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Abstract

Despite achieving state-of-the-art performance on many NLP
tasks, the high energy cost and long inference delay prevent
Transformer-based pretrained language models (PLMs) from
seeing broader adoption including for edge and mobile com-
puting. Efficient NLP research aims to comprehensively con-
sider computation, time and carbon emission for the entire
life-cycle of NLP, including data preparation, model training
and inference. In this survey, we focus on the inference stage
and review the current state of model compression and accel-
eration for pretrained language models, including benchmarks,
metrics and methodology.

Introduction
The recent success of applying pretrained deep Transform-
ers (Vaswani et al. 2017) on different NLP tasks (Devlin et al.
2019; Raffel et al. 2020; Le Scao et al. 2022) has raised con-
cerns about its efficiency. The high computational cost also
prevents these pretrained language models (PLMs) from be-
ing deployed in production (Sun et al. 2020). To address this
problem, efficient inference refers to techniques that aim to
make inference of an ML model faster (time-efficient), con-
sume fewer computational resources (computation-efficient),
less memory (memory-efficient) and less disk space (storage-
efficient). One popular class of techniques is model com-
pression and acceleration, where a large and slow model is
compressed to a lightweight model that can be stored with
limited disk space on a mobile device, or accelerated to run
with low latency (or both). Also, training a large model and
then compressing it to a small one can be efficient for training
and good for generalization (Li et al. 2020).

In addition to technical considerations, large models also
raise environmental and ethical concerns (Bender et al. 2021).
Large models have a high carbon footprint which a com-
pressed model can reduce, potentially with little sacrifice in
performance. Meanwhile, large models set obstacles for engi-
neers and researchers from developing countries who cannot
afford the necessary hardware for running the model (Ben-
der et al. 2021). Thus, model compression and acceleration
can be critical to make state-of-the-art NLP techniques more
accessible and facilitate inclusiveness.
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What’s covered? In this survey, we aim to highlight the
most important works in the field of model compression and
acceleration for PLMs. We review the metrics, benchmarks,
and methods, organizing these works in a new taxonomy.
Widely-used techniques, including weight sharing, low-rank
factorization, pruning, quantization, knowledge distillation,
early exit, and token skipping, are covered with comparative
analysis. We also highlight current challenges and future re-
search directions in the field, calling for community efforts to
build an environmentally-friendly, inclusive and sustainable
future of NLP.
What’s not covered? This survey does not cover (1) meth-
ods that design a new architecture for training from scratch
(e.g., long-range Transformers, Mixture-of-Experts models);
(2) data-efficient or parameter-efficient model tuning that fo-
cuses more on the training efficiency rather than inference
efficiency (e.g., few-shot learning, prompt learning, partial
model tuning); (3) works that use the techniques surveyed in
this paper but for other purposes or are application-specific
(e.g., self-distillation, representation distillation for retrieval).

There have been surveys (Qiu et al. 2020; Han et al. 2021;
Xu et al. 2021b) that cover some aspects of this topic. Dif-
ferent from these works, we focus on the latest progress on
model compression and acceleration for pretrained language
models, highlighting the intersection between language tech-
nology and efficient ML.

