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Abstract

Sparse learning based feature selection has been widely in-
vestigated in recent years. In this study, we focus on the
l2,0-norm based feature selection, which is effective for ex-
act top-k feature selection but challenging to optimize. To
solve the general l2,0-norm constrained problems, we nov-
elly develop a parameter-free optimization framework based
on the coordinate descend (CD) method, termed CD-LSR.
Specifically, we devise a skillful conversion from the origi-
nal problem to solving one continuous matrix and one dis-
crete selection matrix. Then the nontrivial l2,0-norm con-
straint can be solved efficiently by solving the selection ma-
trix with CD method. We impose the l2,0-norm on a vanilla
least square regression (LSR) model for feature selection and
optimize it with CD-LSR. Extensive experiments exhibit the
efficiency of CD-LSR, as well as the discrimination ability
of l2,0-norm to identify informative features. More impor-
tantly, the versatility of CD-LSR facilitates the applications
of the l2,0-norm in more sophisticated models. Based on the
competitive performance of l2,0-norm on the baseline LSR
model, the satisfactory performance of its applications is rea-
sonably expected. The source MATLAB code are available at:
https://github.com/solerxl/Code For AAAI 2023.

Introduction
Feature selection techniques aim to select the most informa-
tive feature subset from the original data, thereby eliminat-
ing irrelevant features and speeding up the learning process
(Li et al. 2018, 2020). It has a wide range of real-world ap-
plications, such as image processing (Sun, Bebis, and Miller
2004), text mining (Forman and Kirshenbaum 2008), mass
spectrometry (Saeys, Inza, and Larrañaga 2007), and so on.

Sparse learning methodologies, which impose sparse reg-
ularization on the coefficient matrix to limit the number of
non-zero entries, are favored in feature selection (Pang et al.
2019; Chang et al. 2014; Nie et al. 2010). Based on sparse
learning techniques, the features corresponding to the non-
zero entries will be selected, and the others will be dis-
carded. Among them, the l2,1-norm constraint is the most
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commonly used technique for selecting task-shared features
(Nie et al. 2010; He et al. 2012), which is defined as

∥W∥2,1 =
d∑

i=1

√√√√ c∑
j=1

w2
i,j , (1)

where W ∈ Rd×c denotes the coefficient matrix and
wi,j denotes the (i, j)-th entry of W. Most previous work
performs feature selection by adding the regularization
λ∥W∥2,1 to the objective function, with λ being the reg-
ularization parameter. For example, (Nie et al. 2010) pro-
posed a Robust Feature Selection model to simultaneously
overcome outliers issues and solve feature selection prob-
lems by imposing l2,1-norm on the objective function and
the regularization term. Although satisfactory performance
was achieved via l2,1-norm, its sparsity heavily depends on
the parameter λ, which does not have an explicit meaning.
Thus, we are not clear about how many features are actually
selected. Therefore, we have to spend a long time searching
for the appropriate λ to select the exact number of features.

In contrast, the l2,0-norm, which is defined as

∥W∥2,0 =
d∑

i=1

∥
c∑

j=1

w2
i,j∥0, (2)

dispenses with the heavy burden of parameter tuning in fea-
ture selection. Specifically, we can select k features by sim-
ply imposing the constraint ∥W∥2,0 = k, where the value of
l2,0-norm intuitively indicates the exact number of selected
features k, such that the parameter tuning process is avoided.

Although l2,0-norm is more desirable from the sparsity
perspective, it is hard to solve l2,0-norm constraint due to
its non-convexity. To date, there are mainly two types of al-
gorithms proposed to solve this nontrivial problem, that is,
augmented Lagrangian method(ALM) based algorithms and
projection gradient descent (PGD) based algorithms. The
former introduces the auxiliary variables to solve l2,0-norm
separately and iteratively updates the original solution vari-
able and the auxiliary variable based on ALM (Bertsekas
1982). For example, Cai et al. (Cai, Nie, and Huang 2013)
proposed a robust and pragmatic feature selection method
with l2,0-norm constraint and solved the model with ALM.
Besides, Zhang et al. (Zhang et al. 2021) proposed to trans-
form the l2,0-norm constraint into an equivalent 0-1 integer
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constraint and solved this problem with ALM by replacing
the 0-1 integer constraint with two continuous constraints. In
contrast, the PGD based algorithm (Calamai and Moré 1987;
Pang et al. 2019) solved the l2,0-norm constraint problem by
updating the solution with gradient information and project-
ing the solution to the feasible region at each iteration.

