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Abstract

Multi-view Comprehensive Representation Learning
(MCRL) aims to synthesize information from multiple
views to learn comprehensive representations of data items.
Prevalent deep MCRL methods typically concatenate
synergistic view-specific representations or average aligned
view-specific representations in the fusion stage. However,
the performance of synergistic fusion methods inevitably
degenerate or even fail when partial views are missing in real-
world applications; the aligned based fusion methods usually
cannot fully exploit the complementarity of multi-view data.
To eliminate all these drawbacks, in this work we present
a Progressive Deep Multi-view Fusion (PDMF) method.
Considering the multi-view comprehensive representation
should contain complete information and the view-specific
data contain partial information, we deem that it is unstable
to directly learn the mapping from partial information to
complete information. Hence, PDMF employs a progressive
learning strategy, which contains the pre-training and fine-
tuning stages. In the pre-training stage, PDMF decodes the
auxiliary comprehensive representation to the view-specific
data. It also captures the consistency and complementarity
by learning the relations between the dimensions of the
auxiliary comprehensive representation and all views. In
the fine-tuning stage, PDMF learns the mapping from the
original data to the comprehensive representation with the
help of the auxiliary comprehensive representation and
relations. Experiments conducted on a synthetic toy dataset
and 4 real-world datasets show that PDMF outperforms
state-of-the-art baseline methods. The code is released at
https://github.com/winterant/PDMF.

Introduction
Many real-world applications involve multiple views. For
example, doctors diagnose the disease of a patient accord-
ing to his the blood test, the radiology test, etc. These views
often exhibit consistent and complementary information of
the same data. Synthesizing multi-view data could boost
the performance of many tasks. In recent years, the rapid
growth of deep learning researches leads to many popu-
lar deep multi-view learning research topics, such as deep
multi-view clustering (Wen et al. 2022, 2020b,a), trusted
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deep multi-view classification (Han et al. 2021; Xu et al.
2022), deep multi-view contrastive learning (Lin et al. 2021;
Li et al. 2023). This work is concerned with the fundamen-
tal problem of most deep multi-view learning methods, the
deep Multi-view Comprehensive Representation Learning
(MCRL) problem, which aims to fuse the consistent and
complementary information of all views to obtain the com-
prehensive representation.

Prevalent deep MCRL methods can be roughly di-
vided into Multi-View Synergistic Representation Learning
(MSRL) and Multi-View Aligned Representation Learning
(MARL). MSRL usually first learns separate view-specific
representations and synergizes them through some criteria,
then concatenates them to construct the multi-view compre-
hensive representation (Vendrov et al. 2016). However, the
performances of most MSRL methods inevitably degener-
ate or even fail when partial views are missing for some in-
stances in real-world applications. Another line is MARL,
which usually first learns aligned view-specific representa-
tions of all views, then (weighted) averages them to con-
struct multi-view comprehensive representation (Wen et al.
2020b). In general, deep MARL methods use the Deep Neu-
ral Networks (DNNs) to model the mappings from view-
specific data to aligned view-specific representations. How-
ever, most existing deep MARL methods cannot fully ex-
ploit the complementarity of multi-view data, i.e., some
views may contain information that other views do not have.
For example, in Figure 1, the image view contains the lesion
size and location information, but can not provide the con-
tent of leucocyte. Hence the dimensions of the comprehen-
sive representation reflecting the content of leucocyte should
not connect with the image view.

Recently, in order to explicitly consider the complemen-
tarity of multi-view data, researchers propose some new
deep MCRL paradigms. Wang et al. (Wang et al. 2020) pro-
pose a novel dimension exchange strategy for MARL. They
regard a dimension of the aligned view-specific represen-
tations as the complementary dimension if it is less than
a preset threshold. The complementary dimensions would
be replaced by the average of the corresponding dimensions
of other views. However, this method may unstable since
an inferior initialization would extremely influent the model
training. In (Nagrani et al. 2021), Nagrani et al. propose a
bottleneck-based fusion method, which can be deem as the
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Figure 1: Illustration of PMDF. In the pre-training stage, we
perform a simple task, i.e., learning the mappings from the
auxiliary multi-view comprehensive representation ẑn (com-
plete information) to view-specific data xv

n (partial informa-
tion). We also establish the view-specific relation matrices
{Wv}Vv=1 to explicitly model the consistency and comple-
mentarity among different views. In the fine-turning stage,
we learn the mappings from xv

n to zn under the guidance of
{Wv}Vv=1 and ẑn.