Metrics and Benchmarks
Metrics
There are various metrics to depict inference efficiency in dif-
ferent dimensions. These metrics are often reported together
with accuracy to evaluate an NLP model.
Floating point operations (FLOPs) directly measures the
number of floating points operations needed for executing an
instance. FLOPs can serve as a metric for computational effi-
ciency and is somewhat hardware-agnostic. However, FLOPs
cannot accurately reflect the real runtime since the degree of
parallelism (DOP) varies for different algorithms.
Inference time (i.e., delay) is used to measure the runtime
of an algorithm in its inference stage. Inference time can
vary on different infrastructures. When testing on the same
architecture, compared to FLOPs, inference time can bet-
ter approximate the real-world performance of a system by
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taking parallelism into consideration.
Speed-up Ratio is the ratio of inference time of the base-
line model to the accelerated model. Compared to inference
time, speed-up ratio draws a relative comparison which can
be roughly compared across different hardware. In some
works (Zhou et al. 2020; Sun et al. 2021), speed-up ratio
is approximated by the ratio of the number of Transformer
layers in the baseline model to those used in calculation of
an acceleration method.
Number of Parameters and Model Size are often reported
in NLP studies as metrics that directly reflect the storage
cost of a model. This can be important for mobile deploy-
ment of an NLP model due to limited storage on a mobile
device. It can also be an indicator for the memory footprint
and computational cost for training and inference. An excep-
tion is models with weight sharing. For example, the FLOPs
and memory use of ALBERT (Lan et al. 2020) is slightly
higher than a BERT model (Devlin et al. 2019) with the same
number of layers. However, since all Transformer layers in
ALBERT share the same weights, the model size of n-layer
ALBERT is only 1/n of n-layer BERT.
Carbon Footprint measures the environmental impact. La-
coste et al. (2019) provide a calculator for CO2 by querying a
database of carbon emission of mainstream cloud computing
providers. Alternatively, Experiment Impact Tracker (Hen-
derson et al. 2020) and CodeCarbon1 are two plugins that can
record the energy use of hardware and estimate the carbon
emission based on the geolocation.
Loyalty/Fidelity Recent works Xu et al. (2021a) and Stanton
et al. (2021) propose loyalty and fidelity, respectively. Both
are similarity metrics calculated between the predicted dis-
tributions of the teacher and the student, in a teacher-student
distillation or compression setting. Loyalty and fidelity can
reflect how successful the knowledge transfer is from the
teacher to the student, providing interpretability and relia-
bility (Xu et al. 2021a; Stanton et al. 2021), and can be an
indicator of better generalization in distilling large teacher
models and ensembles (Stanton et al. 2021).
Robustness Su et al. (2018) find that smaller neural networks
are more vulnerable to adversarial attacks. Xu et al. (2021a)
suggest reporting adversarial robustness in addition to accu-
racy. In addition to adversarial robustness, Du et al. (2021)
find compressed pretrained language models are significantly
less robust on out-of-distribution (OOD) data.

Benchmarks
Standard Benchmarks Most studies evaluate on common
NLP benchmarks. For example, GLUE (Wang et al. 2019b)
and SuperGLUE (Wang et al. 2019a) are used for natural
language understanding (NLU). SQuAD (Rajpurkar et al.
2016) is used for machine reading comprehension (MRC).
EfficientQA EfficientQA (Min et al. 2020) is an open-
domain question answering benchmark encouraging solu-
tions that efficiently store and access knowledge with the
smallest number of bytes. EfficientQA has three resource-
restricted tracks, including two tracks with a 6 GB and 500

1https://codecarbon.io/

MB cut-off for system size and one track that ranks the sys-
tems that achieves 25% accuracy with the smallest size.
SustaiNLP The shared task of SustaiNLP 2020 (Wang and
Wolf 2020) uses SuperGLUE (Wang et al. 2019a) to evaluate
the performance of submissions. There are three tracks that
target different accuracy levels and hardware (2 GPU tracks
and 1 CPU track). Within each track, submissions are ranked
by lowest energy consumption, measured by Experiment
Impact Tracker (Henderson et al. 2020).
ELUE Efficient Language Understanding Evaluation (Liu
et al. 2021) is proposed as an attempt to clearly depict the
Pareto Front of FLOPs versus performance. ELUE consists
of six datasets of three tasks (sentiment analysis, natural
language inference, and paraphrasing). ELUE has four tracks
with a parameter number cut-off of 40M, 55M, 70M and
110M. The metric used for evaluation is ELEU score, which
calculates an average performance advantage over a baseline
(ElasticBERT) under different FLOPs.

Methods
Weight Sharing
Weight sharing is based on the assumption that large-scale
models, like Transformer (Vaswani et al. 2017), are over-
parameterized (Li et al. 2020). Weight sharing provides a way
to decouple computation and parameters by reusing the same
parameters for multiple computations. Weight sharing can
reduce inference memory footprint and number of parameters
and thus is memory- and storage-efficient.
Encoder-Decoder Sharing In the vanilla Transformer
model (Vaswani et al. 2017) for neural machine translation
(NMT), there is one encoder for encoding the input into hid-
den representations, and one decoder for decoding it to the
target language. Tied Transformer (Xia et al. 2019) shares the
weights of the encoder and decoder of Transformer. The re-
sults of Tied Transformer are comparable to the vanilla Trans-
former. Rothe, Narayan, and Severyn (2020) leverage pre-
trained language model checkpoints to initialize a sequence-
to-sequence model. They experiment with a shared encoder
and decoder to reduce memory footprint.
Layer Sharing In Transformer (Vaswani et al. 2017), both
the encoder and decoder are stacks of Transformer layers.
Thus, a simple and straightforward way to share the weights
in a Transformer is to share them across all Transformer
layers. Dabre and Fujita (2019) share the weights across all
Transformer layers for NMT with minimal performance drop.
Universal Transformer (Dehghani et al. 2019) shares the
weights across all layers, allowing for recurrent computation
with a dynamic halting mechanism and achieves better per-
formance than the vanilla Transformer. ALBERT (Lan et al.
2020) introduces the idea into pretrained language models for
natural language understanding (NLU). Although it cannot
reduce the computational overheads and has an inevitable
negative effect on performance, this design saves up to 95%
of disk space for storing the model, which can be critical for
deployment on mobile devices with limited storage. Takase
and Kiyono (2021) systematically study strategies for shar-
ing weights across layers. Instead of using the weights of
one Transformer layer for all layers, they aim to explore the
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Table 1: A summary of various pruning methods. S are saliency scores used to determine which weights to prune. The table style
is borrowed from Sanh, Wolf, and Rush (2020).

