (Kim, Son, and
Kim 2021), most VL models can be unified into the TWO-
TOWER architecture shown in Figure 1(a) – (d). They feed
last-layer representations of pre-trained uni-modal encoders
into the top cross-modal encoder and can be differentiated by
the depth of the textual, visual, and cross-modal encoders1.

CLIP (Radford et al. 2021) and ALIGN (Jia et al. 2021) are
representative models that directly perform a shallow fusion
(e.g., dot product) of last-layer representations of equally ex-
pressive pre-trained uni-modal encoders in the cross-modal
encoder, as illustrated in Figure 1(a). The remaining mod-
els perform deep fusion in the multi-layer transformer-based
cross-modal encoder but choose pre-trained uni-modal en-
coders with varying levels of expressiveness. Numerous
works (Li et al. 2019; Su et al. 2020; Li et al. 2020a; Chen
et al. 2020; Li et al. 2020b; Zhou et al. 2020; Zhang et al.
2021; Cho et al. 2021; Huang et al. 2020, 2021; Shen et al.
2021; Liu et al. 2022; Li et al. 2021b; Xia et al. 2021; Ni
et al. 2021; Chen et al. 2022; Wang et al. 2022a; Alayrac et al.
2022) fall in the category of Figure 1(b) as they adopt vari-
ous types of deep vision models (e.g., Faster R-CNN (Ren
et al. 2015), ResNet (He et al. 2016) or ViT (Dosovitskiy
et al. 2021)) as their visual encoder to obtain region, grid, or
patch features, and concatenate them with word embedding
to feed into their top cross-modal encoder. The third category
of models (Kim, Son, and Kim 2021; Wang et al. 2021c,b,
2022b), illustrated in Figure 1(c), utilizes lightweight visual
and lightweight textual encoders and handles both modalities
in a single transformer-based cross-modal encoder. In con-
trast, models (Lu et al. 2019; Tan and Bansal 2019; Kamath

1A cross-modal decoder can be placed on top of the cross-modal
encoder, which is omitted since it is not the main study of this paper.
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et al. 2021; Li et al. 2021a; Zeng, Zhang, and Li 2021; Dou
et al. 2022; Wang et al. 2021a; Li et al. 2022b,c; Wang et al.
2022c; Yu et al. 2022; Li et al. 2022a), which belong to Fig-
ure 1(d) category, use expressive deep pre-trained uni-modal
encoders and feed their last-layer representation into the top
multi-layer cross-modal encoder.

Regardless of the visual, textual, or cross-modal encoders
they utilize, most current models ignore the various levels of
semantic information at the different layers of pre-trained uni-
modal encoders, and simply utilize the last-layer uni-modal
representations for cross-modal alignment and fusion. While
the models belonging to Figure 1(c) appear to retain the pos-
sibility of utilizing different levels of uni-modal semantic
information, it could be challenging for them to learn intra-
and cross-modal interactions concurrently without modality-
specific parameters. Their unconstrained cross-modal inter-
action could impede intra-modal interaction (Dou et al. 2022;
Du et al. 2022). This may be the reason why the performance
of ViLT lags behind models in the Figure 1(d) category, and
why SimVLM (Wang et al. 2021c) and OFA (Wang et al.
2022b) need to use significantly more data to obtain competi-
tive performance compared with METER.

Unlike current models, BRIDGETOWER, as shown in Fig-
ure 1(e), proposes using multiple bridge layers to connect
the top layers of uni-modal encoders with each layer of the
cross-modal encoder. This does not affect intra-modal inter-
action in the pre-trained uni-modal encoders, and enables
different semantic levels of visual and textual representations
to interact thoroughly and mildly in the bottom-up directions
at each layer of the cross-modal encoder.

2.2 Multi-Layer Feature Utilization
Multi-layer feature utilization has been demonstrated to be
an effective method of making full use of the information
contained in different layers of neural networks to improve
the representation and generalization capabilities of computer
vision (Ronneberger, Fischer, and Brox 2015; Liu et al. 2016;
Lin et al. 2017; Huang et al. 2017; Yu et al. 2018; Kirillov
et al. 2019; Zheng et al. 2021; Xie et al. 2021; Naseer et al.
2021), natural language processing (Peters et al. 2018a; Wang
et al. 2018; Shen et al. 2018; Dou et al. 2018; Jawahar, Sagot,
and Seddah 2019; Sun et al. 2019; Dou et al. 2019) and
multi-modal models (Dou et al. 2022; Nagrani et al. 2021).