integration of MSRL and MARL. It divides the multi-view
comprehensive representation into the aligned part (bottle-
neck) and view-specific parts, which are forced to collect
the consistent information and complementary information,
respectively. However, this paradigm is concentrated on the
two-view case because the model complexity exponentially
increases with the increase of views.

To eliminate the above limitations and drawbacks, we pro-
pose a new MARL method, named Progressive Deep Multi-
view Fusion (PDMF). Considering the multi-view compre-
hensive representation z should contain complete informa-
tion and the view-specific data xv contain partial informa-
tion, we deem that it is difficult to directly learn the mapping
from partial information to complete information. Inspired
by human learning process, we propose a progressive learn-
ing strategy. As shown in Figure 1, in the pre-training stage,
PDMF aims to solve a simple task, i.e., decoding the aux-
iliary comprehensive representation ẑ to view-specific data

xv . PDMF establishes view-specific relation matrix Wv to
capture the relation of ẑ and xv . PDMF also requires Wv

to be sparse in term of columns to explicitly model the con-
sistency and complementarity among different views. In the
fine-tuning stage, PDMF learns the mapping from xv to z.
A Multi-view Sparse Batch Normalization (MSBN) layer is
established to fuse the aligned view-specific representations.
The sparse scaling factors of MSBN contain the dimension-
specific correlations of the aligned view-specific representa-
tions and z. We also use the Wv and ẑ to guild the learning
of sparse scaling factors and z.

The contributions of this work are as follows: (1) we
propose a progressive multi-view comprehensive learning
strategy to explicitly consider the consistency and comple-
mentarity of multi-view data; (2) we develop the general
MSBN layer to fuse the aligned view-specific representa-
tions, which could be used in most prevalent MARL meth-
ods. This layer facilitates the fusion model to integrate inter-
view information and reserve intra-view information in a
flexible fashion; (3) we empirically evaluate PDMF on a
synthetic toy dataset and 4 real-world datasets to show its
superiority over state-of-the-art baseline methods.

Related Work
In this section, we brief review three lines of related works
about MCRL, Multi-view Synergistic Representation Learn-
ing (MSRL), Multi-view Aligned Representation Learning
(MARL) and Multi-modal Pre-training. We also show the
structure comparisons of MSRL, MARL and the proposed
PDMF in Fig. 2.

Multi-View Synergistic Representation Learning
Deep MSRL first learns view-specific representations
{zvs}Vv=1 of multi-view data {xv}Vv=1 with separate DNNs
{fv

s }Vv=1. MSRL also synergizes {zvs}Vv=1 through some cri-
teria, such as maximizing correlation (Andrew et al. 2013),
enforcing a partial order (Vendrov et al. 2016) between
view-specific representations and maximizing reconstruc-
tion accuracy (Wan et al. 2021; Radford et al. 2021). Then,
MSRL constructs the multi-view synergistic representation
zs by the aggregation network fs, such as concatenation
(Andrew et al. 2013; Zeng et al. 2019). The whole process
is shown in:

zvs = fv
s (x

v), zs = fs(z
1
s, · · · , zVs ). (1)

The pioneer deep MSRL method is Deep Canonical Cor-
relation Analysis (DCCA) (Andrew et al. 2013). DCCA
learns two separate DNNs for two views, with the objec-
tive that the learned high-level view-specific representations
are as correlated as possible. Hazirbas et al. (Hazirbas et al.
2016) point out the performance of MSRL is highly affected
by the choice of which layer to fuse. Vendrov et al. (Vendrov
et al. 2016) propose to capture a partial order of the repre-
sentations of text and image views, i.e., enforcing a hierar-
chy on the representation. For example, the semantic of an
image (“woman walking her dog”) is hierarchical and tran-
sitive: “woman walking her dog” → “woman walking” →
“woman” → “person”. Xu et al. (Xu et al. 2020) establish
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Figure 2: Structures of Multi-view Synergistic Representation Learning (MSRL), Multi-view Aligned Representation Learning
(MARL) and the proposed PDMF. MSRL learns separate view-specific representations and synergizes them through some
criteria. MARL aligns view-specific representations. PDMF explicitly establishes the sparse connections between the multi-
view comprehensive representation and the aligned view-specific representations. Therefore, the dimensions of the multi-view
comprehensive representation can flexibly connect to all view. This complies with the complementarity of multi-view data.