In this paper, we focus on the optimization of general l2,0-
norm constrained problems. Different from existing l2,0-
norm-related literature, we propose a novel and efficient co-
ordinate descent based least square regression (CD-LSR)
algorithm for this nontrivial problem. We first decompose
the constrained variable W into one discrete selection ma-
trix S and one weight matrix V, and then update S and V
iteratively until the objective function value converges. In
this way, the l2,0-norm constraint is skillfully transformed
into the discrete constraint on S, which can be solved effi-
ciently with the coordinate descent (CD) algorithm. We ver-
ify the performance of the proposed algorithm on a vanilla
LSR model. Extensive experimental results present the su-
periority of CD-LSR in terms of solution accuracy, fast con-
vergence speed, and classification performance. More im-
portantly, the proposed algorithm is a general optimization
framework, which means our algorithm is capable of solving
arbitrary l2,0-norm constrained models.

The contributions of this paper are as follows:

• We introduce the l2,0-norm with a simple LSR model for
feature selection, which is simple yet effective with ex-
perimentally verified. The l2,0-norm constrained model
not only exhibits a superior performance, but also gets
rid of the tedious tuning cost compared with conventional
l2,1-norm based models.

• A CD based optimization framework is proposed to solve
the general l2,0-norm constrained feature selection prob-
lems, which is efficient and parameter-free. The pro-
posed algorithm can be applied to arbitrary l2,0-norm
constrained problems, thus facilitating its extension to
more sophisticated models.

• Experimental results on six benchmark datasets validate
the effectiveness of the l2,0-norm for feature selection, as
well as the high efficiency and stability of the proposed
optimization framework.

Notations For an arbitrary matrix Z ∈ Rm×n, zi and
zi represent the i-th row and i-th column of Z, respec-
tively. The (i, j)-th entry of Z is written as zi,j . The
Frobenius norm of the matrix Z is defined as ∥Z∥F =√∑m

i=1 ∥zi∥22 =
√∑m

i=1

∑n
j=1 z

2
i,j . When m equals n, the

trace operator is denoted as tr(Z) =
∑m

i=1 zi,i. 1d denotes
the d-dimensional column vector with all entries being 1. Id
denotes the d-order identity matrix. Moreover, we define the
operator Qd(·) as follows:

Qd(i) = [0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
d−i

]T. (3)

Namely, Qd(i) defines a d-dimensional vector with the i-th
entry being 1 and the others being 0.

Related Work
Feature Selection
In general, traditional feature selection algorithms fall into
three categories based on how they incorporate with the
learning process: filter methods, wrapper methods, and em-
bedded methods. Among them, filter methods (Peng, Long,
and Ding 2005; Ding and Peng 2005) select features before
the learning process. Therefore, they can be regarded as a
data preprocessing step filtering out redundant features. Un-
like filter methods, wrapper methods (Hall and Smith 1999;
Guyon et al. 2002) are designed as an integral part of the
learning algorithms, employing heuristic search strategies to
determine some subsets of features and selecting features
based on the learning performance. Despite its good perfor-
mance, wrapper methods need to evaluate the classification
performance on each subset of features considered, there-
fore resulting in expensive computational costs. In contrast
to filter methods and wrapper methods in which the feature
selection process is significantly different from the training
process, embedded methods integrate the feature selection
and model training into a unified optimization framework,
where feature selection is performed automatically during
the training process, so as to achieve both good performance
and reasonable computational cost. Given this point, we fo-
cus on the embedded methods in this study.