Since Zeiler and Fergus (2014) introduce a visualization
technique and find that different patterns are learned in dif-
ferent layers of CNN models, then many researchers exploit
features of different layers to improve detection and semantic
segmentation. U-Net (Ronneberger, Fischer, and Brox 2015)
and FPN (Lin et al. 2017) propose to adopt lateral connec-
tions for associating feature maps from different layers across
resolutions and semantic levels. The same idea is also appli-
cable to ViT-based models. SETR (Zheng et al. 2021) and
SegFormer (Xie et al. 2021) aggregate features from different
layers to improve semantic segmentation performance. In nat-
ural language processing, researchers (Søgaard and Goldberg
2016; Hashimoto et al. 2017; Belinkov et al. 2017; Peters
et al. 2018b; Jawahar, Sagot, and Seddah 2019; Liu et al.
2019a) find that Recurrent Neural Networks (RNN) (Hochre-
iter and Schmidhuber 1997) and BERT (Devlin et al. 2019)

encode different types of semantic information in different
layers. Hence, Peters et al. (2018a) and Sun et al. (2019)
use the concatenation or weighted sum of representations
from different layers of RNN or BERT as input for different
task heads. Dou et al. (2018) explore layer aggregation with
multi-layer attention mechanisms.

Recent multi-modal models exploit features from different
layers. MBT (Nagrani et al. 2021) introduces simple bottle-
neck tokens at multiple layers to jointly model intra- and re-
stricted cross-modal correlations. While MBT achieves good
performance on audio-visual benchmarks, learning complex
vision-language alignment and fusion via a limited number
of bottleneck tokens instead of a cross-modal encoder maybe
too difficult, which limits cross-modal alignment. METER
feeds the weighted sum of representations from each layer
of the bottom uni-modal encoder into the top cross-modal
encoder; they find this can improve performance by a small
margin without VLP but can degrade performance with VLP.

In a departure from existing models, BRIDGETOWER con-
siders detailed interactions between the top layers of uni-
modal encoders and each layer of the cross-modal encoder.
It is intuitive to connect pre-trained uni-modal encoders and
the cross-modal encoder via multiple bridge layers, in order
to achieve comprehensive cross-modal alignment and fusion
of the uni-modal representations of different semantic levels.
Most importantly, unlike the simple multi-layer feature fu-
sion method in METER, BRIDGETOWER can significantly
improve performance both with and without vision-language
pre-training on large-scale image-text data.

3 Approach
As shown in Figure 2, BRIDGETOWER consists of a visual
encoder, a textual encoder and a cross-modal encoder with
multiple lightweight bridge layers. Our goal is to build a
bridge between each uni-modal encoder and the cross-modal
encoder to enable comprehensive and detailed interaction at
each layer of the cross-modal encoder. Our goal is not to
develop new encoders; in principle, one can apply any visual,
textual, or cross-modal encoder in the proposed architecture.

3.1 Visual Encoder
Recent works (Shen et al. 2021; Dou et al. 2022) show that
CLIP’s visual encoder has strong capabilities on VL tasks. We
follow METER to adopt CLIP-ViT-B/16 as the pre-trained
visual encoder. For each input 2D image I ∈ RH×W×C ,
where (H,W ) is the resolution of the input image and C
is the number of channels, ViT reshape it into a sequence
of flattened 2D patches P ∈ RN×(P 2C), where (P, P ) is
the image patch resolution and N = HW

P 2 is the number of
patches. Similar to BERT, ViT also prepends the [class]
token to the patch sequence and uses learnable 1D position
embeddings Vpos ∈ R(N+1)×Dv , where Dv is the dimension
of the visual encoder. The input visual representation can be
calculated as follows:

V0 = [E[class];p1Wp; . . . ;pNWp] +Vpos, (1)

where Wp ∈ R(P 2C)×Dv is the trainable linear projection
layer and V0 ∈ R(N+1)×Dv . Each layer of ViT consists of
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Figure 2: Illustration of BRIDGETOWER. BRIDGETOWER consists of a 12-layer textual encoder, a 12-layer visual encoder, and
a 6-layer cross-modal encoder. Each of the top 6 layers of the visual and textual encoders is connected to each layer of the
cross-modal encoder via bridge layers, which brings bottom-up alignment and fusion to the cross-modal encoder.

a multi-head self-attention (MSA) block and a feed-forward
network (FFN) block. We omit the computation details and
simplify them as EncoderV. The `-th layer representation
can be denoted as V` = EncoderV` (V`−1), ` = 1 . . . LV ,
where LV is the number of layers of the visual encoder.