best way to use the parameters of M layers for N layers
(M < N ). Reid, Marrese-Taylor, and Matsuo (2021) intro-
duce a strategy named “sandwich-style” parameter sharing,
which shares the weights for central layers while leaving the
first and last layers independent.

Low-Rank Factorization
The weight matrices in a neural network are often low-rank,
indicating redundancy in model weights (Sainath et al. 2013).
Thus, a natural idea is to factorize the weight matrices into
two or more smaller matrices to save parameters. A com-
mon technique for low-rank factorization is singular value
decomposition (SVD). For a matrix A ∈ Rm×n, there ex-
ists A = UΣV T, where r ≤ min {m,n} is the rank of
A; U ∈ Rm×r, V ∈ Rn×r are two orthogonal matrices;
Σ ∈ Rr×r is a diagonal matrix with only the non-zero singu-
lar values of A. Thus, the space complexity can be effectively
reduced from O(mn) to O(mr+rn), improving the storage-
efficiency of the model.
Decomposing Linear Layers Low-rank factorization can be
applied to any linear layer. Grachev, Ignatov, and Savchenko
(2017) factorize the weights of an LSTM language model.
Following that, Winata et al. (2019) exploit SVD for both
the LSTM cell in a language modeling task and a pretrained
LSTM language model, ELMo (Peters et al. 2018). This is
one of the earliest attempts to compress a pretrained lan-
guage model. Ma et al. (2019) propose a new self-attention
module, namely multi-linear attention, as a substitute for
the standard multi-head attention module in a Transformer.
They use block-term tensor decomposition (BTD, Lathauwer
2008) to factorize multi-head attention. Their results demon-
strate comparable performance to the vanilla Transformer
while being parameter-efficient. Noach and Goldberg (2020)
propose a two-stage approach to compress a pretrained lan-
guage model. In the first stage, they decompose each weight
matrix in the pretrained language model with SVD. Then,
for the second stage, they fine-tune or use knowledge dis-
tillation to refine the weights. Chen et al. (2021) propose
data-aware low-rank compression (DRONE) by exploiting
the prior knowledge of the data distribution. Instead of mini-
mizing the reconstruction error of the the weight matrix, they
minimize the approximation error of the outputs. DRONE
achieves better performance than SVD. Besides, as an alter-
native to SVD, Kronecker decomposition retains the rank of
the matrix and has shown improvement compressing BERT
and GPT-2 (Tahaei et al. 2021; Edalati et al. 2022).
Decomposing Embedding ALBERT (Lan et al. 2020) uses

factorization for the embedding layer, which has redundant
parameters due to its high input and output dimensions. Since
the power of Transformer mainly comes from its contextual
learning ability, the parameters in the token embedding layer
are not efficient. It intuitively makes sense to reduce them by
factorizing the embedding matrix. Reid, Marrese-Taylor, and
Matsuo (2021) propose self-attentive factorized embeddings
(SAFE) by adding a small self-attention layer on the basis of
linear projection to achieve better performance.

