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Abstract

While Reinforcement Learning can achieve impressive
results for complex tasks, the learned policies are generally
prone to fail in downstream tasks with even minor model
mismatch or unexpected perturbations. Recent works have
demonstrated that a policy population with diverse behavior
characteristics can generalize to downstream environments
with various discrepancies. However, such policies might
result in catastrophic damage during the deployment in
practical scenarios like real-world systems due to the
unrestricted behaviors of trained policies. Furthermore,
training diverse policies without regulation of the behavior
can result in inadequate feasible policies for extrapolating
to a wide range of test conditions with dynamics shifts.
In this work, we aim to train diverse policies under
the regularization of the behavior patterns. We motivate
our paradigm by observing the inverse dynamics in the
environment with partial state information and propose
Diversity in Regulation (DiR) training diverse policies
with regulated behaviors to discover desired patterns that
benefit the generalization. Considerable empirical results on
various variations of different environments indicate that
our method attains improvements over other diversity-driven
counterparts.

Introduction
Deep Reinforcement Learning has exhibited wide success
in solving complex tasks, including vision-based video
games (Mnih et al. 2015; Jaderberg et al. 2019), quadruped
locomotion (Hwangbo et al. 2019; Lee et al. 2020a),
and robotic manipulation (Andrychowicz et al. 2020).
However, the policies trained in the source environments
are prone to fail in environmental variations. For example,
dynamics change, such as the damaged component of
a robot or encountering a new terrain, might lead to a
failure due to poor generalization of the agents. Thus one
significant challenge for real-world deployment of RL is the
generalization across various conditions.

One natural approach is to train a policy under a range
of dynamics in simulation (Tobin et al. 2017; Peng et al.
2018; Rajeswaran et al. 2016), and assume that the trained
policy can generalize to the specific target environment.
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These methods require expert knowledge to manually
specify the distribution of training environments in a trial-
and-error manner to involve the properties of the target
environment. In addition, the trained policy may appear to
be over-conservative due to the uncertainty in the training
environments (Yu, Liu, and Turk 2018; Xie et al. 2021).
Another category of methods trains the policy to implicitly
identify the dynamics of the target environment based on
samples collected in the target environment during training
and then encourages the policy to act optimally according
to the identified dynamics (Muratore et al. 2021; Du et al.
2021; Evans, Thankaraj, and Pinto 2022). However, rollouts
in the target environment, like the real-world system during
training, might result in catastrophic damage due to the
premature behavior of the policy.

Recent works have demonstrated that diversity-driven
policies can extrapolate to new environments through the
few-shot adaptation (Eysenbach et al. 2018; Kumar et al.
2020; Osa, Tangkaratt, and Sugiyama 2021; Parker-Holder
et al. 2020; Zhou et al. 2022). While the policy population
with different behavior characteristics can generalize to
different environment variations, the learned policies may
result in potential safety problems in practical scenarios
like real-world systems, as the behaviors of the diverse
policies are unpredictable. Especially, the degree of diversity
that is necessary for the generalization may be limited.
For instance, when we aim to obtain multiple policies for
a quadruped robot that can generalize to various terrains,
what we desire might be policies with different locomotion
patterns rather than those able to roll on the ground.
However, these works train the policies without regularizing
the behavior, which might result in inadequate feasible
policies.

In this work, we take the first step towards diverse policies
with regulated behaviors for generalization. To encourage
sufficient feasible solutions for adaptation in a wide range
of downstream scenarios, we propose a novel diversity
objective based on the divergence of inverse dynamics
models T π(a|f(s), f(s′)) under partial state information.
The partial state information is removed by utilizing a
customizable state filtration function f(s). Intuitively, the
actions impacting the remaining state information would
be discouraged from getting diversified, thus regulating the
behaviors of trained policies. Additionally, we introduce the
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open-ended training manner to achieve continuous solution
discovery, which avoids the drawback of prior work training
with a fixed number of policies (Kumar et al. 2020; Parker-
Holder et al. 2020).

The main contribution of our work is the proposal of a
diversity-driven algorithm, Diversity in Regulation (DiR),
which trains multiple policies with regulated behavior
patterns for efficient generalization by diversifying
the action distributions in a customizable way. Our
analysis demonstrates that the discovered policies show
more regulated behaviors against prior diversity-driven
approaches, which benefits generalization across a wide
range of test conditions. Empirically, we observe that DiR
substantially outperforms prior methods under various
environment discrepancies.