3.2 Textual Encoder
Since RoBERTa achieves robust performance on a wide range
of NLP tasks, we adopt RoBERTaBASE as our textual encoder.
Each input sequence w is tokenized by the byte-level Byte-
Pair Encoding (BPE) (Sennrich, Haddow, and Birch 2016;
Radford et al. 2019). [<s>] token and [</s>] token are
added to the sequence as the start and end tokens, respectively.
The input textual representation can be represented as:

T0 = [E[<s>];Ew1
; . . . ;EwM

;E[</s>]] +Tpos, (2)

where T0 ∈ R(M+2)×Dt ,E is the word embedding matrix,
M is the number of tokens, Dt is the dimension of the tex-
tual encoder, and Tpos is the positional embedding matrix.
Similarly, we denote the `-th layer of the textual encoder as
EncoderT` , and the `-th layer representation can be denoted
as T` = EncoderT` (T`−1), ` = 1 . . . LT , where LT is the
number of layers of the textual encoder.

3.3 Cross-Modal Encoder with Bridge Layers
Hendricks et al. (2021) perform analysis on different types of
attention mechanisms used in the existing transformer-based
cross-modal encoders and demonstrate that the co-attention
mechanism (Lu et al. 2019) performs best. This mechanism
uses a different set of parameters for each modality. For
example, for the visual part of the cross-modal encoder, the
queries of each MSA block are from the visual modality.

However, the keys and values are from the other modality (i.e.,
the textual modality). We, therefore, adopt the co-attention
mechanism. Formally, we define the `-th layer of the cross-
modal encoder as EncoderZ` , which consists of a visual part
and a textual part. Each part consists of an MSA block, a
multi-head cross-attention (MCA) block, and an FFN block.
For brevity, the interactions at each layer are defined as:

Z̃V
` = ZV

`−1, (3)

Z̃T
` = ZT

`−1, (4)

ZV
` ,Z

T
` = EncoderZ` (Z̃

V
` , Z̃

T
` ), ` = 1 . . . LZ , (5)

where Z
{V,T}
` is the output representation of the visual or

textual part at the `-th layer, Z̃{V,T}
` is the input of each part,

and LZ is the number of layers of the cross-modal encoder.
Generally, current VL models, such as METER, directly

use the output representation of the previous layer as the input
to EncoderZ` (Equation 3 & 4). ZV

0 ,Z
T
0 are initialized with

the last-layer representations from pre-trained uni-modal en-
coders: ZV

0 = VLV
WV +Vtype,ZT

0 = TLT
WT +Ttype,

where WV ∈ RDV ×DZ and WT ∈ RDT×DZ are linear pro-
jections, Vtype and Ttype are the modality type embeddings.

However, in this paper, we propose using multiple bridge
layers to connect the top layers of uni-modal encoders with
each layer of the cross-modal encoder:

Z̃V
` = BridgeLayerV` (Z

V
`−1,VkWV +Vtype), (6)

Z̃T
` = BridgeLayerT` (Z

T
`−1,TkWT +Ttype), (7)

where k denotes the index of layer representations of uni-
modal encoders. In this paper, LV = LT = 12, LZ = 6 and
we use the representations of the top 6 layers of uni-modal
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encoders, which means that k = 7, . . . , 12. Take the input of
EncoderZ2 as an example:

Z̃V
2 = BridgeLayerV2 (Z

V
1 ,V8WV +Vtype), (8)

Z̃T
2 = BridgeLayerT2 (Z

T
1 ,T8WT +Ttype). (9)

Utilizing our proposed bridge layers, top-layer uni-modal
representations can be bridged with each layer of the cross-
modal encoder, thus incorporating different semantic levels
of uni-modal representations into cross-modal interaction. In
the spirit of ResNet and Transformer (Vaswani et al. 2017),
the simplest formal definition of a bridge layer is:

BridgeLayer(x, y) = LayerNorm(x+ y). (10)

In Sec. 4.2, we describe the extensive experiments we
conducted on different design choices for BRIDGETOWER,
including the formal definition of bridge layers and the num-
ber of cross-modal layers.

3.4 Pre-training Objectives
We pre-train BRIDGETOWER with two commonly used
vision-language pre-training objectives: MLM and ITM.

Masked Language Modeling. MLM is a common objec-
tive for language and vision-language pre-training. Given
an image-text pair, following UNITER (Chen et al. 2020),
we use conditional masking for MLM, which means we ran-
domly mask 15% of tokens in the token sequence while keep-
ing the input image patch sequence untainted. The model is
trained to reconstruct the original tokens conditioned on in-
complete input token sequence and complete observed image
patch sequence. We adopt the same masking strategy and
MLM task head as RoBERTa. The last-layer representation
of the textual part of the cross-modal encoder is used as input
to the MLM task head.