Pruning
Pruning (LeCun, Denker, and Solla 1989) aims to re-
move unimportant weights from a neural network to
achieve storage-, memory-efficiency, and sometimes also
computation- and time-efficiency while preserving model per-
formance. There are two key elements in a pruning method:
(1) A pruning unit is the atomic unit to be removed from a
model; it can be a single weight (unstructured pruning), an
attention head or even a Transformer layer (structured prun-
ing). (2) A saliency score is the criterion for making pruning
decisions. Based on whether it uses a gradient and which
order of gradient it uses, we can categorize pruning methods
to zeroth-order (only considering weight magnitude), first-
order and second-order approaches. We summarize some
representative pruning methods in Table 1.
Unstructured Pruning Unstructured pruning removes
“unimportant” connections in a neural network by setting
the corresponding weights to 0. After pruning, the weight
matrix often becomes sparse. To exploit the characteristics
of a sparse matrix to achieve computation- and memory-
efficiency, specialized hardware (e.g., sparse tensor cores in
Nvidia A100 (Mishra et al. 2021)) and software (e.g., Py-
Torch Sparse API2) are necessary. See, Luong, and Manning
(2016) uses magnitude-based pruning with retraining to com-
press RNN models for NMT. Magnitude-based pruning (Han,
Mao, and Dally 2016) simply prunes weights with smallest
magnitude (i.e., absolute values). After pruning, See, Luong,
and Manning (2016) continue to fine-tune the pruned network
to obtain better performance. Narang et al. (2017) prune an
RNN model gradually during training. The magnitude thresh-
old for pruning is gradually increased with increasing training
steps. Wang et al. (2020b) first prunes and retrains NMT mod-
els with magnitude pruning and then restores the pruned pa-
rameters to train the entire network again, in order to achieve
better performance than the original model. Zhang and Stadie
(2020) propose a one-shot pruning technique based on the

2https://pytorch.org/docs/stable/sparse.html
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Jacobian spectrum. Different from iterative pruning methods,
one-shot pruning techniques only prune a network once and
then use standard training to train the sparse network.

Some recent works target transfer learning as it has be-
come the new standard paradigm in NLP. Gordon, Duh, and
Andrews (2020) aim to reveal how pruning affects transfer
learning. They find that low levels of pruning (30%–40%) do
not affect pretraining loss or transfer to downstream tasks at
all. However, further pruning has a negative impact on both
pretraining and transfer learning. A high level of pruning
can even prevent the model from fitting downstream datasets.
Sanh, Wolf, and Rush (2020) claim that magnitude pruning
is suboptimal for transfer learning. They propose movement
pruning as a simple first-order method for fine-tuning of pre-
trained language models. Instead of preserving weights that
are currently far from zero, they retain those that are moving
away from zero (i.e., gaining larger magnitude) during fine-
tuning, achieving better performance for pruning BERT. Guo,
Rush, and Kim (2021) propose diff pruning, by learning a
task-specific “diff” vector that extends the original pretrained
parameters. The task-specific “diff” vectors are trained with
L0 regularization (Louizos, Welling, and Kingma 2018) to
encourage sparsity. By updating only 0.5% of parameters,
diff pruning achieves similar performance to fine-tuning the
whole network.
Structured Pruning Structured pruning removes weight
blocks, rows, attention heads, or layers from a model. Com-
pared to unstructured pruning, it can usually achieve acceler-
ation and memory reduction without specialized hardware or
software. Narang, Undersander, and Diamos (2017) extends
gradual pruning for RNNs (Narang et al. 2017) to struc-
tured pruning. They first divide weights into blocks, then
prune blocks of weights in a layer using group lasso regu-
larization (Yuan and Lin 2006) to create blocks of zeros in
weight matrices. Michel, Levy, and Neubig (2019) and Voita
et al. (2019) find that the multi-head attention in Transformer
has redundancy. Both works use a first-order approach to
remove attention heads from Transformer. Following this,
Fan, Grave, and Joulin (2020) propose a structured dropout
strategy named LayerDrop. When training a Transformer, a
random dropout is applied to each layer. After one-off train-
ing, the model can be pruned on-demand to achieve the target
inference speed. SNIP (Lin et al. 2020) removes unimportant
non-linear terms in the residual connections, whose magni-
tude is below a threshold. Lagunas et al. (2021) introduce
a block pruning approach that extends structured methods
by considering blocks of any size. They integrate this struc-
ture into movement pruning (Sanh, Wolf, and Rush 2020)
and find this approach can automatically learn to prune out
full components in Transformer, e.g., an attention head. Xia,
Zhong, and Chen (2022) propose CoFi, a pruning method
that jointly prunes both coarse-grained units (e.g., layers)
and fine-grained units (e.g., attention head and hidden units).
CoFi also introduces a distillation loss to further improve its
performance.
Lottery Ticket Hypothesis Frankle and Carbin (2019)
propose the “lottery ticket hypothesis”: dense, randomly-
initialized, feed-forward networks contain subnetworks (win-
ning tickets) that — when trained in isolation — reach test

accuracy comparable to the original network in a similar
number of iterations. It reveals that retraining from remain-
ing weights (Han, Mao, and Dally 2016) in a pruned network
is not necessary for the pruned network. In contrary, a “win-
ning ticket” can always learn better, even when training from
scratch (as long as it is initialized with the same random
weights). Following this, Chen et al. (2020) verify the lottery
ticket hypothesis on BERT with iterative magnitude pruning.
They find that subnetworks found on the pretraining task
(i.e., masked language modeling, MLM) transfer universally
to downstream tasks whereas those found on downstream
tasks do not. Prasanna, Rogers, and Rumshisky (2020) also
verify the lottery ticket hypothesis with BERT, for both mag-
nitude and structured pruning. They find that even the worst
subnetwork in BERT remains highly trainable, suggesting
that the weights of BERT may have relatively low redun-
dancy. This seems to be consistent with previous finding on
over-parameterized models (Nakkiran et al. 2020).