Preliminaries
Notation. To model the sequential decision
problem, we consider the standard Markov Decision
Process (MDP) (Sutton and Barto 2018) as
(S,A,P, r, µ, γ), where S and A are the state space and
action space respectively; P(s′|s, a) : S × A × S → [0, 1]
specifies the dynamics of the environment and defines
the transition probability of reaching s′ at the next
step given current state s and the executed action a;
r(s, a) : S × A → R denotes the reward function;
µ(s) : S → [0, 1] denotes the distribution of initial
states and γ ∈ (0, 1) is the discount factor. Considering
a policy π(a|s) : S × A → [0, 1] which outputs
the probability of choosing action a given the state
s, the probability density function of any trajectory
τ = {s0, a0, s1, a1, . . . , sT } can be formulated as
P(τ) = µ(s0)

∏T−1
t=0 π(at|st)P(st+1|st, at).

Inverse dynamics. Here we denote the inverse dynamics
of the MDP as T (a|s, s′) : S × S × A → [0, 1] which
defines the probability of action a given the state pair
(s, s′) in the consecutive steps. Since there might be various
actions under different policies given the state pair (s, s′),
the inverse dynamics under some specific policy π can be
formulated as:

T π(a|s, s′) = P(s′|s, a)π(a|s)∫
A P(s′|s, â)π(â|s)dâ

. (1)

State filtration function. In this work, we assume a
customizable function f(s) : S → S̄ that removes
partial state information from the state s. For instance,
f(s) can be defined to remove the x-axis coordinate in a
navigation task whose full state information includes 2D
coordinates. The resulting partial state space S̄ can also be
considered as the state space from a partially observable
MDP (POMDP) (Bellman 1957).

Mutual-Information in RL. Mutual information can be
generally expressed as

I(X;Y ) =

∫∫
p(x, y) log

p(x, y)

p(x)p(y)
dydx

= H(X)−H(X|Y ) = H(Y )−H(Y |X), (2)
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Figure 1: Left: Inference variance of inverse dynamics
models trained under different state settings in Walker2D
increases with the increase of missing state information.
Right: Toy example of a 2-DOF robotic arm to interpret the
inference variance of IDMs under different state settings.
Given the partial state information pair (s̄, s̄′), there will
be more possible actions compared with the full state
information setting.

which defines the mutual dependence between two random
variables. Mutual information has been introduced to find
the best representation subject to a constraint on the
complexity (Tishby, Pereira, and Bialek 2000; Alemi et al.
2016). In the context of RL, maximizing the mutual
information I(S;Z) = H(Z) − H(Z|S) between visited
states S and latent variable Z has been proposed to discover
diverse policies (Eysenbach et al. 2018; Kumar et al. 2020).

Diverse high-performing policies. Prior approaches
that train multiple high-performing policies {πθk}Mk=1 with
diverse behaviors1 can be naturally formulated as:

max
πk

Eπk

[
T∑

t=1

γt−1rt

]
, ∀ 1 ≤ k ≤ M (3)

s.t. D (πi, πj) ≥ δ, ∀ 1 ≤ i, j ≤ M, i ̸= j,

where D(·, ·) measures how different the two policies are,
and δ is the diversity threshold. One natural choice of
the distance measurement function is the KL divergence
DKL [πi(·|s) ∥ πj(·|s)] which is widely adopted in prior
works (Schulman et al. 2015, 2017; Hong et al. 2018).

Few-shot adaptation. In novel environments, we rollout
each policy from the trained population for several episodes
and deploy the best-performing one, which resembles
prior diversity-driven approaches (Kumar et al. 2020; Osa,
Tangkaratt, and Sugiyama 2021; Derek and Isola 2021).

Motivation Example: Inference Variance of
Inverse Dynamics Models

We motivate our method with an empirical observation
about the inference variance of the inverse dynamics
under different state information settings. Here we
train four independent inverse dynamics models (IDMs)
{Tϕi

(a|s, s′)}4i=1 simultaneously using different state
settings in Walker from Mujoco (Todorov, Erez, and Tassa
2012). The training data are collected by an agent trained

1The θ will be omitted for simplicity.
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through Soft Actor-Critic (SAC) (Haarnoja et al. 2018). We
utilized four different state settings for the inverse dynamics
models with varying degrees of information missing. We
train the inverse dynamics models by maximizing the log-
likelihood:

L(ϕi) = E(s,a,s′)∼D [log Tϕi
(a|fi(s), fi(s′))] , 1 ≤ i ≤ 4,

(4)
where the fi(s) : S → S̄i is the state filtration function
corresponding to the model i that removes some specific
state information. After training, we evaluate the inference
variance Var [Tϕi(·|s, s′)] of the IDMs given the same batch
of data Dtest = {(s, s′)}, and the results are shown in
Figure 1. The results indicate that the inference variance
of the inverse dynamics model increases with the increase
of missing state information. The details of the experiment
refer to Appendix A.

