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Abstract

Multi-label text classification (MLTC) involves tagging a
document with its most relevant subset of labels from a label
set. In real applications, labels usually follow a long-tailed
distribution, where most labels (called as tail-label) only con-
tain a small number of documents and limit the performance
of MLTC. To facilitate this low-resource problem, researchers
introduced a simple but effective strategy, data augmenta-
tion (DA). However, most existing DA approaches struggle in
multi-label settings. The main reason is that the augmented
documents for one label may inevitably influence the other
co-occurring labels and further exaggerate the long-tailed
problem. To mitigate this issue, we propose a new pair-level
augmentation framework for MLTC, called Label-Specific
Feature Augmentation (LSFA), which merely augments posi-
tive feature-label pairs for the tail-labels. LSFA contains two
main parts. The first is for label-specific document represen-
tation learning in the high-level latent space, the second is
for augmenting tail-label features in latent space by trans-
ferring the documents second-order statistics (intra-class se-
mantic variations) from head-labels to tail-labels. At last, we
design a new loss function for adjusting classifiers based on
augmented datasets. The whole learning procedure can be ef-
fectively trained. Comprehensive experiments on benchmark
datasets have shown that the proposed LSFA outperforms the
state-of-the-art counterparts.

Introduction
Multi-label text classification (MLTC) is a task of finding
the most relevant labels for each text from a label set. It has
a wide range of applications, such as topic recognition (Ru-
bin et al. 2012), tag recommendation (Zhang et al. 2019),
sentiment analysis (Yilmaz et al. 2021), profile identification
(Gérardin et al. 2022) and so on.

Even though various techniques have been proposed for
MLTC, it is still a challenging task due to the “long-tailed”
label distribution (Wu et al. 2020; Guo and Wang 2021;
Xiao et al. 2021). Figure 1 (a) illustrates the long-tailed la-
bel distribution in the EUR-Lex dataset (Loza Mencı́a and
Fürnkranz 2008). Only 3% of the labels have more than 100
training instances (i.e., head-labels), while the remaining
97% are long-tail labels with much fewer training instances.
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(a) Label distribution (b) Classification performance

Figure 1: (a) EUR-Lex shows a long-tailed distribution of la-
bels (denoted as Original). Only 3% of the labels have more
than 100 training instances. Sample-level denotes the distri-
bution after augmenting 10 times for tail-labels in sample-
level, and Pair-level denotes the distribution after augment-
ing 10 times for tail-labels in pair-level. (b) The classifica-
tion performance of HTTN and LSFA (ours) on the EUR-
Lex dataset. The bars show the macro-averaged P@5 scores
of each algorithm over the label bins (with 400 labels per
bin).

In this situation, training classification models for the tail-
labels is much more difficult than that for head-labels, which
suffers severely from the lack of sufficient training instances.
Figure 1 (b) shows the performance of HTTN (Xiao et al.
2021), one of the state-of-the-art (SOTA) MLTC models on
the EUR-Lex dataset. The vertical axis is the text classifica-
tion performance measured in macro-averaged P@5 (higher
the better) for binned labels (400 labels per bin). The green
bars have the scores below to 0.2 for more than half of the
total labels. In other words, even SOTA methods in MLTC
perform poorly on the tail-labels.

One immediate approach to address the problem is data
augmentation (DA) which can compensate the scarce data
for tail-labels (Wang et al. 2019; Chu et al. 2020; Zhang et al.
2020, 2022a). Meanwhile, DA has shown its effectiveness
in many low-resource data scenarios, such as low-resource
NLP (Wei and Zou 2019; Wang et al. 2022; Wu et al. 2022),
and zero/few-shot learning (Schwartz et al. 2018; Keshari,
Singh, and Vatsa 2020; Xu and Le 2022).
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Figure 2: Illustration of cross-entropy (left) and prototypical
supervised contrastive (right) loss based feature learning for
MLTC. Cross-entropy loss learns skewed and loose features,
which can result in biased classifier and augmentation. After
adding PSC loss, each feature is pushed away from other
prototypes and drawn toward the prototype of its own label.