multi-view interactive maps through the cross-correlations
of {zvs}Vv=1. Then they impose supervision on the interac-
tive maps. Recently, Wan et al. (Wan et al. 2021) require the
view-specific representations should reconstruct the trans-
formation relationship in original data. Radford et al. (Rad-
ford et al. 2021) reconstruct some parts of one view by the
representation of another view, which can mine the cross-
view interaction in a self-supervised manner.

Unfortunately, MSRL usually assumes that all of the
views are complete. However, in real-life cases some views
could be missing for some data instances. Due to the con-
catenation based fusion paradigm, MSRL can not well ap-
plied in this case. Our PDMF can naturally solve this prob-
lem since it aligns view-specific representations.

Multi-View Aligned Representation Learning
MARL requires the view-specific representations {zva}Vv=1
are aligned. In the fusion stage, MARL (weighted) aver-
ages 1 {zva}Vv=1 to learn multi-view aligned representation
za. The whole process is shown in:

zva = fv
a (x

v), za =
V∑

v=1

wvzva, (2)

where wv is the weight of the v-th view. Representative ear-
lier MARL method is Bimodal Deep Autoencoder (Ngiam
et al. 2011), which extracts aligned representations by train-
ing a bimodal deep autoencoder. Srivastava and Salakhutdi-
nov (Srivastava and Salakhutdinov 2012) propose to learn
aligned representation of images and texts by Deep Boltz-
mann Machines. These methods require the view-specific
representations are fully aligned ({wv = 1}Vv=1) (Zhang
et al. 2021, 2022). There are also some works directly im-
pose aligned constraints to {zva}Vv=1, such as Maximum-

1There are some other strategies to fuse {zva}Vv=1, such as
element-wise multiplication. In this work, we focus on the repre-
sentative (weighted) averages fusion strategy.

Mean-Discrepancy (Gretton et al. 2012), Minimizing Dis-
tribution Divergence (Wen et al. 2020b; Xu et al. 2019).

However, most existing MARL methods cannot fully ex-
ploit the complementarity of multi-view data, i.e., some
views may contain information that other views do not have.
Therefore, some dimensions of the aligned view-specific
representation should not relate to the all views. Some works
(Nagrani et al. 2021) provide a way to alleviate this is-
sue, which learns multi-view aligned representation (con-
sistent information) while simultaneously maintaining view-
specific representations (complementary information). But
this paradigm is concentrated on the two-view case. Wang et
al. (Wang et al. 2020) regard a dimension of {zva}Vv=1 as the
complementary dimension if it is less than a preset thresh-
old. Then they replace it by the average of the correspond-
ing dimensions of other views. However, the method may
unstable in the training process since a inferior initialization
would extremely influent the model training. Compared to
this method, PDMF establishes a easier pre-training task to
better initialize the consistency and complementary dimen-
sions.

Multi-Modal Pre-training
This work is also related to Multi-modal2 Pre-training (Rad-
ford et al. 2021), which also uses the progressive learning
strategy. In the pre-training stage, Multi-modal Pre-training
aims to pre-train multi-modal transformers with less high-
quality labelled data. It extracts region features (Ander-
son et al. 2018), CNN-based grid features or patch fea-
tures for vision modal and word embedding for language
model (Kenton and Toutanova 2019). Then it sends the vi-
sion or language modal features to transformers. Finally, it