Proposed Method
Problem Formulation
In this paper, we conduct the l2,0-norm based feature selec-
tion with a simple least square regression model, which is
specifically formulated as

min
W,b
∥Y −WTX− b1T

n∥2F s.t. ∥W∥2,0 = k, (4)

where X ∈ Rd×n denotes the d-dimensional data matrix
with n samples, Y ∈ {0, 1}c×n denotes the label matrix
with c classes, W ∈ Rd×c denotes the learned coefficient
matrix, and b ∈ Rc×1 denotes the bias vector. When W is
learned, the features corresponding to the non-zero rows in
W will be selected.

Optimization
To solve problem (4), we first take the derivative of problem
(4) w.r.t. b and set it to zero, then we have

b =
1

n
Y1n −

1

n
WTX1n. (5)

Substitute Eq. (5) into Eq. (4), problem (4) is converted to

min
∥W∥2,0=k

∥Y −WTX− (
1

n
Y1n −

1

n
WTX1n)1

T
n∥2F

= min
∥W∥2,0=k

∥YH−WTXH∥2F,

(6)
where H = In − 1

n1n1
T
n is the centering matrix, which

possesses the property that H = HHT.
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Figure 1: Illustration of coordinate descent method when
solving the i-th column in S. The blue blocks represent 1,
the blank ones represent 0, and the column highlighted in
yellow represents the column to be updated.

After removing the constant term, problem (6) can be fur-
ther transformed as

min
∥W∥2,0=k

tr(WTAW)−2tr(WTB), (7)

where A = XHXT and B = XHYT .
To solve problem (7), we first decompose W as follows:

W = SV, (8)

where S ∈ {0, 1}d×k is a discrete selection matrix and
V ∈ Rk×c is composed of the non-zero rows in W. More
specifically, each column si of the selection matrix S is de-
pendent on the index of the i-th selected feature and has the
following formulation:

si = Qd(ξi) = [0, . . . , 0︸ ︷︷ ︸
ξi−1

, 1, 0, . . . , 0︸ ︷︷ ︸
d−ξi

]T (9)

where ξi is the i-th non-zero row index in W. Notably, ξi
also stands for the index of the i-th selected feature.

Substituting Eq. (8) into problem (7), we have the follow-
ing equivalent problem:

min
S,V

tr(VTSTASV)− 2tr(VTSTB). (10)

Next, we are going to solve problem (10) by alternatively
updating S and V and repeating this process iteratively until
the objective function value converges. The concrete process
are depicted as follows.

The first step is fixing S and updating V. When S is
fixed, problem (10) can be transformed as

min
V

tr(VTSTASV)− 2tr(VTSTB). (11)

Taking the derivative of Eq. (11) w.r.t. V and setting it to
zero, we have

V = (STAS)−1STB. (12)

The second step is fixing V and updating S, through
which we obtain the following subproblem:

min
S

tr(VTSTASV)− 2tr(VTSTB). (13)

We solve the selection matrix S by iterating column by col-
umn through coordinate descent method (Wright 2015), dur-
ing which all columns in S are fixed except the column to be
solved being updated to its optima according to Eq. (13).

Algorithm 1: CD-LSR
Input: X, Y, k
Output: ξ, W

1: Calculate A = XHXT, B = XHYT;
2: Initialize S;
3: while not convergence do
4: Update V = (STAS)−1STB;
5: Calculate U = VVT;
6: for i = 1 : k do
7: ξ = ξ\ξi; ▷ Exclude ξi from ξ.
8: for p = 1 : d do
9: if p /∈ ξ then

10: Calculate F(S(i,p)) based on Eq. (16);
11: end if
12: end for
13: ξi = argminp F(S(i,p));
14: ξ = ξ ∪ ξi; ▷ Merge ξi into ξ.
15: Update si;
16: end for
17: end while
18: Calculate W = SV.