However, because of the label co-occurrence, existing ap-
proaches of DA struggle in the multi-label scenario (Wu
et al. 2020; Zhang et al. 2022a). A document usually con-
tains several labels, making the selection for tail-labels no
longer independent. For example, a document that con-
tains tail-labels, e.g., “Neptune” and “Pluto”, is likely to be
also associated with the head-labels, e.g., “astronomy ” and
“physics”. As shown in Figure 1 (a), the long-tailed problem
is not necessarily eliminated and may even be exaggerated
by directly augmenting in sample-level.

Instead of traditional sample-level augmentation, we pro-
pose a new pair-level augmentation framework for MLTC,
called Label-Specific Feature Augmentation (LSFA), which
merely augments positive feature-label pairs for the tail-
labels by introducing 1) decoupled representation learning
and 2) head-to-tail feature augmentation.

During decoupled representation learning, we present a
label-specific feature learning module for decoupling repre-
sentation of each label. Furthermore, we explore a prototypi-
cal supervised contrastive (PSC) (Wang et al. 2021) learning
strategy to learn better decoupled representations in order to
boost classification and augmentation. Intuitively, as shown
in Figure 2, the features learned by cross-entropy loss are
skewed and loose, which can result in biased classifier and
misguided augmentation. After adding PSC loss, each fea-
ture is pushed away from other prototypes and drawn toward
the prototype of its own label.

In head-to-tail feature augmentation, augmented features
of tail-labels are generated by a prototype-based variational
autoencoder (PVAE) model (Kingma and Welling 2013; Xu
and Le 2022). The PVAE learns to associate a distribution of
features to a conditioned prototype, i.e., intra-class semantic
variations (Wang et al. 2019). It is assumed that such asso-
ciation generalizes across the head and tail labels (Chu et al.
2020; Xiao et al. 2021). Therefore, the PVAE trained with
ample data from the head-labels can generate tail-label fea-
tures that align with the real unseen features.

We summarize our main contributions as follows:

• We propose a novel pair-level label-specific feature aug-
mentation (LSFA) framework for MLTC, which gener-
ates positive feature-label pairs to alleviate the data spar-
sity on tail-labels.

• In order to acquire better decoupled representations for
classification and augmentation, we introduce prototyp-
ical supervised contrastive learning strategy to label-
specific feature learning process.

• A prototype-based VAE-style feature generation model
is designed to capture the intra-class semantic variations
from head-labels, which will be applied to augment fea-
tures for tail-labels.

• Our experiments show that LSFA significantly and con-
sistently outperforms state-of-the-art baselines on three
benchmark datasets, especially on tail-labels.

Our code and hyper-parameter settings are publicly available
at https://github.com/stxupengyu/LSFA.

Related Work
In this section, we review previous literature from two as-
pects, multi-label text classification and data augmentation.

Multi-label Text Classification
The most straightforward strategy for dealing with multi-
label text classification (MLTC) is to utilize the identical
representation of a document to induce classification mod-
els (Liu et al. 2017; Yang et al. 2018; Zhang et al. 2018). For
instance, Liu et al. (2017) utilize a CNN-based model with
dynamic max pooling scheme that captures high-level fea-
ture for MLTC. Such a strategy, however, disregards the fact
that different labels may concentrate on various tokens. Con-
sequently, label-specific feature learning (You et al. 2019;
Xiao et al. 2019; Ma et al. 2021; Zhang et al. 2021),
which focuses on each label’s unique traits, is a promis-
ing method for facilitating the discrimination of each label
(Zhang, Fang, and Wang 2021; Hang and Zhang 2022). You
et al. (2019) propose a label-specific attention network to
focus on different tokens when predicting each label. Fur-
thermore, Ma et al. (2021) adopt a graph convolution net-
work which incorporates category information and mod-
els adaptive interactions in a label-specific way. Recently,
Zhang et al. (2021) exploit correlation-guided representation
to capture high-order document-label correlations. Wang,
Dai et al. (2022) use a k nearest neighbor mechanism along
with a multi-label contrastive learning strategy for MLTC.
Bai, Kong, and Gomes (2021) impose the VAE to learn and
align two embedding spaces for labels and features respec-
tively. Bai, Kong, and Gomes (2022) also use contrastive
loss to strengthen the label embedding learning by introduc-
ing feature embedding as the anchor.