Herein we interpret the observation with a toy example
of a 2-DOF robotic arm, as shown in Figure 1. When
we employ the joint angle θ1 as a partial state space
S̄ , there might be multiple possible actions given any
state pair (s̄, s̄′). In contrast, there might be only one
possible action given the state pair (s, s′) under the full
state information setting. Motivated by the observation, we
propose to maximize the divergence of IDMs with the partial
state setting under different policies to encourage them to
produce distinct action distributions given any (f(s), f(s′))
pair. Furthermore, we introduce customizable state filtration
functions to specify the desired patterns. Semantically, the
removing state information (e.g., θ2 above) can be regarded
as the state information of body parts that is unnecessary
to be diversified (e.g., roll angles of a quadruped robot).
In contrast, we can remove the state information like leg
motions to obtain policies with diverse locomotion patterns.
Thus, we introduce the state filtration function to focus on
discovering desired behaviors.

We denote the divergence between inverse
dynamics under the partial state information setting as
Pπj (a|f(s), f(s′)) : S̄ × S̄ × A → [0, 1], and the overall
objective can be formulated as the following constrained
optimization problem:

max
πk

Eπk

[
T∑

t=1

γt−1rt

]
, ∀ 1 ≤ k ≤ M (5)

s.t. E [DKL [Pπi(·|f(s), f(s′)) ∥ Pπj (·|f(s), f(s′))]] ≥ δ,

∀ 1 ≤ i, j ≤ M, i ̸= j,

where f(s) : S → S̄ removes specific partial state
information from s, and can be designed to control the
diverse patterns we aim to discover.

Diversity in Regulation
This section presents our approach to resolving the objective
in detail. We propose an open-ended training manner for
diverse solution discovery, transform the objective into a
trivial form, and finally analyze the connection between
our method and prior diversity-driven approaches through
mutual information. The overview of DiR is shown in
Figure. 2.

Figure 2: The semantic overview of DiR. πi and τi represent
the policy and inverse dynamics model, respectively. We
train multiple policies in the source environments in an
iterative manner and generalize to the variation condition
with the best-performing one after the few-shot adaptation.

Open-ended Solution Discovery
Directly solving Eq. 3 or Eq. 5 requires the non-trivial
pairwise constraints computation for training each policy
and the parallel framework for the policy population, which
limits the population size in prior works (Parker-Holder et al.
2020; Masood and Doshi-Velez 2019). Here we introduce an
iterative training manner that trains only a single policy at
a time and optimizes the policy πk to be distinct from the
previously discovered policies {πi}k−1

i=1 , which resembles
the prior work (Zhou et al. 2022). However, we concentrate
on the regulated diversity objective. Formally, we optimize
the following objective to train a policy πk at each iteration:

max
πk

Eπk

[
T∑

t=1

γt−1rt

]
(6)

s.t. Eπk
[DKL [Pπk(·|f(s), f(s′)) ∥ Pπi(·|f(s), f(s′))]] ≥ δ,

∀ 1 ≤ i < k,

which converts the optimization of the whole population
simultaneously to the optimization of a single policy with a
simplified constraint. Furthermore, we can discover policies
exhaustively through open-ended training to obtain some
specific behavior pattern we desire, which is superior to prior
works that fix the number of policies.