Supposing that we are going to solve the i-th col-
umn of S, which has d candidate solutions including
{Qd(1),Qd(2), . . . ,Qd(d)} with varying index ξi, we de-
note S(i,p) with p ∈ {1, . . . , d} as {S(i,1),S(i,2), . . . ,S(i,d)}
varying from different p. For example, S(i,p) denotes that it
is the i-th column to be solved, where only the p-th entry is
1 and the others are 0. It is noteworthy that S(i,p) and S(i,q)

are identical except the i-the column for any p ̸= q, as illus-
trated in Figure 1. Therefore, the problem with respect to si
can be reformulated as

min
S(i,p)

F(S(i,p))

s.t. S(i,p) ∈ {S(i,1),S(i,2), . . . ,S(i,d)}, p /∈ ξ,
(14)

where F(S(i,p))=tr(VTST
(i,p)AS(i,p)V)−2tr(VTST

(i,p)B).
Hence, when updating si, the problem turns into searching
for the best S(i,p) that minimizes F(S(i,p)), which can be
determined by iterating through all possible S(i,p) and se-
lecting the optimal one. And the problem (13) can be solved
by updating each column in S sequentially.

Note that we have to iterate through all d − k + 1 pos-
sible candidates to update one single column. If we directly
calculate F(S(i,p)), it will result in quite a high computa-
tional complexity to solve the entire variable S. To reduce
the computational cost, we first transform F(S(i,p)) as

F(S(i,p))=tr(VTST
(i,p)AS(i,p)V)−2tr(VTST

(i,p)B)

=tr(E(i,p)U)−2tr(VTST
(i,p)B),

(15)
where E(i,p) =ST

(i,p)AS(i,p) and U=VVT are symmetric
matrices.

The motivations of the above transformation are three-
fold: Firstly, since S is a discrete selection matrix, multi-
plying S is equivalent to performing column(row) selection
on the multiplied matrix. Therefore, we can directly obtain
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Figure 2: Illustration of the simplification strategy in Eq.
(16) by removing irrelevant calculations.

E(i,p) and ST
(i,p)B, such that the large matrix multiplica-

tion is avoided. Secondly, note that U can be regarded as
a constant value when solving S, for which U can be pre-
calculated before updating S at each iteration. Thirdly, there
exist too many redundant calculations since we only need
to calculate the objective value w.r.t. p. With this in mind,
we can further simplify the calculation by eliminating irrel-
evant terms. Figure 2 illustrates the simplification strategy
when solving si, where the calculations unrelated to si are
removed since they are constant when updating ξi.

Consequently, we transform the problem (14) as follows:

min
p

2ei(i,p)ui − ei,iui,i − 2bpviT

s.t. p ∈ {1, 2, . . . , d}, p /∈ ξ,
(16)

where ei(i,p) stands for the i-th row of E(i,p) and ei,i stands
for the (i, i)-th entry of E(i,p). Consequently, the complexity
of F(S(i,p)) is reduced to O(k + c).

We name the proposed algorithm as CD-LSR and sum-
marize the overall procedure of CD-LSR in Algorithm 1.

Algorithm Analysis
The core steps of CD-LSR in each iteration are calculating
V, U, and S. Note that the discrete property of S helps us
avoid the matrix multiplication by performing column(row)
selection. In this way, the calculations of V, U, and S take
the computational complexity of O(k3 + k2c), O(k2c) and
O(k2d + kdc), respectively. Ultimately, the computational
complexity of CD-LSR is O(tk3 + tk2c + tk2d + tkdc),
where t denotes the iteration number.

Note that CD-LSR is a general optimization framework
that can be utilized to solve arbitrary l2,0-norm constrained
problems. The core of CD-LSR is to decompose W into the
continuous matrix V and the discrete matrix S and solve
the l2,0-norm constraint by optimizing S with CD method.
Moreover, the proposed algorithm does not involve any hy-
perparameters during the optimization process, which is
more efficient than other l2,0-norm optimization algorithms.