Even though previous techniques have achieved encour-
aging performance in MLTC, it is still a challenging task due
to the long-tailed label distribution (Chang et al. 2020; Xiao
et al. 2021; Zhang et al. 2022b). In this case, training clas-
sification models for the tail-labels is much more difficult
than that for head-labels, which suffer severely from the lack
of sufficient training instances. Some existing works (Yang
et al. 2020a; Huang et al. 2021) tackle it by proposing im-
balanced loss objectives instead of the vanilla cross-entropy
loss. Xiao et al. (2021) propose a head-to-tail network which
transfers the meta-knowledge from the head-labels to tail-
labels. Our proposed method LSFA also adopts the knowl-
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edge transfer strategy, but focuses on explicit feature aug-
mentation for tail-labels to facilitate the long-tailed problem
for MLTC.

Data Augmentation
Data augmentation (DA) has shown its effectiveness in many
low-resource data scenario, such as text classification (Wei
and Zou 2019; Kumar, Choudhary, and Cho 2020), few-shot
learning (Zhou et al. 2022; Xu and Le 2022), natural lan-
guage understanding (Wang et al. 2022) and so on. They are
mainly divided into two categories: DA in input space and
DA in feature space. The most commonly used DA method
in input space is the word substitution, such as synonym
replacement and random swap (Wei and Zou 2019). Back
translation (Yang et al. 2020b) is also widely used. In addi-
tion, large pretrained models have been used for DA (Kumar,
Choudhary, and Cho 2020; Zhang et al. 2020). They take
advantage of the pretrained models, such as GPT-2 (Zhang
et al. 2020), BERT (Kenton and Toutanova 2019), and BART
(Lewis et al. 2020) to generate label-invariant perturbations
of the input texts to augment the existing training data. Other
DA techniques, such as autoencoder (AE) (Schwartz et al.
2018; Liu et al. 2020), which is offered for better data di-
versity based on the perturbation in the feature space. Fur-
thermore, Xu and Le (2022) propose a feature generation
method using a conditional variational autoencoder (VAE).
Unfortunately, due to the label co-occurrence, it is challeng-
ing for these prior methods to handle MLTC (Wu et al. 2020;
Zhang et al. 2022a). Instead of previous sample-level aug-
mentation, we create a new pair-level augmentation strategy,
which merely augments positive feature-label pairs for the
tail-labels.

Method
As depicted in Figure 3, our method LSFA is composed of
two major modules: decoupled representation learning and
head-to-tail feature augmentation. Specifically, decoupled
representation learning describes how to extract decoupled
semantic components from the mixture of label information
in each document; and the head-to-tail feature augmentation
illustrates how to acquire the intra-class semantic variations
from head-labels to the tail-labels.

Problem Definition
Let calligraphic letter (e.g., A) indicates set, capital and
lower-case letters (e.g., A, a) for scalars, lower-case bold
letter (e.g., a) for vector and capital bold letter (e.g., A) for
matrix. The input of the training stage includes N instances
P = {(doci,yi)}Ni=1, each of which consists of a document
doc and several labels y = (y1, ..., yj , ..., yL) related to the
document. Here yj ∈ {0, 1}, where yj = 1 indicates that
the j-th label is associated with document doc, and L is the
total number of candidate labels. Each document contains D
tokens. In the testing stage, we aim to recommend the most
relevant labels for a new document.

Decoupled Representation Learning
Label-Specific Encoder The label-specific encoder is
proposed to focus on each label’s unique traits for facilitat-

Figure 3: The architecture of the proposed LSFA. Head Fea-
ture denotes feature of head-label, and Head Prototype de-
notes prototype of head-label.

ing the discrimination of each label (You et al. 2019; Ma
et al. 2021; Hang and Zhang 2022). Our model (Figure 3)
is composed of a shared earlier layer ϕ and L label-specific
later layers {ψ1,ψ2, ...,ψL}.