Diversity via Inverse Dynamics Disagreement
To solve the constrained optimization problem in Eq. 6, we
introduce the Lagrangian multiplier method to convert the
hard constraints to soft penalties:

max
πk

Eπk

[
T∑

t=1

γt−1rt

]
+

k−1∑
i=1

βiDiv(πk, πi), (7)

where Div(πk, πi) =

Eπk
[DKL [Pπk(·|f(s), f(s′)) ∥ Pπi(·|f(s), f(s′))]] ,

where {βi}k−1
i=1 are the multipliers that can be considered

as hyperparameters, and Div(πk, πi) can be interpreted
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as the inverse dynamics disagreement between two
policies. Introducing the Lagrangian multipliers method
to simplify the constrained optimization problem and set
the multipliers as hyperparameters is widely used in the
RL research (Stooke, Achiam, and Abbeel 2020; Chane-
Sane, Schmid, and Laptev 2021; Peng et al. 2018).
While the constraints might exhibit oscillations during
training (Stooke, Achiam, and Abbeel 2020), it is acceptable
since we aim to encourage diversity rather than obtain
severely distinct policies.

To tractably optimize the Div(πk, πi), we introduce
an ensemble of inverse dynamics models {Tϕi}Mi=1 to
approximate the inverse dynamics under corresponding
policies. At each iteration, we train the inverse dynamics
model Tϕk

simultaneously by maximizing the log-
likelihood:

L(ϕk) = Eπk
[log Tϕk

(a|f(s), f(s′))] . (8)

To solve the optimization for policy πk in Eq. 7, we
approximate the Pπi(a|f(s), f(s′)) with the an inverse
dynamics model Tϕi

(a|f(s), f(s′)), and thus convert the
diversity objective as follows:

Divce(πk, πi) = Eπk
[− log Tϕi

(a|f(s), f(s′))] , (9)

which can be interpreted as the cross-entropy between the
transitions collected by policy πk and the inverse dynamics
of πi. We present in Appendix B.1 that the diversity
objective in Eq. 9 can be approximately lower bounded by
the objective in Eq. 7 with less penalty to the entropy of
the policy. By introducing the novel diversity objective, we
present the final objective that optimizes diversity through
the transformed inverse dynamics disagreement:

J(θk) = Eπk

[
T∑

t=1

γt−1rt

]
+

α

k − 1

k−1∑
i=1

Divce(πk, πi),

(10)

where α is a scaling hyperparameter. Since we aim to
optimize the policy πk to be distinct from each previously
policies without any preference, we set the multipliers
{β}k−1

i=1 from Eq. 7 as 1
k−1 .

For implementation, we convert the diversity objective in
Eq. 10 to an intrinsic reward, which trivially optimizes the
objective. Herein, we define the DiR reward function as:

rDiR
t = rt +

α

k − 1

k−1∑
i=1

[− log Tϕi
(at|f(st), f(st+1))] .

(11)
We implement DiR with Proximal Policy
Optimization (PPO) (Schulman et al. 2017), and we
train an ensemble of policies {πθk}Mk=1 and IDMs {Tϕi

}Mi=1
iteratively. Note that we only adopt the state filtration
function for the IDMs rather than the policies. The pseudo-
codes of DiR and the few-shot adaptation can be found in
Appendix B.2.

Connections to Prior Work
Here we denote different policies from a policy ensemble
as a random variable z. Several diversity-driven approaches

maximizing the divergence between the inference action
distributions of different policies on expectation (Parker-
Holder et al. 2020; Derek and Isola 2021) can be
formulated as maximizing I(a; z|s) = H(a|s)−H(a|s, z).
Additionally, the unsupervised skill discovery works
focus on diversifying the state occupancy by maximizing
I(s; z) = H(s) − H(s|z) (Eysenbach et al. 2018) or
I(s′; z|s) = H(s′|s)−H(s′|s, z) (Sharma et al. 2020).

Similarly, our proposed DiR diversity objective can also
be interpreted as a conditional mutual information

I(a; z|s̄, s̄′) = H(a|s̄, s̄′)−H(a|s̄, s̄′, z), (12)

where s̄ := f(s) and s̄′ := f(s′). Intuitively, we encourage
the output actions of different policies to be discriminable
given the same partial state pair (s̄, s̄′). The state filtration
function controls the degree of diversity. When the state
filtration function is the identity function such that f(s) = s,
there will be no further diversity as the action is relatively
certain given the full state pair (s, s′). In contrast, the
policies will be optimized to e xexecute distinct actions at
all time if f(s) = Ø removes all state information. Thus, we
can regulate the diverse behaviors to a specific coverage of
patterns by customizing the state filtration function.

Experiment
In this section, we aim to empirically answer the following
questions: (1) Can our method discover diverse behaviors?
(2) Does our method discover diverse policies with regulated
behavior patterns through the state filtration function? (3)
Since we hypothesize DiR can obtain more feasible policies
compared with baselines given the same population size,
can the trained population perform better in a wide range of
dynamics mismatch scenarios? Implementation details and
additional results are presented in Appendix.