Experiment
In this study, we design four experiments to verify the effec-
tiveness of CD-LSR from the following aspects: (1) perfor-
mance on feature selection, (2) solution accuracy, (3) stabil-
ity, (4) convergence speed, and (5) computational time.

Dataset Type # Samp. # Dim. # Class

SRBCT Bioinformatics 83 2308 4
USPS Handwritten Digit 9298 256 10

UMIST Handwritten Digit 575 644 20
JAFFE Human Face 213 676 10

COIL20 Object Image 1440 1024 20
Isolet Sound 1560 617 2

Table 1: Dataset descriptions.

Dataset
As shown in Table 1, we use six datasets to validate the
performance of our method, including one bioinformatics
dataset (i.e., SRBCT (Khan et al. 2001)), two handwritten
digit datasets (i.e., USPS (Hull 1994) and UMIST (Hou et al.
2014)), one human face datasets (i.e., JAFFE (Lyons, Bu-
dynek, and Akamatsu 1999)), one object image dataset (i.e.,
COIL20 (Nene et al. 1996)), and one sound dataset (i.e., Iso-
let (Fanty and Cole 1990)). All features are standardized to
zero mean and normalized by the standard deviation.

Particularly, SRBCT is a high-dimensional and small-
sample-size dataset and USPS is a large-scale dataset, which
verify the performance of CD-LSR on high-dimensional fea-
tures and the scale-up ability on large data, respectively.

Performance on Feature Felection
In this experiment, we apply CD-LSR to feature selection
and compare its performance with following methods:
• Feature Importance Ranking for Deep Learning

[FIRDL] (Wojtas and Chen 2020) devises a dual-net ar-
chitecture consisting of the “Operator” and the “Selec-
tor” to simultaneously identify and rank the features in
the optimal feature subset. We refer to the description in
the original paper and set network parameters based on
the feature dimension of the dataset.

• Subspace Sparsity Discriminant Feature Selection
[S2DFS] (Wang et al. 2020) leverages the trace ratio LDA
model and selects discriminative features via the struc-
tured sparse subspace constraint. We set the dimension
of subspace m as the number of selected features.

• Feature-sparsity constrained PCA [FSPCA] (Tian
et al. 2020) simultaneously performs feature selection
and PCA, and directly estimates the row sparsity con-
strained leading m eigenvectors.

• Concrete AutoEncoder [CAE] (Abid, Balin, and Zou
2019) is an end-to-end differentiable deep feature selec-
tion method that uses a concrete selector layer as the en-
coder and a standard neural network as the decoder. We
set the parameters as suggested in the original work.

• Supervised Feature Selection with Local Adaptive
Projection [SLAP] (Chen et al. 2018) is a supervised
feature selection method that integrates the similarity
learning into the feature selection process. The projected
dimension m is set as the number of classes, the neighbor
number k is empirically set as 5, and the regularization
parameter γ is searched in {10−3, 10−2, . . . 103}.
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Figure 3: Classification results on different datasets in terms of different number of selected features.

• Infinite Latent Feature Selection [ILFS] (Roffo et al.
2017) is a probabilistic feature selection algorithm that
performs the ranking step by considering all the possible
subsets of features bypassing the combinatorial problem.

• Covariance Thresholding [Covth] (Krauthgamer,
Nadler, and Vilenchik 2015) thresholds the data covari-
ance matrix and selects features based on its leading
eigenvector. We set the threshold t as 5/

√
n.

• Correntropy Induced Robust Feature Selection
[CRFS] (He et al. 2012) proposes to address the feature
selection problem based on the l2,1-norm regularized cor-
rentropy term. We search the regularization parameter λ
in {10−6, 10−4, 10−2, . . . , 104, 106}.

• Robust Feature Selection [RFS] (Nie et al. 2010)
is a sparse based method addressing the feature se-
lection problem by solving a joint l2,1-norm prob-
lem. We search the regularization parameter λ in
{10−6, 10−4, 10−2, . . . , 104, 106}.

• Ttest is a commonly used feature selection method intro-
duced by William Sealy Gosset in 1908.