In order to capture the forward and backward sides con-
textual information, the document is extracted by a bidirec-
tional LSTM (BiLSTM)ϕBiLSTM to obtain the hidden rep-
resentation of each token:

ϕBiLSTM (doc) = {x1,x2, ...,xD}. (1)
The shared encoder can be replaced with any modern lan-
guage models such as BERT (Kenton and Toutanova 2019),
XLNet (Yang et al. 2019), BART (Lewis et al. 2020) and etc.

Similar to multi-label attention (You et al. 2019), our
model is designed to let each label attentively select the key
tokens from the document. Specifically, we treat labels as
queries to retrieve the salient tokens in the document. Fi-
nally, for label l, the label-specific feature is:

vl = ψl(ϕBiLSTM (doc)). (2)
The label-specific layer ψl is:

ψl(ϕBiLSTM (doc)) = αl · ϕBiLSTM (doc), (3)

αl = softmax(eTl (ϕBiLSTM (doc))), (4)
where vl is the trainable parameter, αl is the normalized co-
efficient of {x1,x2, ...,xD} and el is the label embedding.

After the label-specific representation vl is obtained, a
simple one-versus-all (OVA) approach realizes the scoring
function as:

ŷl = sigmoid(wT
l vl), (5)

where wl is the trainable classifier parameter for the label l.
Then, we use corresponding binary cross entropy as the loss
function:

LBCE =
L∑

l=1

yl log(ŷl) + (1− yl) log(1− ŷl). (6)
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Prototypical Supervised Contrastive Learning In this
section, we explore a prototypical supervised contrastive
(PSC) (Wang et al. 2021) learning strategy to learn better de-
coupled representations in order to boost classification and
augmentation. Contrastive learning here is performed at the
label-specific feature level. Since the features are already as-
sociated with only one label by label-specific encoder, we
avoid two inputs share other labels in multi-label setting.
First, after the label-specific learning, we only consider the
positive feature-label pairs {vi, yi}i<Np , where yi denotes
the label index, and Np is the total number of the positive
pairs in a mini-batch Q. Instead of unsupervised contrastive
learning (He et al. 2020), there are multiple positives per an-
chor under the supervised contrastive (SC) learning (Khosla
et al. 2020). We define all the positive features of an anchor
vi as {vi+} = {vj |yj = yi, i ̸= j}, then the corresponding
SC loss is:

LSC =

Np∑
i=1

Li
SC(v

i), (7)

Li
SC(v

i) =
−1

|{vi+}|

∑
vj∈{vi+}

log
exp(vi · vj/τ)∑

vk,k ̸=i exp(v
i · vk/τ)

,

(8)
where, τ ∈ R+ is the scalar temperature parameter.

However, this operation is intractable in MLTC setting.
Due to the large label size of MLTC, it demands an ex-
tremely large mini-batch Q. Therefore, we utilize a tractable
version of SC loss, i.e., PSC loss:

LPSC = α ·
Np∑
i=1

log
exp(vi · pyi/τ)∑L

j=1,j ̸=yi exp(vi · pj/τ)
, (9)

where pj is the prototype of label j (calculated by Eq. 10),
and α is the coefficient of PSC loss. As shown in Figure 3,
after adding PSC loss, each feature is pushed away from
other prototypes and drawn toward the prototype of its own
label, which could boost classification and augmentation af-
terward.

Head-to-Tail Feature Augmentation
Prototype-based Variational Autoencoder After the de-
coupled representation learning, we calculate the prototype
of each label as the mean of every single dimension in the
vector:

pl =
1

nl

nl∑
j=1

vjl , (10)

where vjl is a feature vector from the label l and nl is the
total number of features of label l.

Then, we divide the labels to head-labels and tail-labels
according to the hyper-parameter, head-to-tail threshold
Nt ∈ R+. label l is a tail-label if nl < Nt. After that, we
obtain a head-label set H and a tail-label set T .

In order to augment the features of tail-labels, we design
a prototype-based variational autoencoder (PVAE) model to
learn the intra-class semantic variations (Wang et al. 2019)

of head-labels (see Figure 3). It is assumed that such associ-
ation generalizes across the head and tail labels (Wang et al.
2019; Xiao et al. 2021; Xu and Le 2022).