Image-Text Matching. ITM aims to predict whether the
given image-text pair is positive (matched) or negative (mis-
matched). Matched and mismatched image-text pairs are fed
into our model with the same probability. We pass the final
representations of [class] and [<s>] token in the cross-
modal encoder to the non-linear layer activated by Tanh,
respectively. The concatenation of the outputs is fed into a lin-
ear classifier with cross-entropy loss for binary classification.

3.5 Fine-Tuning on Downstream Tasks
For visual question answering and visual entailment, we
use the same strategy as for ITM. For image-text retrieval,
following ALBEF (Li et al. 2021a), our model is jointly
optimized with image-text contrastive (ITC) loss and ITM
loss. Two linear projections are added on top of both uni-
modal encoders to obtain uni-modal representations of image-
text pairs, and then compute their contrastive similarity by
dot product. Then, instead of randomly sampling negatives
for the ITM task, for each image (text) in a mini-batch, we
use the contrastive similarity distribution from the ITC task to
sample one hard in-batch negative text (image). In inference,
we first compute the contrastive similarity for all images and
texts, and then take the top-k candidates and calculate their
ITM scores for ranking.

4 Experiment
4.1 Implementation Details
BRIDGETOWER consists of a pre-trained textual encoder,
RoBERTaBASE with 124M parameters, a pre-trained visual
encoder, CLIP-ViT-B-224/16 with 86M parameters, and a
random-initialized 6-layer cross-modal encoder with 113M
parameters. For each layer of the cross-modal encoder, the
hidden size is set to 768, the intermediate size of feed-forward
networks is set to 3, 072, and the number of heads is set to
12. The maximum length of the text sequence is set to 50.
The patch size is 16× 16. Center-crop is used to resize each
input image to the same resolution, and we also apply Ran-
dAugment (Cubuk et al. 2020) to the input images following
previous works (Li et al. 2021a; Dou et al. 2022). We use
the AdamW (Loshchilov and Hutter 2019) optimizer with
a base learning rate of 2e−5 and weight decay of 0.01. The
learning rate is warmed up for 10% of the total training steps
and then decayed linearly to zero for the rest of the training
steps. Following METER, the learning rate of the cross-modal
encoder is five times higher than that of uni-modal encoders.

We evaluate BRIDGETOWER by fine-tuning the entire
model on the visual question answering (VQAv2) (Goyal et al.
2017), visual entailment (SNLI-VE) (Xie et al. 2019), and
image-text retrieval (Flickr30K) (Young et al. 2014) tasks. We
use an image resolution of 384× 384 for these downstream
VL tasks, except for VQAv2, where we use 576× 576 for a
robust evaluation and fair comparison with METER. Standard
settings and splits are used for all datasets. For VQAv2, where
we follow the common practice (Goyal et al. 2017; Teney
et al. 2018): convert VQAv2 to a classification task with
3, 129 answer classes; train the model with training data and
validation data, and evaluate the model on the test-dev data.

4.2 Investigation and Analysis
In this section, we evaluate different design choices for
BRIDGETOWER on the VQAv2 and Flickr30K datasets.
Each model is initialized with CLIP-ViT-B-224/16 and
RoBERTaBASE pre-trained weights, and then directly fine-
tuned on the two downstream tasks without VLP. All experi-
mental settings are the same as METER for fair comparisons.
In our preliminary experiments, the uni-modal representa-
tions of the top layers perform much better than the middle
and bottom layers. Thus, we use the top 6 layer representa-
tions of the uni-modal encoders as the corresponding inputs
for each bridge layer in the bottom-up directions.

Design Choice I: Formal Definition of Bridge Layers Ta-
ble 1 shows, perhaps unexpectedly but not very surprisingly,
that row (a) provides the best results using the minimum num-
ber of parameters and achieves an accuracy of 75.18% on the
test-dev set of VQAv2 and RSUM of 533.84 on the test set
of Flickr30K. The additional parameters used for interpola-
tion cause slight performance degradation in rows (c)&(d).
Rows (e) – (h) try to incorporate generally used feature trans-
formation forms into the bridge layer, but the additional com-
putation and parameters instead lead to performance degra-
dation. Inspired by ResNet and ViTDet (Li et al. 2022d),
in row (i), we incorporate row (a) into row (e) as the resid-
ual connection. W∗ is initialized as zero so that row (i) is
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BridgeLayer(x, y) # Params Test-Dev RSUM
(a) x+ y 18.4K 75.18 533.8
(b) x� y 18.4K 73.41 530.4
(c) αx+ (1− α) y, α ∈ RDZ 26.0K 75.09 532.9
(d) αx+ (1− α) y, α = σ(W [x; y]) 11.8M 75.13 533.1
(e) W [x; y] 11.8M 74.55 532.2
(f) W2 (GeLU (W1[x; y])) 35.4M 74.26 530.2
(g) MCA(x, y) 23.6M 73.67 514.3
(h) FFN (MCA(x, y)) 70.8M 73.54 511.1
(i) x+ y +W∗ [x; y] 11.8M 75.10 533.1