Quantization
Quantization aims to compress a neural network by reduc-
ing the number of bits (i.e., precision) in the weights of
the model, improving storage-, memory-, computation-, and
time-efficiency (on most hardware). In general, quantization
can be further categorized into post-training quantization
(PTQ) and quantization-aware training (QAT). PTQ rescales
the weights of a trained model whereas QAT introduces the
rounding error into the training process. Due to the consider-
able performance drop for PTQ, most works in compressing
NLP models unanimously use QAT, in order to achieve com-
parable performance with the full-precision model.
8-Bit Quantization Quantizing models from full precision
floats (FP32) to 8-bit integers (INT8) is a classical setting,
since operations including matrix multiplication can be cal-
culated much faster with INT8 than FP32, especially on
a CPU. Zafrir et al. (2019) use symmetric linear quantiza-
tion (Jacob et al. 2018) to quantize both weights and activa-
tions to INT8 dynamically. They also explore quantization-
aware training (QAT) for BERT. They use fake quantiza-
tion (Jacob et al. 2018) to introduce quantization error into
the model during training phase to simulate the rounding
effect. They use Straight-Through Estimator (STE) (Ben-
gio, Léonard, and Courville 2013) to estimate the gradient
of the non-differentiable fake quantization. They find that
dynamic post-training quantization hurts the downstream
performance slightly while QAT achieves comparable per-
formance to the original model. Similarly, Prato, Charlaix,
and Rezagholizadeh (2020) apply QAT with STE for Trans-
formers on neural machine translation and achieve results
that are similar to the original model. I-BERT (Kim et al.
2021) eliminates floating point calculation in activation by
exploiting lightweight integer-only approximation methods
for non-linear operations (e.g., GELU, Softmax and Lay-
erNorm) in BERT. The resulting I-BERT model is capable
of doing pure INT8 inference thus has a better acceleration
ratio.
Lower-Bit Quantization Recent works aim to push quanti-
zation to even lower precision. Lower-bit quantization faces
more challenges, including difficulty to optimize, and lack of
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Figure 1: A summary of different KD approaches. “GT” rep-
resents ground-truth labels.

model expressivity. Shen et al. (2020) propose a group-wise
quantization scheme and use second-order Hessian-based
mixed-precision method (Dong et al. 2019) to quantize BERT
down to 2 bits. They claim that weights corresponding to each
neuron could lie in different ranges of real numbers. For ex-
ample, for a multi-head self-attention module, they split the
weight matrix to 12 groups, with respect to each attention
head. Then they further split each group and have a total num-
ber of 128 subgroups, each of which has its own quantization
range. GOBO (Zadeh et al. 2020) separates the weights into
two groups — Gaussian and outliers where the former is
quantized to 3 bits and the latter remains a full-precision
float (FP32). TernaryBERT (Zhang et al. 2020) combines
approximation-aware and loss-aware ternarization (i.e., using
only {−1, 0, 1} for weights) methods with different granu-
larity for different components in BERT. They further add
knowledge distillation to improve the performance of QAT.
Bai et al. (2021) observe a large performance drop from a
ternary network to a binary network when trained directly,
due to its loss landscape. They propose ternary weight split-
ting, which initializes BinaryBERT by splitting a half-sized
ternary network into two binary networks. The initialized net-
work inherits good performance and can be further fine-tuned
without optimization difficulties. Tao et al. (2022) analyze the
reasons why quantization is less effective on generative LMs
(e.g., GPT-2, BART). They conclude that homogeneous word
embeddings caused by reduced capacity and varied distribu-
tion of weights are responsible for the failure. They propose
a token-level contrastive distillation and a module-wise dy-
namic scaling mechanism to mitigate these two problems.