The PVAE is composed of an encoder E(vjl ,pl), which
maps a vector vjl and its prototype pl to a latent variation z,
and a decoder G(z,pl) which reconstructs vjl from z and its
prototype pl . The variational parameters µh

j and σh
j of the

encoder are implemented by multilayer perceptrons (MLPs)
f∗(·).

µj
l = fµ([v

j
l ;pl]) (11)

σj
l = fσ([v

j
l ;pl]) (12)

Here, [; ] denotes the concatenation operation. Then the de-
coding process is:

ϵ ∼ N (0, I) (13)

z = µj
l + ϵ⊙ σ

j
l (14)

v̂jl = fϕ([z;pl]) (15)

where ⊙ denotes the Hadamard product. Eq. 13 and Eq. 14
are the implementation of reparameterization trick to smooth
the gradients (Kingma and Welling 2013).

In the training stage, the objective function is defined
based on the negative variational lower bound, which con-
sists of two parts. The first part is the KL divergence that
indicates discrepancy between prior distribution p(z) and
posterior distribution q(z|v,p) about the latent variable z,
and the second part reflects the reconstruction loss:

Lj
l = DKL(q(z|vjl ,pl)||p(z))− log(p(vjl |z,pl)), (16)

where q(z|vjl ,pl) and p(vjl |z,pl) represent the encoder and
decoder respectively.

The overall loss of PVAE is over all features from head-
labels H:

LPV AE =
∑
l∈H

nl∑
i=1

Lj
l . (17)

Augmenting tail-label features After the PVAE is trained
on the head-labels, we generate a set of features for each
tail-label l by inputting the respective prototype and a noise
vector z from the Gaussian distribution:

Dl = {v̂|v̂ = G(z,pl), z ∼ N (0, I)}. (18)

We augment Na times for each tail-label.

Loss Function for Augmented Features It is worth not-
ing that the augmented samples of LSFA are label-specific.
In other words, the samples can be regarded as the positive
feature-label pairs for tail-labels, which are used to adjust
the classifiers. The loss function is:

LAugmented = γ ·
∑
l∈T

∑
j∈Dl

log(sigmoid(wT
l v̂j)), (19)

where γ is the coefficient of augmented loss. Consequently,
in the adjustment phrase, we obtain a more balanced loss for
the classifiers by adding LAugmented to LBCE .
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Datasets Ntrn Ntst Dvocab L Lavg Navg Wtrn Wtst

AAPD 54,840 1,000 69,399 54 2.41 2444.04 163.42 171.65
RCV1 23,149 781,265 47,236 103 3.18 729.67 259.47 269.23

EUR-Lex 11,585 3,865 171,120 3,956 5.32 15.59 1225.20 1248.07

Table 1: Data statistics. Ntrn, Ntst refer to the number of documents in the training and test sets, respectively. Dvocab is the
vocabulary size of documents. L is the number of labels. Lavg is the average number of labels per documents. Navg is the
average number of documents per label. Wtrn, Wtst refer to the average number of words per document in the training and test
sets, respectively. The three benchmark datasets are the same as LSAN (Xiao et al. 2019) and LDGN (Ma et al. 2021) for fair
comparison.

Experiments
Experimental Setup
Datasets There are several MLTC datasets. We evaluate
the proposed model on three benchmark datasets of them,
which are AAPD (Yang et al. 2018), RCV1 (Lewis et al.
2004) and EUR-Lex (Loza Mencı́a and Fürnkranz 2008).
Table 1 contains the statistics of these three benchmark
datasets.

Evaluation Metric Following the settings of previous
works (You et al. 2019; Xiao et al. 2019; Ma et al. 2021;
Xiao et al. 2021), We chose precision at k (P@k) and nor-
malized discounted cumulative gain at k (N@k) as our eval-
uation metrics for performance comparison. We also exam-
ined the performance on tail-labels by propensity scored pre-
cision at k (PSP@k) and macro-averaged P@k.