Table 1: Performance and number of parameters for different
formal definitions of bridge layers. We omit the layer normal-
ization used in each form. x denotes the output cross-modal
representation of the previous layer and y denotes the corre-
sponding input uni-modal representation. RSUM indicates
the sum of recall metrics for image-text retrieval.

initially equivalent to row (a). Although the performance is
significantly higher than row (e) (74.55 → 75.10), there is
no significant gain compared with row (a). Hence, we choose
row (a) (Add&Norm) as the default bridge layer.

Design Choice II: Number of Cross-Modal Layers In
BRIDGETOWER, the cross-modal encoder is not located on
top of the uni-modal encoders, but between them. Each cross-
modal layer is connected to the corresponding layer of the uni-
modal encoder by a bridge layer. Therefore, based on the two
12-layer uni-modal encoders we used, the number of cross-
modal layers can be [1, 12]. Table 2 shows the performance
of BRIDGETOWER with different numbers of cross-modal
layers. It is illuminating to note that adding more cross-modal
layers does not constantly improve performance, possibly
because (i) more cross-modal layers are more difficult to train
and are more data-hungry; (ii) uni-modal representations
of top layers are beneficial to cross-modal alignment and
fusion, while uni-modal representations of bottom layers
may be less useful and even detrimental. We also evaluate
METER and find that while the only difference between the
two models is the bridge layers, BRIDGETOWER can achieve
consistent performance gains for different numbers of cross-
modal layers. It further illustrates that the bridge layers can
facilitate effective cross-modal alignment and fusion with
uni-modal representations of different semantic levels in the
cross-modal encoder.

Apply Different Visual and Textual Backbones We apply
different visual and textual backbones as pre-trained uni-
modal encoders and directly fine-tune on downstream tasks
to further investigate the impact brought by bridge layers.
As shown in Table 3, no matter what visual and textual
encoders we apply, the performances of BRIDGETOWER
are consistently and significantly better than that of METER.
This further demonstrates the effectiveness of our proposed
BRIDGETOWER architecture and bridge layers for vision-
language representation learning.

4.3 Comparison with Previous Arts
In this section, we describe how to pre-train BRIDGETOWER
with the best-performing setting (Sec. 4.2) and compare its

LZ # Params VQAv2 Test-Dev Flickr30K RSUM
METER Ours METER Ours

2 37.8M 72.84 74.12 (↑ 1.28) 526.0 527.1 (↑ 1.1)
3 56.8M 73.47 74.36 (↑ 0.89) 526.5 528.6 (↑ 2.1)
4 75.6M 73.71 75.00 (↑ 1.29) 527.9 529.7 (↑ 1.8)
5 94.6M 73.80 74.98 (↑ 1.18) 528.8 531.8 (↑ 3.0)
6 113.4M 74.04 75.18 (↑ 1.14) 530.7 533.8 (↑ 3.1)
8 151.2M 73.97 75.07 (↑ 1.10) 530.0 531.6 (↑ 1.6)

10 189.0M 73.45 75.06 (↑ 1.61) 529.6 531.7 (↑ 2.1)
12 226.8M 71.88 74.94 (↑ 3.06) 528.7 531.4 (↑ 2.7)

Table 2: Performance of METER and BRIDGETOWER with
different number of cross-modal layers. # Params denotes the
number of parameters of the cross-modal encoder.

Visual Textual VQAv2 Test-Dev Flickr30K RSUM
Backbone Backbone METER Ours METER Ours

DeiT B-224/16 RoBERTa 69.98 70.83 (↑ 0.85) 448.0 455.7 (↑ 7.7)
ViT B-224/16 RoBERTa 70.26 72.24 (↑ 1.98) 472.7 476.9 (↑ 4.2)
ViT B-384/16 RoBERTa 70.52 72.38 (↑ 1.86) 472.8 477.1 (↑ 4.3)

CLIP-VIT-B/32 RoBERTa 72.19 72.91 (↑ 0.72) 508.8 512.0 (↑ 3.2)
CLIP-VIT-B/16 BERT 74.09 74.89 (↑ 0.80) 522.1 526.5 (↑ 4.4)
CLIP-VIT-B/16 RoBERTa 74.04 75.18 (↑ 1.14) 530.7 533.8 (↑ 3.1)

Table 3: Performance of METER and BRIDGETOWER with
different visual and textual encoders. The image resolution
of all CLIP visual backbones is 224× 224.

fine-tuning performance with previous works.