Knowledge Distillation
Knowledge Distillation (Hinton et al. 2015) is a widely used
technique to transfer knowledge from a large model (teacher)
to a smaller one (student) to achieve all types of efficiency.
KD usually requires designing a loss function to minimize
the distance of the output or intermediate features between

the student and the teacher. As illustrated in Figure 1, we
summarize the designs of loss functions used in recent works
distilling NLP models. Based on the loss function designs,
we can further categorize the methods into logit-based KD,
feature-based KD, KD with a dynamic target, and module
replacing.
Logit-based KD Following Hinton et al. (2015), logit-based
KD methods are the first attempts to distill a large pretrained
language model into a smaller one to improve its efficiency.
Logit-based KD uses the KL divergence or mean squared
error (MSE) to minimize the logits between the student and
the teacher. Tang et al. (2019) distills fine-tuned BERT into
a BiLSTM model in a task-specific setting. The resulting
BiLSTM outperforms its counterpart trained without KD by
a large margin. DistilBERT (Sanh et al. 2019) distills BERT
in a pretraining setting on the task of masked language mod-
eling (MLM). The loss is a combination of three components:
the original MLM loss, cosine distance, and KL divergence.
After distillation, the model can be fine-tuned and perform
downstream tasks. Turc et al. (2019) explore the effect of
initialization for the student. They find that a student BERT
pretrained with MLM outperforms random initialization and
truncated teacher (Sanh et al. 2019; Sun et al. 2019) when
used to initialize the student model. Liang et al. (2021) use
MixUp (Zhang et al. 2018) for data augmentation to distill
BERT.
Feature-based KD Instead of using only the final output,
feature-based KD aims to align the intermediate features be-
tween the teacher and the student. PKD (Sun et al. 2019)
introduces an MSE loss between layer representations. As
shown in Figure 1(c) and (d), they propose two strategies: one
aligns the student with the last few layers in the teacher (PKD-
Last) and the other learns the teacher’s representations in ev-
ery 2 layers (PKD-Skip). The latter strategy performs slightly
better in experiments. A similar technique is also presented in
Aguilar et al. (2020). On the basis of PKD, TinyBERT (Jiao
et al. 2020) further introduces an attention loss that aims to
align the attention matrices in layers between the teacher
and the student, as illustrated in Figure 1(e). TinyBERT also
demonstrates that performing KD in both pretraining and fine-
tuning stages can improve the performance of KD. Similarly,
MiniLM (Wang et al. 2020a, 2021) aligns the attention matrix
and value-value scaled dot-product (i.e., value relation loss,
as shown in Figure 1(f)). The added feature complements the
attention matrix (i.e., queries-keys scaled dot-product) and
allows the complete transfer of multi-head self-attention. Wu,
Wu, and Huang (2021) propose a multi-teacher distillation
framework that use both intermediate features and soft la-
bels from multiple teachers to distill a student and achieve
better performance. DynaBERT (Hou et al. 2020) uses layer-
wise KD loss to distill a teacher into a student model that
has sub-networks of different widths and depths. Thus, the
same model can be used on various devices with different
computing budgets. MobileBERT (Sun et al. 2020) redesigns
a BERT architecture that is suitable for mobile devices. In
addition to the layer-wise feature distillation (Sun et al. 2019)
and attention distillation (Jiao et al. 2020), they introduce a
progressive knowledge transfer mechanism by distilling the
model layer by layer, instead of altogether. Liu et al. (2022)
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Method Exit criterion

DeeBERT entropy < θ
RightTool calibrated max class probability > θ
FastBERT entropy < θ
RomeBERT entropy < θ
SkipBERT max class probability > θ

PABEE patience (#consistent prediction > θ)
Voting accumulated votes > θ
LeeBERT patience (#consistent prediction > θ)
Past-Future entropy < θ
PCEE-BERT patience (#consistent IC confidence > θ)

BERxiT estimated confidence > θ
CAT estimated conformity > θ

Table 2: A summary of three types of early exit methods:
confidence estimation, internal ensemble, and learning to
exit. θ is a predefined threshold for exiting.