Implementation Details For all three datasets, we used
the most frequent words that appeared in the training set
as a limited-size vocabulary (below 500,000). We truncated
each text after 500 words for efficiency. These are the con-
ventional setups for MLTC methods (Xiao et al. 2019; You
et al. 2019). Our model was trained by Adam (Kingma
and Ba 2014) with the learning rate of 1e-3. We also used
stochastic weight averaging (You et al. 2019) with a con-
stant learning rate to enhance the performance. We empir-
ically set the α = 0.1, γ = 1 for balancing the loss . As
for the key hyper-parameters of our proposed method: head-
to-tail threshold Nt and times of augmentation Na, we set
Nt = 1000, Na = 500 for AAPD. For RCV1 and EUR-
Lex, we set Nt = 500, Na = 200 and Nt = 50, Na = 10
respectively.

Baselines We compare our proposed LSFA method to
the most representative and state-of-the-art (SOTA) MLTC
methods:

• XML-CNN (Liu et al. 2017): a CNN-based model using
dynamic max pooling scheme to capture high-level fea-
ture.

• SGM (Yang et al. 2018): a sequence generation model
which models the correlations between labels.

• DXML (Zhang et al. 2018): a deep embedding method
which models the feature and label space simultaneously.

• AttentionXML (You et al. 2019): a deep learning model
which uses a multi-label attention to extract information
for each label.

Models P@1 P@3 P@5 N@3 N@5
XML-CNN 74.38 53.84 37.79 71.12 75.93

SGM 75.67 56.75 35.65 72.36 75.30
DXML 80.54 56.30 39.16 77.23 80.99

AttentionXML 83.02 58.72 40.56 78.01 82.31
EXAM 83.26 59.77 40.66 79.10 82.79
LSAN 85.28 61.12 41.84 80.84 84.78
HTTN 83.84 59.92 40.79 79.27 82.67
LDGN 86.24 61.95 42.29 83.32 86.85
LSFA 86.95 62.88 43.43 83.96 87.53

Table 2: Comparisons with SOTA methods on the AAPD
dataset. The experimental results of all baseline models are
directly cited from [(Ma et al. 2021), Table 2] and [(Xiao
et al. 2021), Table 2]. The best results are highlighted in
bold.

• EXAM (Du et al. 2019): a framework that employs the
interaction mechanism to compute the word-level inter-
action signals.

• LSAN (Xiao et al. 2019): a label-specific attention model
based on self-attention and label-attention mechanisms.

• HTTN (Xiao et al. 2021): a head-to-tail network which
transfers the meta-knowledge from the head-labels to
tail-labels.

• LDGN (Ma et al. 2021): a graph convolution network
which incorporates category information and models
adaptive interactions of labels.

Most results of all these baseline methods are obtained from
[(Ma et al. 2021), Table 2 and Table 3] and [(Xiao et al.
2021), Table 2 and Table 3].

Performance Comparison
From Table 2 to Table 4, we show the main comparison re-
sults on three datasets. After analyzing the results, we have
the following observations.

Label-specific feature learning is crucial for MLTC.
XML-CNN performs relatively poorly as it utilizes the
identical representation of a document to induce classifica-
tion model. AttentionXML, LDGN and LSAN outperform
XML-CNN by a large margin on each dataset. This is not
surprising since these methods introduce the label-specific
encoder, which focuses on each label’s unique traits in the
representation learning phrase. Meanwhile, LDGN achieves
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Models P@1 P@3 P@5 N@3 N@5
XML-CNN 95.75 78.63 54.94 89.89 90.77

SGM 95.37 81.36 53.06 91.76 90.69
DXML 94.04 78.65 54.38 89.83 90.21

AttentionXML 96.41 80.91 56.38 91.88 92.70
EXAM 93.67 75.80 52.73 86.85 87.71
LSAN 96.81 81.89 56.92 92.83 93.43
HTTN 95.86 78.92 55.27 89.61 90.86
LDGN 97.12 82.26 57.29 93.80 95.03
LSFA 97.21 82.52 57.52 94.20 95.42

Table 3: Comparisons with SOTA methods on the RCV1
dataset. The experimental results of all baseline models are
directly cited from [(Ma et al. 2021), Table 3] and [(Xiao
et al. 2021), Table 3]. The best results are highlighted in
bold.