2Modalities usually refer to different information sources of the
same object, such as text, image, video, etc. View is a broader con-
cept, such as various low-level features of an image. Multiple views
of an instance describe same object, while this relation may not ex-
isted in some multi-modal datasets.
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uses different pre-training objectives to train the transform-
ers, such as reconstructing the masked element by lever-
age the unmasked remainders. The pre-trained transform-
ers can achieve surprising effectiveness by fine-tuning with
only a tiny amount of manually-labelled data on downstream
tasks. PDMF is superior to Multi-modal Pre-training from
two perspectives: 1) Most Multi-modal Pre-training meth-
ods can only deal two specific modals (Chen et al. 2022),
i.e., vision modal (image or video) and language modal data.
PDMF can handle various kinds of multi-view data with
arbitrary views; 2) Multi-modal Pre-training requires large
scale training data, while PDMF applies to different data
sizes.

The Method
In this section, we present Progressive Deep Multi-view Fu-
sion (PDMF) in detail.

Notations and Problem Statement
In the MCRL problem, an instance is characterized by mul-
tiple views. Suppose we are given a multi-view dataset with
V views and N instances. We use xv

n ∈ RDv

to denote the
feature vector for the v-th view (v = 1, . . . , V ) of the n-
th instance (n = 1, . . . , N), where Dv is the dimension-
ality of the v-th view. yn is the class label for the n-th in-
stance. The multi-view data contain consistency and com-
plementarity properties: consistency denotes different views
exhibit common information and complementarity implies
that some views may contain knowledge that other views
do not have. Our target is to learn the multi-view compre-
hensive representation zn ∈ RD, which should contain the
consistent and complementary information of {xv

n}Vv=1.

Framework
Considering the multi-view comprehensive representation
(zn) should contain complete information and the view-
specific data (xv

n) contain partial information, we deem
that it is difficult to directly learn the mapping from xv

n
to zn. Motivated by the curriculum learning (Bengio et al.
2009), which solves easier easier subtasks first, and then in-
crease the difficulty level, we propose a progressive learning
method, PDMF. As shown in Figure 1, PDMF contains pre-
training (simple task) and fine-tuning (difficult task) stages.
In the pre-training stage, PDMF decodes the auxiliary com-
prehensive representation ẑn to view-specific data xv

n. In
addition, PDMF explicitly learns the relations of ẑn and
{xv

n}Vv=1 in the relation matrices, {Wv}Vv=1. In the fine-
tuning stage, PDMF trains view-specific encoders to learn
aligned view-specific representations {zvn}Vv=1. Consider-
ing zvn contains partial information while zn should con-
tain complete information, we deem some dimensions of zvn
should not related to zn. This also complies with the com-
plementarity of multi-view data. Therefore, we elaborate a
Multi-view Sparse Batch Normalization (MSBN) layer to
fuse {zvn}Vv=1. The sparse scaling factors of MSBN model
the relations of zvn and zn. We also use the relation matrices
and the auxiliary comprehensive representation ẑn to guild
the learning of sparse scaling factors and zn. Details regard-
ing each component will be elaborated as below.

Pre-training In the pre-training stage, we aim to solve
a simple task, i.e., decoding the auxiliary comprehensive
representation ẑn (which should contain complete informa-
tion) to view-specific data xv

n (containing partial informa-
tion). The decoding process contains two parts: 1) the rela-
tion matrices {Wv}Vv=1 which measure the relations of all
elements of ẑn and each view; 2) the decoder neural net-
works {gv(·)}Vv=1 that learn the complex hierarchical non-
linear mapping of view-specific data xv

n and high-level rep-
resentation Wvẑn. The target of the decoding process is:

Lr
n =

N∑
n=1

V∑
v=1

∥xv
n − gv(Wvẑn)∥22,

ẑn ∈ RD,Wv ∈ RDv
W×D,

(3)

where Lr
n denotes the reconstruction loss. For each Wv , we

add a structured sparseness regularizer on it to encourage
some column vectors in Wv to become 0:

∥Wv∥1,∞ =
D∑

j=1

max
1≤i≤Dv

W

|W v
ij |. (4)

This makes the v-th view independent of the latent di-
mensions corresponding to these zero valued vectors. For
example, in Fig. 1 the third column of W1 are zero columns,
which means the third latent dimension of ẑn is not associ-
ated with view 1. This dimension could represent comple-
mentary information in multi-view data. On the contrary, if
none of the related vectors of a latent dimension are com-
pletely zero, this dimension would correlate with all the
views and capture the consistent information across all the
views. The correlation setting for each dimension is deter-
mined automatically by optimization.