Pre-training Setup. We use four public image-caption
datasets for pre-training: Conceptual Captions (CC) (Sharma
et al. 2018), SBU Captions (Ordonez, Kulkarni, and Berg
2011), MSCOCO Captions (Chen et al. 2015), and Visual
Genome (VG) (Krishna et al. 2017). The total number of
unique images in the combined data is 4M. We pre-train
BRIDGETOWER for 100k steps on 8 NVIDIA A100 GPUs
with a batch size of 4, 096. All the pre-training settings for
BRIDGETOWER are the same as for METER for a fair compar-
ison. The learning rate is set to 1e−5. No data augmentation
is used except for center-crop (Radford et al. 2021; Dou
et al. 2022). The image resolution in pre-training is set to
288× 288. Other hyperparameters remain unchanged based
on the experiments in Sec. 4.2.

Main Results. Table 4 and 5 show the performance of
BRIDGETOWER compared with previous works on down-
stream VL tasks. With only 4M images for pre-training,
BRIDGETOWERBASE achieves state-of-the-art performance,
in particular 78.73% accuracy on the VQAv2 test-std set,
outperforming the previous state-of-the-art model METER
by 1.09% with the same pre-training setting and almost
negligible additional parameters and computational costs.
Remarkably, BRIDGETOWERBASE not only outperforms all
base-size models that use the same or a larger number of
pre-trained images, but it even outperforms some large-size
models. A similar trend also occurs on the visual entailment
and image-text retrieval tasks. On the Flickr30K dataset,
BRIDGETOWERBASE achieves the best performance, surpass-
ing not only ALBEF with its specially designed pre-training
objective, but also ALIGN with 1.8B pre-train images.
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Model # Pre-train Visual Test-Dev Test-Standard
Images Backbone Overall Yes/No Number Other Overall

Base-Size Models
ViLTBASE (Kim, Son, and Kim 2021) 4M ViT-B-384/32 71.26 - - - -
UNITERBASE (Chen et al. 2020) ∗ 4M Faster R-CNN 72.70 - - - 72.91
VILLABASE (Gan et al. 2020) ∗ 4M Faster R-CNN 73.59 - - - 73.67
UNIMOBASE (Li et al. 2021b) 4M Faster R-CNN 73.79 - - - 74.02
ALBEFBASE (Li et al. 2021a) ∗ 4M DeiT-B-224/16 74.54 - - - 74.70
ALBEFBASE (Li et al. 2021a) ∗ 14M DeiT-B-224/16 75.84 - - - 76.04
VinVLBASE (Zhang et al. 2021) 5.7M ResNeXt-152 75.95 - - - 76.12
VLMOBASE (Wang et al. 2021a) 4M BEiT-B-224/16 76.64 - - - 76.89
BLIPBASE (Li et al. 2022b) ∗ 14M DeiT-B-224/16 77.54 - - - 77.62
METERBASE (Dou et al. 2022) 4M CLIP-ViT-B-224/16 77.68 92.49 58.07 69.20 77.64
mPLUG (Li et al. 2022a) ∗ 4M CLIP-ViT-B-224/16 77.94 - - - 77.96
OFABASE (Wang et al. 2022b) ∗ ? 54M ResNet-101 77.98 - - - 78.07
SimVLMBASE (Wang et al. 2021c) ? 1.8B ResNet-101 77.87 - - - 78.14
BLIPBASE (Li et al. 2022b) ∗ 129M DeiT-B-224/16 78.24 - - - 78.17
BRIDGETOWERBASE (Ours) 4M CLIP-ViT-B-224/16 78.66 92.92 60.69 70.51 78.73
BRIDGETOWERBASE (Ours) ∗ 4M CLIP-ViT-B-224/16 79.10 93.06 62.19 70.69 79.04
Large-Size Models
UNITERLARGE (Chen et al. 2020) ∗ 4M Faster R-CNN 73.82 - - - 74.02
VILLALARGE (Gan et al. 2020) ∗ 4M Faster R-CNN 74.69 - - - 74.87
UNIMOLARGE (Li et al. 2021b) 4M Faster R-CNN 75.06 - - - 75.27
VinVLLARGE (Zhang et al. 2021) 5.7M ResNeXt-152 76.52 92.04 61.50 66.68 76.63
SimVLMLARGE (Wang et al. 2021c) 1.8B ResNet-152 79.32 - - - 79.56
VLMOLARGE (Wang et al. 2021a) 4M BEiT-L-224/16 79.94 - - - 79.98
OFALARGE (Wang et al. 2022b) ∗ ? 54M ResNet-152 80.43 93.32 67.31 72.71 80.67
BRIDGETOWERLARGE (Ours) 4M CLIP-ViT-L-224/14 81.25 94.69 64.58 73.16 81.15
BRIDGETOWERLARGE (Ours) ∗ 4M CLIP-ViT-L-224/14 81.52 94.80 66.01 73.45 81.49
Huge or even Larger Size Models
SimVLMHUGE (Wang et al. 2021c) 1.8B Larger ResNet-152 80.03 93.29 66.54 72.23 80.34
METERHUGE (Dou et al. 2022) 14M Florence-CoSwin-H 80.33 94.25 64.37 72.30 80.54
mPLUG (Li et al. 2022a) ∗ 14M CLIP-ViT-L-224/14 81.27 - - - 81.26
GIT2 (Wang et al. 2022a) ∗ 10.5B DaViT(4.8B) 81.74 92.90 67.06 75.77 81.92
OFAHUGE (Wang et al. 2022b) ∗ ? 54M ResNet-152 82.0 94.66 71.44 73.35 81.98
Flamingo (Alayrac et al. 2022) ? 2.3B NFNet-F6 82.0 - - - 82.1
CoCa (Yu et al. 2022) ? 4.8B ViT-G-288/18 82.3 94.55 70.25 74.46 82.33
BEiT-3 (Wang et al. 2022c) 28M BEiT-3 84.19 96.43 73.63 75.92 84.18
PaLI (Chen et al. 2022) 1.6B ViT-E-224 84.3 96.13 69.07 77.58 84.34