Experimental Settings
Environments. We adopt four continuous control tasks:
Ant, Walker, Hopper, and Minitaur from Mujoco (Todorov,
Erez, and Tassa 2012) and Bullet (Coumans and Bai
2016–2019), as illustrated in Appendix. C. We implement
extensive test scenarios, including broken leg joints, shifted
dynamics parameters, and sensor failure conditions. See
Appendix C.1 for details of the environments.
Customized state filtration functions. We focus on
discovering diverse locomotion patterns (e.g., walking with
different legs in Ant) by designing the state filtration
function for the four locomotion tasks. Thus we remove
partial state information about the leg motions (e.g., joint
positions) through f(s) in all four environments. Full
details of the state filtration functions and the original state
information are described in Appendix C.2.
Baselines and implementation. We compare DiR to
SMERL (Kumar et al. 2020) that trains diverse policies
for generalization to environmental variations, DvD (Parker-
Holder et al. 2020) that trains an ensemble of policies
via the proposed divergence determinant, vanilla PPO with
multiple independent policies (Multi), vanilla PPO with a
single policy (PG). We set the population size as 10 in all
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Figure 3: Visualization of the discovered policies in Walker. The y-axis represents the performance of discovered policies during
the iterative training. We show foot contact patterns and motion illustrations of four policies in the dotted boxes. The shaded
areas mark the time steps during which the respective foot (LF: left foot or RF: right foot) is in contact with the ground.

baselines, and all baselines except PG train the same number
of policies. We train each policy with 2M steps for all
algorithms. Each trial runs eight times with different random
seeds. Refer to Appendix C.3 for implementation details.

Emergent Behavior with DiR
Since we remove the state information of one leg in
Walker, we hypothesize that our method can learn various
locomotion patterns (e.g., hopping, walking) with different
legs. Thus, we visualize the foot contact within an episode
in Walker, as shown in Figure 3. The results suggest that
our method can iteratively discover diverse policies with
different locomotion patterns, including hopping on both
feet, incomplete one-leg hopping, and complete one-leg
hopping. Furthermore, there is no significant performance
degradation resulting from diversity-driven training.

Population Comparison in Training Environments
Herein we aim to compare the policies with prior diversity-
driven approaches quantitatively. We adopt the population
diversity, a determinant-based diversity paradigm proposed
in (Parker-Holder et al. 2020), to quantify the behavior
diversity of the trained policies. Here we collect 2000 states
for the behavior embeddings in each environment. The
results are reported in Table 1, where DiR outperforms all
baseline methods concerning the diversity score. We observe
that the independently trained policies in Multi can also
obtain competitive diversity scores compared to DvD and
SMERL which introduce extra diversity objectives, which
may result from the different initialization of the policies as
presented in (Jiang and Lu 2021).

To examine whether DiR can train more practical
locomotion patterns by inducing the regulated diversity
objective, we adopt the approach that describes behaviors of
quadruped robots in prior works (Cully et al. 2015; Nilsson
and Cully 2021), which computes the time proportion
when the feet contact the ground within an episode. The
visualization of the behavior diversity in Walker and Ant is
shown in Figure 4. The results show that the behaviors of
each policy trained by DiR are more consistent in multiple

episodes, and DiR can discover more distinct locomotion
patterns compared with baselines.

Figure 4: Visualization of behaviors through the time
proportion when feet contact the ground, where the different
colors indicate different policies. Different colors represent
different policies from the population, and we run each
policy for 20 episodes. (Top): Time proportion when two
feet contact the ground within an episode in Walker.
(Bottom): Time proportion when two adjacent feet contact
the ground within an episode in Ant.

Furthermore, here we show the percentile performance of
the population, as shown in Figure 5. The results indicate
that DiR achieves competitive performance in Hopper and
Minitaur while obtaining better averaged and worst-case
performance in Walker and Ant, compared with baselines.
We believe that regulated diversity can hinder the discovery
of behavior patterns with poor performance, which results in
improved worst-case performance over the policies.

Adaptation in Environment Variations
To examine whether DiR can provide adequate feasible
policies which benefit the generalization, we implement
various variations of the environments, including the
crippled legs, the shifts of the dynamics parameters (e.g.,
mass), and sensor failures. See Appendix C.1 for detailed
descriptions of the test conditions. For few-shot adaptation,
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Figure 5: Percentile performance of the policy population
across all four environments. The 0 percentile on the x-
axis represents the worst-performing policy, while the 100
percentile represents the best-performing one.