Such an unsupervised framework is hard to guarantee that
the learned auxiliary comprehensive representation captures
the conceptual structures in multi-view data. Therefore, we
introduce the supervision information to the learning pro-
cess. A directly strategy is to learn a classification function
based on ẑn. However, the generalization ability may be
affected since ẑn and classifier are jointly learnt, which is
likely an under-constrained problem. This strategy may find
representation that can well fit the training data but not well
reflect the underlying patterns. We establish a clustering-like
classification scheme for prediction:

ŷn = argmax
y∈Y

1

|T (y)|
∑

ẑ∈T (y)

ϕ(ẑ)
T
ϕ(ẑn), (5)

where Y denotes the whole label set, T (y) is the set of com-
prehensive representation ẑ of class y, and ϕ(·) denotes the
feature mapping function for ẑ. We set ϕ(ẑ) = ẑ for simplic-
ity and effectiveness in implementation. By jointly consid-
ering classification and conceptual structures learning, the
clustering-like classification loss is specified as:

Lc
n =max

{
0,∆(yn, ŷn) +

1

|T (ŷn))|
∑

ẑ∈T (ŷn)

ϕ(ẑ)
T
ϕ(ẑn)

− 1

|T (yn))|
∑

ẑ∈T (yn)

ϕ(ẑ)
T
ϕ(ẑn)

}
.

(6)
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where ∆(yn, ŷn) = 0 when ŷn = yn, otherwise,
∆(yn, ŷn) = 1. The clustering-like classification loss not
only penalizes the misclassification but also ensures struc-
tured representation. If the n-th instance is correctly classi-
fied, i.e., ŷn = yn, the loss degrades to normal ∆(yn, ŷn).
Otherwise, the last two terms of Lc

n enforce the similarity
between ẑ and the center of class yn larger than that be-
tween ẑ and the center of class ŷn with a margin ∆(yn, ŷn).
Therefore, this loss keeps the instances from belonging to
the same class are near each other in the comprehensive rep-
resentation, while keeping instances from different classes
as distant as possible.

By synthesizing the above objectives, the overall opti-
mization problem in the pre-training stage is formulated as:

min
{Wv,gv}V

v=1,{ẑn}N
n=1

N∑
n=1

(Lr
n + α1L

c
n) + α2

V∑
v=1

∥Wv∥1,∞,

(7)
where α1, α2 > 0 are hyper-parameters.

The pre-training model learns the comprehensive repre-
sentation {ẑn}Nn=1 of the training set. However, it faces
out-of-the-sample problem since an additional optimization
problem should be established for new data. Therefore, we
introduce the fine-tuning stage to solve this problem.

Fine-tuning In the fine-turning stage, we aim to map the
view-specific data xv

n (containing partial information) to the
multi-view comprehensive representation zn (which should
contain complete information). This is difficult especially
when the views are highly independent. Therefore we in-
volve the auxiliary ẑn and relation matrices {Wv}Vv=1 in
the learning process.

Firstly, we establish encoders {fv(·)}Vv=1 to learn aligned
view-specific representations:

zvn = fv(xv
n). (8)

In order to align the representation of multiple views, we
add view-specific Batch Normalization (BN) in each layer.
BN whitens activations within a mini-batch of N b instances
for each dimension and further transforms the whitened ac-
tivations using affine parameters γ and β. Therefore, BN
is conducive to eliminate covariate shift among different
views. We denote the c-th dimension of output of the l-th
layer as zvn,l,c, where c ∈ (1, · · · , Dv

l ). The BN process is:

zvn,l+1,c = γv
l,c

zvn,l,c − µv
l√

σv
l
2 + ϵ

+ βv
l,c, (9)

where γv
l,c and βv

l,c are the trainable scaling factor and offset,
respectively. ϵ is a small constant to avoid zero value. µv

l and
σv
l denote the mean and the standard deviation, respectively,

of all representation dimensions for the current mini-batch
data:

µv
l =

∑
n

∑
c z

v
n,l,c

N b ·Dv
l

, (10a)

σv
l
2 =

∑
n

∑
c(z

v
n,l,c − µv

l )
2

N b ·Dv
l

. (10b)

Considering the complementarity of multi-view data,
some dimensions of the Lv-th (highest) layer view-specific
representation zvn should not related to the multi-view com-
prehensive representation zn. We elaborate a Multi-view
Sparse Batch Normalization (MSBN) layer to model this
sparse connection. The sparsity constraint is imposed on the
scaling factors {γv

Lv,c}Vv=1 of the MSBN layer. γv
Lv,c evalu-

ates the correlation between the input zvn,Lv−1,c and the out-
put zvn,L,c. When γv

Lv,c → 0, zvn,Lv,c will lose its influence
to the v-th view. In addition, the sparsity constraint causes
that once γv

Lv,c → 0 at a certain training step, it will almost
do henceforth.

To better initialize the learning process, we involve rela-
tion matrices {Wv}Vv=1 to guide the learning. Specifically,
we extract the relation of zn and view v from Wv:

w̄v
c =

Dv
W∑

j=1

1

Dv
W

|W v
jc|. (11)

By minimizing ∥γv
Lv,c−σ(aw̄v

c+b)∥22, we achieve a better
γv
Lv,c by the assistant of w̄v

c . a, b are trainable parameters.
σ(·) is the sigmoid function which forces γv

Lv,c to be in (0,1)
and facilitates more sparse values.

Then, since view-specific representations are well aligned
through the above strategies, we directly average them to
obtain the multi-view comprehensive representation:

zn =
1

V

V∑
v=1

zvn. (12)

We also use auxiliary comprehensive representation ẑn to
guild the learning of zn. The whole auxiliary loss is defined
as:

La
n = ∥zn − ẑn∥22 +

ζ

V ·D
∑
v,c

∥γv
Lv,c − σ(aw̄v

c + b)∥22),

(13)
where ζ > 0 is hyper-parameter. The overall optimization
problem in the fine-turning stage is summarized as:

min
{fv}V

v=1

1

N b

∑
n

(λ1L
t(zn)+δtL

a
n)+λ2

∑
v,c

|γv
Lv,c|, (14)

where the first term is the task specific loss. λ1, λ2 is hyper-
parameter. δt = max(0, 1 − t/10) is the annealing coeffi-
cient, t is the index of the current training epoch.

Experiments
We evaluate the performance of PDMF on a synthetic toy
dataset and four real-world datasets.

A Toy Example
We first evaluate PDMF on a synthetic toy example to in-
vestigate it explicitly models the consistency and comple-
mentarity. In the toy example, we generate multi-view data
from underlying comprehensive representation and force
some dimensions of the representation are not related to par-
tial views. Specifically, the toy dataset consists of 2 views
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(a) Mapping matrices Uv

(b) Relation matrices Wv

Figure 3: The correlations of view-specific data and multi-
view comprehensive representation in the toy example.

(a) (b)

Figure 4: The learnt scaling factors on the toy example.

of 1000 data instances {xv
n}1000n=1 , which belong to 2 cat-

egories with 500 data instances in each category. The in-
stances are generated from the multi-view comprehensive
representation {zvn}1000n=1 with 6 dimensions, with 3 for each
category. Each element of zvn is the sum of a number sam-
pled from gamma distributed Γ(1, 0.9), the noise sampled
from Gaussian distribution N(0, 0.1) and the consistent 0.5.
We use xv

n = Uvzvn + pv to generate data instances, where
Uv ∈ R8×6 and pv ∈ R8 denote the view-specific map-
ping matrix and noise, respectively. The elements of Uv are
produced by a uniform distribution U(0.4, 1). We randomly
set 30 percent elements to be zero to simulate the real-world
multi-view mapping pattern. We also set some columns of
Uv to be 0 to model the complementarity of multi-view
data. The elements of pv are produced by the Gaussian dis-
tributions N(0, 0.1). The generated mapping matrices Uv