We employ all features (AllFea) as baseline and use the
linear classifier for classification. We select Accuracy as the
evaluation metric and the range of the selected feature num-
ber is from 1 to 80. For each dataset, we employ the five-
fold cross-validation method for parameter tuning and per-
formance evaluation. Since l2,0-norm is non-convex, the so-
lution of the proposed method depends on the initialization.
Similar to (Pang et al. 2019), we run each method 40 times
and report the maximal accuracy as the final performance.

The results are shown in Figure 3, from which we can find
that our method ranks top two in all datasets, indicating that

our method is able to select more informative features than
other competing methods.

Solution Accuracy Evaluation
Next, we compare the solution accuracy of CD-LSR on solv-
ing problem (4) with following l2,0-norm-related methods:

• 0-1 Integer Programmed Feature Selection [IPFS]
(Zhang et al. 2021) first transforms the l2,0-norm con-
straint into an equivalent 0-1 integer constraint, then
solves this problem with the augmented Lagrangian
method (ALM) by replacing the 0-1 integer constraint
with two continuous constraints. According to the origi-
nal paper, we set the penalty parameters as µ1 = µ2 =
µ3 = µ∗, and update µ iteratively with µ∗ ← ρµ∗, where
ρ is set to 1.05 as suggested in the original paper.

• Projection Gradient Descent [PGD] (Pang et al. 2019)
iteratively updates the solution with the gradient in-
formation and then projects the solution into the fea-
sible region. The step length in PGD is searched in
{10−8, 10−7, 10−6, . . . , 101, 102}.

• Robust and Pragmatic Feature Selection [RPFS]
(Cai, Nie, and Huang 2013) solves the l2,0-norm
constraint with the ALM. For RPFS, the quadratic
penalty parameter µ and the step parameter ρ are
searched in {10−6, 10−5, 10−4, . . . , 10−1, 100} and
{1, 1.01, 1.02, . . . , 1.1}, respectively.

We employ five-fold cross-validation to select optimal pa-
rameters for PGD and RPFS. After that, all methods are
evaluated on the entire dataset with the optimal parameter.
For each dataset, we chose the number of features from 1
to 10 to evaluate the solution accuracy. We run all methods
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Figure 4: Convergent objective function value in terms of different number of selected features.

40 times respectively. In each trial, the solutions of all meth-
ods are initialized with the same random matrix. Similar to
(Pang et al. 2019), we select the lowest convergent loss as
their final result, as shown in Figure 4. We can see that CD-
LSR achieves the best result compared with other methods.

Convergence Analysis
Since the l2,0-norm constraint is not convex, we can only
find the locally optimal solution. Different initial solutions
will lead to different locally optimal solutions, for which,
in this part, we evaluate the stability and the convergence
speed of CD-LSR. For the economy of space, we select two
datasets (i.e., SRBCT and JAFFE) and set feature numbers
as {1, 5, 10}. We keep the same experimental setting as de-
scribed in the “Solution Accuracy Evaluation” section.

We first compare the mean values and standard deviations
of the converged objective function with other comparison
methods, as shown in Table 2. We can see that CD-LSR re-
mains the best in all cases. Meanwhile, CD-LSR remains
relatively low standard deviations in most cases, which ver-
ifies the stability of the proposed method.

Moreover, we plot the loss curve of each algorithm in Fig-
ure 5. Since IPFS transforms the l2,0-norm into two continu-
ous constraints, the solution in each iteration does not rigor-
ously satisfy ∥W∥2,0 = k. From our perspective, it does not
make much sense to observe the convergence of IPFS on the
original l2,0-norm constraint, for which we omit IPFS in Fig-
ure 5. We can see that CD-LSR method converges quickly
within ten iterations in most cases. The introduction of auxil-
iary variables in ALM interferes with the searching process
for the feasible solution, for which RPFS starts with more