Ant Hopper Walker Minitaur

Multi 71.6(0.4) 57.8(2.4) 76.4(0.4) 81.6(0.2)

DvD 71.6(0.5) 59.1(2.2) 76.2(0.4) 81.4(0.2)

SMERL 71.5(0.5) 63.2(2.4) 77.1(0.4) 81.7(0.3)

DiR 73.0(0.4)∗ 66.1(1.7)∗ 78.4(0.8)∗ 83.2(0.3)∗

Table 1: Diversity scores across all environments. Asterisks
indicate that the results are significantly different from all
the baselines under p < 0.05.

we run each policy in the environment for 20 episodes and
report the performance of the best-performing one.

We first evaluate the approaches under conditions
with damaged body components. As the results show in
Table 2, DiR outperforms baseline methods on most test
conditions. In the variations of Hopper, DiR achieves
comparable performance with baselines, which can result
from the morphology with only one leg that limits the
possible locomotion patterns. However, given the other
three environments where the robots are multi-legged,
DiR surpasses baselines thanks to the regulated diversity
discovery. As we utilize the state filtration functions
that remove the state information about the legs, DiR
will focus on discovering policies that behave differently
in terms of the leg motions. Thus, DiR has sufficient
strategies (e.g., walking on a single leg) to handle the
situations like the damaged leg. Specifically, DiR is the
only approach that adapts with better locomotion patterns
in the test Walker environment where a foot joint is broken.
Furthermore, we remark that PG training a single policy
performs significantly worse than the methods training
multiple policies, which indicates that the diversity-driven
approaches are simple yet effective for adaptation under
dynamics variations. Importantly, we verify that the superior
adaptation performance of DiR results from different
policies, which further validates that the diverse behaviors
benefit the extrapolation to different environments. The
details of selected policies in the test environments are
presented in Appendix D.1.

Furthermore, we consider the adaptation to environments
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Figure 6: Adaptation performance under different levels of
the dynamics parameter variations.

with shifted dynamics parameters. Here we scale the ankle
friction or the leg mass of Ant, and the foot friction or
the foot mass of Hopper and Walker. As the adaptation
performance in Figure 6 shows, DiR outperforms baselines
in Walker and Ant, while DiR produces comparable results
with baselines in Hopper. Specifically, DiR provides a
non-trivial improvement in Walker - foot friction and
Ant - leg mass compared to all baselines, where the
performance does not drop significantly when the value of
foot friction gradually increases. Furthermore, we observe
that DiR achieves better performance in the environment
where the dynamics parameter is the same as the training
environment (scale = 1), which can result from the
stationary diversity-driven intrinsic rewards provided by
the fixed inverse dynamics models converged in early
iterations. In contrast, DvD and SMERL, whose intrinsic
rewards are non-stationary due to the simultaneously trained
population or discriminators, might cause unstable training
dynamics and thus result in performance degradation. The
phenomenon further validates the advantage of the open-
ended training manner.

Finally, we implement test environments with various
sensor failures where the corresponding state variables are
always zeros and report the adaptation performance of the
policies. The results in sensor failure conditions of Ant are
shown in Table 3, where we observe that DiR is weaker
than baselines when the sensors on leg 2 are defective,
which might result from reliance on the state information of
Leg 2 for the decision making. However, DiR outperforms
baseline methods in most environments, which validates that
the policies trained through DiR output actions conditioning
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Environment - Damage Multi DvD SMERL DiR

Hopper - Broken leg 2972.0± 177.0 2798.8± 838.6 2193.5± 617.5 2587.6± 756.7
Hopper - Broken foot 999.5± 0.2 999.5± 0.3 999.6± 0.2 999.3± 0.4

Walker - Broken leg 2868.1± 315.2 2677.8± 268.4 2307.8± 221.3 3059.7 ± 199.2
Walker - Broken foot 1005.9± 0.5 1015.8± 15.7 1009.9± 7.0 1341.9 ± 409.6
Ant - Broken ankle 1118.7± 197.7 1094.8± 208.0 1177.0± 219.8 1364.5 ± 311.8
Ant - Broken hip 2222.2± 460.2 1998.1± 421.6 2148.1± 642.0 2534.3 ± 275.8
Minitaur - Motor failure 2.6± 1.3 3.0± 1.2 2.7± 1.7 3.1 ± 1.2

Table 2: Adaptation performance under the component damage.