Models P@1 P@3 P@5 N@3 N@5
XML-CNN 70.40 54.98 44.86 58.62 53.10

SGM 70.45 60.37 43.88 60.72 55.24
DXML 75.63 60.13 48.65 63.96 53.60

AttentionXML* 79.66 64.88 52.99 68.66 62.33
EXAM 74.40 61.93 50.98 65.12 59.43
LSAN 79.17 64.99 53.67 68.32 62.47

HTTN* 80.45 65.57 55.68 69.01 63.76
LDGN 81.03 67.79 56.36 71.81 66.09
LSFA 83.75 70.74 58.95 74.13 68.25

Table 4: Comparisons with SOTA methods on the EUR-Lex
dataset. Results with a trailing reference are reproduced by
ourselves. Other results are taken from [(Ma et al. 2021),
Table 2]. The best results are highlighted in bold.

the second-best results, since its label-specific encoder is en-
hanced by the deeper correlations between categories.

Head-to-tail transfer learning effectively alleviates the
long-tailed problem. An interesting point is that, transfer
learning based HTTN is worse than LSAN on AAPD and
RCV1 datasets, while HTTN is superior to LSAN on the
EUR-Lex. The reason is that, there are more tail-labels on
the EUR-Lex. As a consequence, HTTN could introduce the
meta-knowledge from the data-rich head-labels to data-poor
tail-labels, while LSAN ignores the data sparsity on tail-
labels.

The results demonstrate the superiority of the proposed
LSFA on all metrics for MLTC. Especially, on the EUR-
Lex dataset, the relative improvements of LSFA are 3.36%,
4.35% and 4.60% compared with its best competitors on the
P@1, P@3 and P@5, respectively. For some label-specific
methods (LSAN and LDGN), although they designed dif-
ferent strategies to enhance the representation learning, they
suffer severely from the high data scarcity on tail-labels.
LSFA avoids this problem by augmenting features for long-
tailed labels, and decoupling the representation learning to
further improve the robustness of tail-labels augmentation
and classification.

Models P@5 PSP@1 PSP@3 PSP@5
LSAN 53.67 36.41 41.27 43.42
HTTN 55.68 38.96 43.28 45.74
LSFA 58.95 42.50 48.03 50.69

Improvement 5.87% 9.09% 10.98% 10.82%

Table 5: Performance on tail-labels on the EUR-Lex dataset.
Improvement denotes the relative improvement of LSFA
over the best baseline. Best results highlighted in Bold.

Ablation Test
We analyze the impacts of key components in LSFA via
ablation test. The complete LSFA (denoted as A) is com-
pared with the following variants: LSFA removes the PSC
loss (denoted as B), LSFA removes the PSC loss and feature
augmentation (denoted as C), LSFA removes the PSC loss,
feature augmentation and label-specific encoder (denoted as
D). Figure 4 shows the results evaluated on AAPD and EUR-
Lex datasets in terms of P@5, N@5 and PSP@5. There are
several interesting observations:

It is always preferable to use the PSC strategy, as shown
by the superior performance of A. The reason is that it de-
coupled the representation of each label in the feature space,
which is crucial for classification and augmentation. The re-
sult of B is always better than C, because the augmented
features effectively alleviate the data sparsity on tail-labels,
improving the performance. C is better than D, it demon-
strates the effectiveness of incorporating the label-specific
learning for MLTC. Such a label-specific learning module
allows our model to capture various intensive parts of the
document for each label, thus enabling better classification.

Performance Analysis on Tail-Labels
To further verify the effectiveness of the proposed LSFA
in alleviating the long-tailed problem, we compare the per-
formance of LSFA with SOTA baselines by PSP@k (Jain,
Prabhu, and Varma 2016; You et al. 2019; Ma et al. 2021).