Dataset k IPFS PGD RPFS CD-LSR

SRBCT
1 57.05±0.9 55.30±5.4 49.08±3.5 45.71±4.1
5 51.66±4.2 38.60±9.0 29.81±9.2 12.91±2.1
10 49.61±5.9 31.23±8.4 12.28±2.5 6.994±1.0

JAFFE
1 188.4±0.0 178.7±3.2 180.0±2.7 175.4±1.9
5 182.9±1.1 131.9±7.0 124.2±4.9 118.0±7.1
10 189.4±11.9 94.98±8.5 74.07±4.8 68.36±8.5

Table 2: Mean and Std of the converged objective function
value after 40 random runs. The best and the second-best
results are in bold face and underlined, respectively.

drastic fluctuations than other methods.

Computational Time Comparison
In this part, we compare the computational time of different
optimization methods. For a comprehensive comparison, we
conduct the experiments on one high-dimensional dataset
(SRBCT), one large-scale dataset (USPS), and one regular
dataset (JAFFE). We set k = 5 and run all methods 40 times,
with the average computational time recorded as their final
result. We regard the objective function value converges as
long as the rate of change of the objective function value is
less than 0.01%. For a fair comparison, for all competing al-
gorithms, the optimization process will be terminated if the
convergence condition is achieved. We also set the maxi-
mum number of iterations to 1000 so as to prevent an exces-
sively long optimization process. All algorithms are test on
a Windows machine with 3.4GHz, i7-6700CPU and 32 GB
RAM memory. The mean computational time for ten runs of
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Figure 5: Error bar figures of the objective function values in each iteration, where the curves and the error bars denote the
mean loss values and the standard deviations of 40 random runs, respectively.

Method SRBCT
(high dim)

JAFFE
(regular)

USPS
(large size)

IPFS 1.761±0.02 0.477±0.03 36.80±4.62
PGD 7.539±0.03 0.757±0.03 624.9±16.1
RPFS 58.73±0.56 5.335±0.08 3.114±0.31

CD-LSR 5.913±0.07 0.342±0.01 3.376±0.66

Table 3: Computational time (CPU time in second) compar-
ison on different datasets. The best and the second-best re-
sults are in bold face and underlined, respectively.

different methods are listed in Table 3.
From Table 3, we can see that although other algorithms

achieve varying degrees of success on some datasets, our
method is the only one that maintains the top-2 speed in
all datasets, indicating that our method is scalable to high-
dimensional data and large-scale data. Moreover, it is es-
sential to reiterate that our method is parameter-free, which
dispenses with the heavy burden of parameter tuning and is
more efficient in practical situations.

Discussion
The major contribution of this study is to propose a sim-
ple yet efficient optimization framework for the l2,0-norm
constraint, which possesses a desirable sparsity property for
feature selection but is difficult to optimize. The proposed
CD-LSR algorithm is applicable to arbitrary l2,0-norm con-
strained problems, therefore facilitating the l2,0-norm to be
extended to more complex models. Moreover, different from

existing hyperparameters-involved optimization algorithms,
our algorithm is entirely parameter-free, which will be more
efficient in practical situations.

However, our study is subject to two limitations. First, the
computational cost of our method heavily depends on the se-
lected feature number k. The coordinate descent may take a
long time to optimize if k is getting too large. Nevertheless,
the experimental results demonstrate the fast convergence
speed of our algorithm, which will alleviate the time cost on
large k to some extent. Another limitation is that l2,0-norm
requires the dedicated number k. Although it is widely ac-
cepted to set k in advance (Zhang et al. 2021; Wang et al.
2020), if the users have no preliminary knowledge about the
feature space, they cannot presume an appropriate k for fea-
ture selection, which will result in a sub-optimal result. Un-
fortunately, this problem is not the focus of this study and
will be discussed and addressed in our future study.

Conclusion
In this paper, we derive a novel and efficient coordinate de-
scent based algorithm to solve the general l2,0-norm con-
strained problem. Extensive experiments verify the stability
and the efficiency of the proposed algorithm. The experi-
mental results also validate that our method is able to select
more informative features compared with the other state-of-
the-art methods for classification.
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