Sensors Multi DvD SMERL DiR

Leg 1 1882±258 1910±196 1807±249 2210±408
Leg 2 1471±233 1675±307 1398±342 1295±237
Leg 3 1899±323 1889±183 1854±269 1976±260
Leg 4 1916±350 2243±250 2089±436 2502±308

Table 3: Performance under sensor failures in Ant.

on different state variables of the state information and
further verify the robustness of DiR. Additional results in
Walker are shown in Appendix D.2.

Related Work
In this work, we focus on the generalization across
environments with various dynamics. A common
approach to solve this problem is through domain
randomization (Tobin et al. 2017; Peng et al. 2018),
where a single policy is trained under various dynamics
in simulation. Prior works have shown the effectiveness
of domain randomization for the adaptation across
dynamics (Rajeswaran et al. 2016; Yu et al. 2017; Akkaya
et al. 2019; Shi et al. 2022; Mehta et al. 2020). Another
line of work resolves the generalization through domain
adaptation (Chebotar et al. 2019; Hwangbo et al. 2019;
Ramos, Possas, and Fox 2019), which grounds the simulator
with the collected transitions from the target domain and
train the policy to be optimal under the target dynamics.
Furthermore, Robust RL has shown improved transfer
performance by optimizing the worst-case performance
in the source environment (Pinto et al. 2017; Jiang et al.
2021; Mankowitz et al. 2019). In contrast, we resolve the
generalization using an ensemble of diverse policies.

Searching for diverse solutions has been studied
in Evolutionary Computation and Reinforcement
Learning research. In Evolutionary Computation, Quality-
Diversity (QD) is a representative type of approach that
searches for diverse high-performing solutions (Cully
et al. 2015; Mouret and Clune 2015; Nilsson and Cully
2021). However, the requirement of defining behavior
descriptors limits QD to complicated tasks (Grillotti and
Cully 2022). In Reinforcement Learning, unsupervised skill
discovery has been proposed to train a latent conditional
policy without environment reward (Eysenbach et al. 2018;

Sharma et al. 2020; Hartikainen et al. 2019), which can
prevent the behavior from being practically feasible by
ignoring the environment reward. When extrinsic rewards
are also considered, several approaches have been proposed
to train diverse high-performing policies (Kumar et al.
2020; Parker-Holder et al. 2020; Masood and Doshi-Velez
2019; Zhou et al. 2022; Lupu et al. 2021; Zahavy et al.
2021; Zhang, Yu, and Turk 2019). We remark that our
open-ended training manner resembles the prior works that
train diverse policies iteratively (Zhou et al. 2022; Zhang,
Yu, and Turk 2019). However, we focus on controllable
diversity through the exhaustive solution discovery different
from the methods. Furthermore, several approaches resolve
the generalization over various dynamics with the assistance
of diverse policies (Kumar et al. 2020; Osa, Tangkaratt, and
Sugiyama 2021; Kaushik, Arndt, and Kyrki 2022), same as
our work. However, we take the first step to regulate the
diversity for more efficient adaptation as far as we know.

Our proposed diversity optimization through the inverse
dynamics disagreement also resembles Model-based
RL (MBRL) (Deisenroth and Rasmussen 2019; Chua et al.
2018). The divergence between inverse dynamics models
has also been proposed in the prior work for imitation
learning from the observation (Yang et al. 2019). For
generalization across dynamics, recent work has achieved
the generalization of the dynamics model (Lee et al. 2020b;
Seo et al. 2020). Unlike these works, we utilize the inverse
dynamics models for diverse solution discovery.

Conclusion
In this work, we present Diversity in Regulation (DiR),
a novel diversity-driven algorithm that learns multiple
high-performing policies iteratively for adaptation under
dynamics variations. The key ingredient of our method is
the novel diversity objective through the inverse dynamics
disagreement with the state filtration function. Specifically,
we can regulate the diversity by customizing the state
filtration function for desired behavior patterns. Our
empirical results show that DiR can adapt to various
test conditions and outperforms prior diversity-driven
approaches. Overall, we believe our approach would further
strengthen the understanding of diverse solution discovery
and could be helpful in safe adaptation under dynamics
variations which is critical for the Sim2Real problem.
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