are shown in Fig. 3(a).
We perform PDMF on the toy dataset. Figs. 3(b) and 4(a)

show the correlation matrices and scaling factors of PDMF,
respectively. We can see that the correlation matrices are
very similar to the ground truth mapping matrices. In ad-
dition, the sparse relations of the comprehensive represen-
tation and two views are explicitly captured by the scaling
factors. This indicates the consistency and complementar-

ity properties can be recovered by PDMF. We further test
the necessity of the pre-training stage. We remove the auxil-
iary loss in Eq. (14) and directly train this fine-tuning model
(PDMF-F). The scaling factors of this model are shown in
Fig. 4(b). We can see that all elements of the scaling factors
tend to be small values, which is not comply the real sparse
relations. The reason might directly solving the hard task,
i.e., learning complete information from partial information,
is hard to achieve satisfactory performance.

Experiments on Real-World Datasets
Datasets We use 4 real-world datasets to evaluate PDMF:

Handwritten Dataset 3 consists of features of handwrit-
ten numbers. It contains 10 categories (handwritten numbers
‘0’-‘9’) with 200 images in each category and 6 types of im-
age features, which are used as 6 views in our experiments.

CUB (Caltech-USD Birds) Dataset 4 contains 11788
bird images associated with text descriptions of 200 cate-
gories. We use the first 10 categories, and select 60 instances
in each category to construct our dataset. We extract text fea-
tures and visual features as two views.

Scene15 Dataset (Fei-Fei and Perona 2005) contains
4485 images from 15 indoor and outdoor scene categories.
Three kinds of features, i.e., 1536D GIST description,
3780D HOG histogram and 4096D LBP feature are ex-
tracted as three views.

UCIA (UCI Activity) Dataset 5 is a sequential multi-
sensors dataset. It consists of sensor data for 19 different
activities such as standing, sitting, etc. It contains 9120
instances with 5 views. The instances contain 9(dimen-
sion)*125(timestamps) features for each view.

Important statistics are summarized in Table 1.

Evaluation Methodology We compare PDMF with the
following MCRL baselines: Best Single View (BSV) clas-
sifies on each view, and reports the best result. Concat con-
catenates feature vectors of different views to apply clas-
sification. DCCAE (Wang et al. 2015) is a representative
MSRL method which employs autoencoders and Canonical
Correlation constraint to learn the comprehensive represen-
tation. Since it is for two views, we run DCCAE on all two-
view combinations of a multi-view data set and report the
best results. DIMC (Wen et al. 2020b) is a representative
MARL method which weighted averages the view-specific
representations to obtain the comprehensive representation.
CEN (Wang et al. 2020) is a novel MARL method which
uses dimension exchange strategy to learn the complemen-
tarity of multi-view data. AE2-Nets (Zhang et al. 2022) is
the state-of-the-art MARL method. It establishes the inner-
AE-networks to extract view-specific intrinsic information,
while the outer-AE-networks to integrate this view-specific
intrinsic information from different views into multi-view
comprehensive representation.

We compare the classification performance of PDMF and
baseline methods. For the multi-view comprehensive rep-

3https://archive.ics.uci.edu/ml/datasets/Multiple+Features
4http://www.vision.caltech.edu/visipedia/CUB-200
5https://archive.ics.uci.edu/ml/datasets/

daily+and+sports+activities
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Dataset Size # of categories Dimensionality
Handwritten 2000 10 6/47/64/76/216/240

CUB 600 10 300/1024
Scene15 4485 15 1536/3780/4096
UCIA 9120 19 9*125 for all 5 views

Table 1: Datasets summary.

Method Handwritten CUB Scene15 UCIA
BSV 92.32±0.71 75.37±0.42 47.66±0.27 66.31±0.51

Concat 94.84±0.51 78.34±0.60 48.54±0.64 67.32±0.74
DCCAE 96.74±0.41 81.48±0.45 54.94±0.21 70.65±0.54
DIMC 91.28±0.93 80.39±0.83 58.32±0.47 77.38±0.49
CEN 93.37±1.03 87.42±0.67 64.25±0.59 79.24±0.72

AE2-Nets 96.65±0.32 85.75±0.59 67.19±0.42 80.06±0.39
PDMF 98.97±0.31 91.26±0.29 69.33±0.55 83.36±0.47

Table 2: Classification accuracy on different datasets (accuracy±standard deviations,%).