exploit structural features on both token and span levels to
align the student with the teacher.
Module Replacing A special case of KD is BERT-of-
Theseus (Xu et al. 2020). As shown in Figure 1(b), BERT-of-
Theseus does not apply any knowledge transfer loss to mini-
mize the distance between the student and the teacher. Instead,
they freeze the teacher modules and train a hybrid model by
randomly replacing some modules in the teacher model with
student modules. They further design a linear scheduler to
increase the probability of replacement to bridge the gap be-
tween training and inference. Following this, Sparse Progres-
sive Distillation (Huang et al. 2022) uses layer-wise KD to
iteratively prune the student modules while randomly replac-
ing each module in the teacher model with its corresponding
student module with a fixed probability. After the target spar-
sity is hit, the replacing rate is progressively increased to
1. This method combines feature-based KD, module replac-
ing, and pruning, achieving a super-teacher performance on
GLUE (Wang et al. 2019b).
KD with Dynamic Targets In traditional KD, the teacher
serves as a static target for the student to match, without any
update during distillation. However, this can be suboptimal
since the teacher is unaware of the student or its goal to trans-
fer the knowledge to the student. ProKT (Shi et al. 2020)
projects the supervision signals of a teacher model into the
student’s parameter space by decomposing the training objec-
tive into local intermediate targets with approximate mirror
descent (Beck and Teboulle 2003). Zhou, Xu, and McAuley
(2022) propose a simpler framework with meta learning to
allow the teacher to adapt itself for better knowledge transfer.
The student is evaluated on a “quiz” set after a few training
steps and provides feedback to the teacher. Its first-order vari-
ant can further improve training speed and reduces memory
footprint (Ma et al. 2022).

Early Exit
Early exit (EE) does not reduce the size (the total number
of parameters) of the model. Instead, EE accelerates model
inference by terminating inference at a particular layer based
on some criteria. Although it does not make a model smaller

it can reduce computation and achieve acceleration. Early
exit inserts internal classifiers (which are often simple linear
layers) into a large network as triggers for early exiting. The
key element in early exit methods is the exit criterion. There
are three types of exit criteria: confidence estimation, internal
ensemble and learning to exit. We summarize the exit criteria
in Table 2.
Confidence Estimation Previous works in computer vi-
sion (Park et al. 2015; Teerapittayanon, McDanel, and Kung
2016; Kaya, Hong, and Dumitras 2019) define a metric as
the proxy for confidence of prediction. The inference can exit
early if the confidence reaches a threshold at an early layer.
This idea is then applied to pretrained LMs (Xin et al. 2020).
For each Transformer layer, a linear internal classifier (IC) is
inserted after the Transformer layer. When doing inference,
the model exits early when an IC outputs a predicted proba-
bility with an entropy lower than the threshold. A similar ap-
proach is proposed in RightTool (Schwartz et al. 2020). The
temperature-calibrated maximum class probability is used
as confidence. FastBERT (Liu et al. 2020) distills the output
final classifier into earlier classifiers for better performance.
Following that, RomeBERT (Geng et al. 2021) proposes gra-
dient regularization to facilitate the KD. SkipBERT (Wang
et al. 2022) replaces lower BERT layers with pre-computed
representation of text chunks and uses confidence-based early
exit for higher layers to achieve maximum acceleration.
Internal Ensemble A weakness of confidence estimation
is poor utilization of computation. When confidence of an
internal classifier fails to satisfy the exit criterion, all rele-
vant computation becomes invalid. Reusing the results from
previous layers to improve the qualify of early exit can be a
promising direction. Internal ensemble approaches consider
outputs and predictions from multiple internal classifiers to
make better decisions. This is similar to ensemble learning,
only it is within a single model.

The first work of internal ensemble, PABEE (Zhou et al.
2020), draws a comparison between overfitting in training
and overthinking in inference and adapts early stopping for
inference. When doing inference, the model will exit once
multiple consecutive internal classifiers make the same pre-
diction. The threshold, namely patience, is a hyperparameter
that can be adjusted to achieve different trade-off between
accuracy and speed. Besides improvement on performance
and efficiency, PABEE achieves better adversarial robustness,
which the authors attribute to the ensemble effect of internal
ensemble. Sun et al. (2021) propose a diversity loss that en-
courages ICs to have diverse probability distributions. Then,
they use a voting mechanism to internally ensemble the clas-
sifiers. Every IC has one vote in final prediction. The model
will exit when one class has accumulates enough votes. Lee-
BERT (Zhu 2021) promotes consistency of IC predictions by
distilling them mutually. Then, it follows PABEE’s patience-
based strategy to decide when to exit. Liao et al. (2021)
introduce a more elaborate mechanism for internal ensemble.
They first train “imitation learners”, which are linear layers
that predict the hidden states of future layers based on hid-
den states that are already calculated. PCEE-BERT (Zhang
et al. 2022) combines patience-based exit with confidence
estimation and terminates inference when multiple layers are
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Method Optimization Feature Operation

PoWER soft masking attention discarded
TR-BERT RL hidden states forwarded
LAT soft masking attention forwarded
LTP soft masking attention discarded
Transkimmer re-param. hidden states forwarded

Table 3: A summary of token skipping methods. This table is
adapted from Guan et al. (2022).

confident.
Learning to Exit Other works use a learning-based approach
to make exit decisions. BERxiT (Xin et al. 2021) trains a
linear learning-to-exit (LTE) module to predict whether the
current IC prediction is correct. CAT (Schuster et al. 2021)
proposes a “meta consistency classifier” to predict whether
the current IC prediction matches the final classifier and exits
when the consistency classifier predicts a level of conformity
higher than the threshold.