(a) AAPD (b) EUR-Lex

Figure 4: Ablation test of LSFA on two datasets. A denotes
the complete LSFA, B denotes LSFA without the PSC loss,
C denotes LSFA without the PSC loss and feature augmen-
tation, D denotes LSFA without the PSC loss, feature aug-
mentation and label-specific encoder.
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(a) Head-to-tail threshold (b) Times of augmentation

Figure 5: Effect of parameters on LSFA for EUR-Lex
dataset.

Table 5 shows LSFA has remarkable improvement com-
pared to the baselines in tail-labels classification. It is rea-
sonable since LSFA addresses the data sparsity on tail-labels
by augmenting the tail-label samples in the feature space
with the intra-class semantic variations, which are learned
from the head-labels with ample samples.

Furthermore, Figure 1 (b) shows their macro-averaged
P@5 on label bins on the EUR-Lex. We can see that the
macro P@5 of LSFA on tail-label bins [2-9] are much higher
than those from the HTTN. It is noteworthy that, the perfor-
mance of bins [3-5] achieves the most outstanding improve-
ment when comparing with bins [6-9]. The reason is that
each label of bins [6-9] has only 1-5 documents, which is
insufficient to learn a better prototype as of bins [3-5].

In summary, LSFA do help to build effective tail-label
predictor by augmenting for tail-labels.

Parameter Sensitivity
There are two major hyper-parameters we proposed in
LSFA, including head-to-tail threshold Nt and times of aug-
mentation Na that controlling the intensity of the augmen-
tation. For investigating the impacts of the Nt and Na, we
vary them and show their influences on P@5 in Figure 5.
The performance improves at first and then decreases as the
Nt increases. As Nt increases, less head-labels are available
for head-to-tail transfer learning, which is not conducive to
LSFA. As Nt decreases, the number of tail-labels becomes
smaller, reducing the effectiveness of the feature augmen-
tation. Finally, we find a trade-off between them. Also, in-
creasing Na from 1 to 10 can greatly help LSFA to gain
strong improvement. That’s to say, augmenting more fea-
tures for tail-labels can effectively strengthen the generaliz-
ability of the classifiers.

Case Study
To further illustrate the effectiveness of our decoupled learn-
ing and feature augmentation, we show the t-SNE (Van der
Maaten and Hinton 2008) representation of head and tail la-
bels in figure 6. From left to right, we visualize the distribu-
tion of the features learned by LSFA without PSC strategy
(a), the features augmented by LSFA without PSC strategy
(b), the features learned by LSFA (c), and the features aug-
mented by LSFA (d). Figure 6 (a) and (c) visualize the ef-
fect of our prototypical contrastive learning strategy, while

(a) (b) (c) (d)

Figure 6: Feature visualization. We show the t-SNE visual-
ization of the original features (marked as dark points) and
augmented features (marked as transparent points) on the
EUR-Lex dataset. The features are from two tail-labels and a
head-label. Different colors represent different labels. From
left to right, we show the features learned by LSFA without
PSC strategy (a), the augmented features generated by LSFA
without PSC strategy (b), the features learned by LSFA (c),
and the augmented features generated by LSFA (d).

each feature is pulled towards the prototype of its class and
pushed away from prototypes of other classes. Figure 6 (d)
visualizes features generated from LSFA within PSC strat-
egy, that lie closer to the real features, showing the effec-
tiveness of contrastive learning enhanced decoupled learn-
ing and feature augmentation.

Conclusions and Future Work
In this paper, we propose a novel pair-level label-specific
feature augmentation (LSFA) framework for MLTC, which
augments positive feature-label pairs for the tail-labels in the
feature space. Firstly, we use a prototypical supervised con-
trastive learning strategy to learn better decoupled represen-
tations for the document. After that, a prototype-based VAE-
style transfer learner is designed to capture the intra-class se-
mantic variations from head-labels to tail-labels. Finally, we
design a new loss function to adjust the classifiers based on
the original and augmented features. Extensive experiments
demonstrate that LSFA outperforms the state-of-the-art ap-
proaches, especially on tail-labels.

In the future, we would like to explore how to leverage
LSFA in the scenarios with larger label space. In addition,
we are also interested in boosting input-level augmentation
for MLTC.
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