Handwritten CUB Scene15 UCIA
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Figure 5: Ablation studies on all datasets.

resentation learning baselines, we feed the comprehensive
representation into the k-Nearest Neighbor (kNN) classifier
(k = 9) to calculate Accuracy. Each dataset is randomly di-
vided into training set (80%), validation set (10%) and test
set (10%). All the hyperparameters of PDMF and baselines
are selected based on the validation set. The averaged per-
formance is reported by running each test case five times.
We use stochastic gradient decent and apply Adam for train-
ing. The learning rate is set as 1e−5. We elaborate the im-
plementation details, hyper-parameters setting and network
architectures in the supplement materials.

Results Tab. 2 shows the classification performance of
PDMF and baseline methods. First, CEN is superior to
DIMC on all datasets. This is intuitive since DIMC directly
averages the view-specific representations, while CEN mod-
els the important sparse connections in the fusion process.
Second, DIMC and CEN perform not well on the Hand-
written dataset. The reason might this dataset contains 6
dimension morphological features view. It is hard to align
this view to the multi-view comprehensive representation.
Third, AE2-Nets performs well on this datasets since it re-

(a) 6D view (b) PDMF (c) PDMF (R6D)

(d) PDMF-F (e) PDMF-F (R6D) (f) PDMF-P

Figure 6: t-SNE visualization on the Handwritten dataset.
PDMF-P and PDMF-F denote the individual Pre-training
and Fine-turning stage, respectively. We Remove the 6D
view of the Handwritten dataset to construct a varietal
dataset (R6D).

alizes alignment by outer-AE-networks, which learns map-
ping from comprehensive representation (complete infor-
mation) to view-specific data (partial information). Finally,
PDMF consistently outperforms AE2-Nets on all datasets,
which indicates that the sparse constraints could generate
better representation by explicitly leveraging consistency
and complementarity of multi-view data. We use t-test with
significance level 0.05 to test the significance of perfor-
mance difference. Results show that PDMF significantly
outperforms all the baseline methods.

Analysis Ablation Studies: To prove the importance of the
pre-training stage, we propose three variations of PDMF,
PDMF-Nz, PDMF-Ng and PDMF-F, which remove the first,
second and all terms of Eq. (13), respectively. The exper-
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iment results are shown in Fig. 5. We can obtain the fol-
lowing points from the experimental results: (1) The per-
formances of variations drop on all datasets, which shows
the effectiveness of the pre-training stage; (2) The perfor-
mance of PDMF-F drops dramatically on the Handwritten
dataset. This complies with the experiment results of DIMC
and CEN.

t-SNE Visualization: We use t-SNE to visualize the 6D
morphological features view and the comprehensive repre-
sentations. As shown in in Fig.6: (1) the 6D morphologi-
cal features view has the poor classes separability; (2) as
shown in Figs. 6(b)-6(e), we find the performance of PDMF-
F immensely promotes when the 6D morphological features
view of the Handwritten dataset is removed (expressed as
R6D in Fig.6) and the performance of the PDMF is affected
slightly. This verifies the pre-training is conductive to align-
ment in the fine-turning stage, especially when the views
are highly diverse; (3) Fig. 6(f) shows the auxiliary compre-
hensive representation of PDMF-P already reveals compact
clusters. This indicates the auxiliary comprehensive repre-
sentation provides high-quality guidance for the fine-turning
stage.

Conclusion
In this paper, we proposed a new MARL method, PDMF,
to explicitly capture the consistence and complementarity
of multi-view data. In the pre-training stage, PDMF models
the relations between the dimensions of the auxiliary com-
prehensive representation and all views by solving a simple
task. In the fine-tuning stage, PDMF learns the mappings
from the original data to the comprehensive representation
with the help of the auxiliary comprehensive representation
and relation matrices. Experimental results on a synthetic
toy dataset and 4 real-world datasets confirmed the effec-
tiveness of PDMF.
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