Token Skipping
Similar to early exit, token skipping dynamically accelerates
a PLM without reducing its size. The general idea is to skip
some tokens for higher layers based on their importance. A
summary of these methods is shown in Table 3.

PoWER-BERT (Goyal et al. 2020) drops a portion of to-
kens between each Transformer layer based on the attention
received by each token. The number of tokens to drop at
each layer (i.e., schedule) is learned by jointly optimizing the
sparsity of a soft mask layer with the original loss function.
This approach obtains better Pareto curves of accuracy-time
trade-off. TR-BERT (Ye et al. 2021) introduces a dynamic
mechanism for making decisions of skipping tokens. It is
trained with reinforcement learning with a reward that pro-
motes classifier confidence and penalizes the number of re-
tained tokens. Different from PoWER-BERT, the skipped
tokens are forwarded to the last layer instead of getting re-
moved. Length-Adaptive Transformer (LAT, Kim and Cho
2021) introduces LengthDrop that randomly skips tokens
during pretraining to mitigate the gap between pretraining
and fine-tuning. The schedule of LAT is searched with an
evolutionary search algorithm. LTP (Kim et al. 2022) learns
a threshold for each Transformer layer. Instead of following
a schedule to drop a specific number of tokens, LTP simply
drops tokens with a saliency score (received attention) lower
than the learned threshold. Transkimmer (Guan et al. 2022)
adds a skim predictor module, consisting of a small MLP and
Gumbel-Softmax reparameterization before each layer. The
skim predictors output a mask deciding whether to drop a
token. It also employs a skim loss that optimizes the ratio of
skipped tokens to the total number of tokens to encourage
sparsity.

Challenges and Future Directions
Which Technique to Use? A common question asked is how
to decide which technique to use in practice? Unfortunately,
there is no silver bullet given that we need to take the task,
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Unstructured
Pruning

Quantization Knowledge
Distillation
Structured
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Figure 2: An oversimplified decision tree for model compres-
sion and acceleration.

data, backbone, and hardware into consideration. We provide
an oversimplified decision tree (as shown in Figure 2) only
as a starting point. Note that these techniques can often be
combined for better results (to be discussed shortly).
Evaluation Although there have been benchmarks proposed
for evaluating model compression and acceleration as intro-
duced earlier, there are several drawbacks in current eval-
uation. First, there is no generally recognized setting for
evaluation of model compression and acceleration. Different
studies often yield models with different speed-up ratio, num-
ber of parameters and accuracy. Thus, it is often difficult to
directly compare them, not to mention differences in hard-
ware. Second, general NLU benchmarks like GLUE (Wang
et al. 2019b) or SuperGLUE (Wang et al. 2019a) may not
be the best to represent more common tasks on a mobile
device. Tasks like intention detection, dense retrieval, and
spam classification could be more representative.
Combining Techniques Although there have been attempts
at combining multiple model compression and acceleration
techniques (Kim and Awadalla 2020; Sanh, Wolf, and Rush
2020; Xu et al. 2021a), there is a lack of comprehensive and
systematic study for combining compression techniques for
better performance and efficiency. Constructing a best prac-
tice to compress a large model can be useful for practitioners.
Explainability and Robustness Recent works (Stanton
et al. 2021; Xu et al. 2021a) cast doubt on the explainability
of model compression and acceleration. Meanwhile, recent
works (Du et al. 2021; Xu et al. 2021a) report negative effects
of model compression on robustness. Explainable and robust
compression methods can be important for applications of
model compression and acceleration. Also, explainable and
robust compression minimizes effort to re-evaluate the com-
pressed model, and thus can be reliable and predictable in
production (Stanton et al. 2021; Xu et al. 2021a).
Minimizing Human Effort Current compression and accel-
eration approaches still largely rely on human heuristics to
achieve good performance. For example, knowledge distil-
lation often requires an elaborately designed loss function;
pruning relies on the saliency score; weight sharing and low-
rank factorization involve expertise to appoint modules for
sharing or factorization. One promising direction could be
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applying Meta Learning (Finn, Abbeel, and Levine 2017) or
Neural Architecture Search (Liu, Simonyan, and Yang 2019)
to model compression and acceleration, to minimize the need
for hyperparameters and human design.
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