Table 4: Comparisons with previous models on visual question answering (VQAv2). The best score is bolded. The models are
divided into base size and large/huge size. B, N and M in ViT-B-N/M denote the model size, image resolution and patch size, re-
spectively. ∗ indicates that the model also uses VG-QA data to fine-tune on VQAv2. ? denotes the model is trained from scratch. “#
Pre-train Images” denotes the number of images in VLP (the images for pre-trained visual and textual backbones are not counted).

Model # Pre-train SNLI-VE Flickr30K (1K test set)
Images dev test IR@1 IR@5 IR@10 TR@1 TR@5 TR@10 RSUM

Pre-trained on More Data
ALIGNBASE (Jia et al. 2021) 1.8B - - 84.9 97.4 98.6 95.3 99.8 100.0 576.0
ALBEFBASE (Li et al. 2021a) 14M 80.80 80.91 85.6 97.5 98.9 95.9 99.8 100.0 577.7
Pre-trained on CC, SBU, MSCOCO and VG datasets

ViLTBASE (Kim, Son, and Kim 2021) 4M - - 64.4 88.7 93.8 83.5 96.7 98.6 525.7
UNITERLARGE (Chen et al. 2020) 4M 79.30 79.38 75.6 94.1 96.8 87.3 98.0 99.2 550.9
VILLALARGE (Gan et al. 2020) 4M 80.18 80.02 76.3 94.2 96.8 87.9 97.5 98.8 551.5
UNIMOLARGE (Li et al. 2021b) 4M 81.11 80.63 78.0 94.2 97.1 89.4 98.9 99.8 557.5
ALBEFBASE (Li et al. 2021a) 4M 80.14 80.30 82.8 96.7 98.4 94.3 99.4 99.8 571.4
METER-CLIP-ViTBASE (Dou et al. 2022) 4M 80.86 81.19 82.2 96.3 98.4 94.3 99.6 99.9 570.7
BRIDGETOWERBASE (Ours) 4M 81.11 81.19 85.8 97.6 98.9 94.7 99.6 100.0 576.6

Table 5: Comparisons with previous models on visual entailment (SNLI-VE), image retrieval (IR) and text retrieval (TR) tasks
(Flickr30K). The best score is bolded.
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Scaling the Model. To investigate the effect of the scale
of the model structure on performance, we replace our uni-
modal encoders with the corresponding large version, i.e.,
RoBERTaLARGE with 355M parameters and CLIP-ViT-L/14
with 304M parameters. For each layer of the cross-modal
encoder, the hidden size is set to 1, 024, the intermediate size
of feed-forward networks is set to 4, 096, and the number of
heads is set to 16. The number of cross-modal encoder layers
remains 6 so the number of parameters grows to 200M. The
patch size is 14 × 14, then we set the image resolution to
294 × 294 in pre-training and to 574 × 574 in fine-tuning
on the VQAv2. Other hyperparameters remain unchanged.
As shown in Table 4, BRIDGETOWER outperforms previ-
ous models trained with 10 times or even 1, 000 times more
images, not only in the base size but also in the large size. No-
tably, BRIDGETOWERLARGE achieves 81.15% accuracy on
the VQAv2 test-std set, surpassing the previous state-of-the-
art OFALARGE model by 0.48%. This further demonstrates
the effectiveness and scalability of BRIDGETOWER. In addi-
tion, question-answer pairs from VG dataset are often used
to extend the VQAv2 training data, thus further improving
performance (Teney et al. 2018; Yu et al. 2019). Our perfor-
mance of base and large size can be improved to 79.04% and
81.49% on the VQAv2 test-std set, respectively.

4.4 Visualization
Attention mechanism (Bahdanau, Cho, and Bengio 2015) is a
critical and naturally interpretable component of transformer-
based models. It is intuitive to analyze attention weights since
it measures how much attention each token pays to the other
tokens. Inspired by Xie et al. (2022), we compare the pre-
trained METER and BRIDGETOWER models by analyzing the
Kullback-Leibler (KL) divergence between attention weight
distributions of different attention heads in each layer 2. KL
divergence can be seen as the diversity of attention heads.
Higher/lower KL divergence means that different attention
heads pay attention to different/similar tokens.

As shown in Figure 3, by comparing the KL divergence
of the two models in each row, there are two distinct trends:
(i) the diversity of attention heads becomes progressively
smaller as the layer goes deeper for BRIDGETOWER, but for
METER, the diversity of attention heads becomes progres-
sively larger and then smaller as the layer goes deeper; (ii) the
diversity of attention heads of each layer of BRIDGETOWER
is significantly larger than that of METER, especially for the
1st to the 5th layer. Thus, for different attention heads of self-
/cross-attention of the visual/textual part of the cross-modal
encoder, compared with METER, BRIDGETOWER can aggre-
gate more different tokens. We attribute this to our proposed
bridge layer, which connects the top layers of uni-modal
encoders with each cross-modal layer. Different semantic
levels of visual and textual representations are introduced
by bridge layers, facilitating more effective and informative
cross-modal alignment and fusion at each cross-modal layer3.

2We also follow Xie et al. (2022) to analyze the averaged atten-
tion distance and entropy of attention weight distribution between
the pre-trained two models, but no significant trends are found.

3Please check https://arxiv.org/abs/2206.08657 for more.

(a) METER, visual self-attention (b) BRIDGETOWER, visual self-attention

(c) METER, textual self-attention (d) BRIDGETOWER, textual self-attention

(e) METER, visual cross-attention (f) BRIDGETOWER, visual cross-attention

(g) METER, textual cross-attention (h) BRIDGETOWER, textual cross-attention

Figure 3: The KL divergence between attention distributions
of different heads (small dots) and the averaged KL diver-
gence (large dots) in each layer w.r.t. the layer number on
the self-/cross-attention of the visual/textual part of the cross-
modal encoder in the METER and BRIDGETOWER models.

5 Conclusion and Future Work
We present BRIDGETOWER, a simple yet effective vision-
language model that introduces multiple bridge layers to build
a connection between the top layers of uni-modal encoders
and each layer of the cross-modal encoder. This facilitates ef-
fective bottom-up cross-modal alignment and fusion between
visual and textual representations of different semantic levels
of the pre-trained uni-modal encoders in the cross-modal
encoder. We experimentally prove the effectiveness of the
proposed bridge layers and BRIDGETOWER, which achieves
remarkable performance in all downstream VL tasks with
almost negligible additional parameters and computational
costs. We hope that our work will draw more attention to the
rich semantic knowledge latent in the different layers of uni-
modal encoders. Incorporating such semantic knowledge into
cross-modal alignment and fusion can yield more expressive
and powerful vision-language representations. Furthermore,
experiments with different visual and textual backbones as
pre-trained uni-modal encoders demonstrate that the perfor-
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mances of our proposed BRIDGETOWER architecture are
consistently and significantly better than that of METER.

In the future, we plan to improve BRIDGETOWER in the
following aspects:

Different Pre-training Objectives. We followed METER
to directly adopt the masked language modeling (MLM) and
image-text matching (ITM) as pre-training objectives for a
fair comparison. More pre-training objectives, such as image-
text contrastive learning (ITC) and masked image modeling
(MIM), could be incorporated to investigate their impact on
BRIDGETOWER and further improve the performance.

Larger Scale Pre-training. We have pre-trained our model
with 4M images both on the BASE and LARGE sizes. In
both versions, BRIDGETOWER achieves lower accuracy on
the “Number” type questions of VQAv2 than other models
pre-trained with more data. We expect to investigate and
further improve the performance of BRIDGETOWER after
pre-training on larger-scale image-text data.

Generative Task. In this paper, we focus on discriminative
tasks. It would be interesting to investigate the impact of
the proposed bridge layer on the performance of a visual
language generation task, such as image captioning.
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