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Abstract

Multi-player multi-armed bandit is an increasingly relevant
decision-making problem, motivated by applications to cog-
nitive radio systems. Most research for this problem focuses
exclusively on the settings that players have full access to
all arms and receive no reward when pulling the same arm.
Hence all players solve the same bandit problem with the
goal of maximizing their cumulative reward. However, these
settings neglect several important factors in many real-world
applications, where players have limited access to a dynamic
local subset of arms (i.e., an arm could sometimes be “walk-
ing” and not accessible to the player). To this end, this paper
proposes a multi-player multi-armed walking bandits model,
aiming to address aforementioned modeling issues. The goal
now is to maximize the reward, however, players can only
pull arms from the local subset and only collect a full reward
if no other players pull the same arm. We adopt Upper Confi-
dence Bound (UCB) to deal with the exploration-exploitation
tradeoff and employ distributed optimization techniques to
properly handle collisions. By carefully integrating these two
techniques, we propose a decentralized algorithm with near-
optimal guarantee on the regret, and can be easily imple-
mented to obtain competitive empirical performance.

Introduction
The multi-armed bandit (MAB) framework has been widely
adopted for studying sequential decision-making problems
(Robbins 1952; Lai and Robbins 1985; Auer, Cesa-Bianchi,
and Fischer 2002; Bubeck and Cesa-Bianchi 2012) in a va-
riety of applications. In a classic MAB setting, the decision
maker chooses one arm from the set of K = {1, · · · ,K}
arms at each time and receives a random reward according to
unknown reward distributions. The rewards of different arms
are assumed to be independent and identically distributed
over time. The goal of the decision maker is to maximize the
cumulative reward in the face of unknown mean rewards.

Recently, there has been an increased interest in studying
the MAB in multi-player settings, dubbed as MPMAB, where
the problem gets more intricate as N independent decision
makers (i.e., players) are involved. At each discrete time t,
each player selects one arm from K, receives some feed-
back about this arm and possibly shares some “information”
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with her neighbors. Two popular settings have been widely
studied: a collision setting, where a player collects the full
reward from the selected arm only if no other players pull
the same arm, as motivated by radio channel assignment in
cognitive radios (Jouini et al. 2009); and a collaborative set-
ting, where players receive independent reward when they
pull the same arm, and cooperatively solve a MAB, as moti-
vated by sequential decisions in social networks (Landgren,
Srivastava, and Leonard 2016). In this work, we focus on the
former setting, and simply refer to it as the MPMAB.

However, the basic model for MPMAB in most prior works
assumes that players have full access to all K arms in each
time. This neglects several important factors of systems for
many real-world applications, where each player can only
access a subset of arms that dynamically changes over time
(i.e., an arm could sometimes be “walking” and not accessi-
ble to the player). For example, consider the problem of con-
tent placement in next-generation wireless networks (e.g.,
5G/6G) (Andrews et al. 2014) where N cache-enabled base
stations (players) serve a region where mobile users request
for K contents (arms), e.g., movies, videos, etc. Users re-
ceive a large reward (e.g., a short latency) if the requested
content is stored in the nearest base station, otherwise they
are served by farther base stations with a small reward (e.g.,
a larger latency). The base stations initially have no informa-
tion about users’ content requests and contents’ global pop-
ularity since each base station only have access to a subset of
contents due to its constrained cache size. In reality, users’
content requests are highly dynamic and hence each base
station needs to repeatedly determine the subset of contents
to be cached so as to maximize the total reward of serving
users. Another application is mobile edge computing (Ce-
selli, Premoli, and Secci 2017; Farhadi et al. 2021), where
edge clouds (arms) with computing resources form a shared
resource pool, which can be allocated among user requests
(players) that only have access to some edge clouds within
the same geographical region. Additional real-world appli-
cations where players only have access to a subset of arms
are presented in (Xiong and Li 2022).

In this paper, we introduce a new bandit model in for-
malizing the walking arms such that “each player only ac-
cesses a subset of arms that dynamically changes over time”.
Specifically, at time t, player i only has access to a subset
Si(t) ⊆ K of arms, where Si(t) is changing over time. As a

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

10528



result, we call the set of K arms as “walking arms” and refer
to the subset Si(t) as the local walking arm set. The goal is
to find the optimal arm in Si(t) for each player i ∈ N at each
time t to maximize the cumulative reward over a finite time
horizon T . However, player i only observes a full reward if
no other players pull the same arm. We call this new ban-
dit model as “multi-player multi-armed walking bandits”
(MPMAB-WA).

To the best of our knowledge, this is the first work that
integrates all three critical factors of multiple players, colli-
sions and dynamic local walking arms into a unified MPMAB
model. However, the MPMAB-WA problem becomes much
more challenging. In particular, the dynamic local walk-
ing arms introduce an additional layer of complexity to the
MPMAB problem that is already quite intricate. This is be-
cause each player not only encounters a non-trivial trade-
off between exploration (i.e., seeking better options) and ex-
ploitation (i.e., staying with the currently-known best op-
tion) when attempting to maximizing the reward, but also is
faced with a new dilemma of how to manage the balance be-
tween maximizing the reward and avoiding collisions when
players only receive feedback from a dynamic local subset
of arms at each time.

Though several known MPMAB algorithms can success-
fully handle the exploration-exploitation tradeoff, this new
dilemma make existing arm elimination (Lykouris, Mir-
rokni, and Paes Leme 2018; Gupta et al. 2021; Boursier
and Perchet 2019), learning-to-rank (Combes et al. 2015;
Tibrewal et al. 2019) and leader-follower (Wang et al. 2020;
Mehrabian et al. 2020) methods inapplicable in MPMAB-WA.
In this paper, we make significant progress in this direc-
tion by extending the Upper Confidence Bound (UCB)
(Auer, Cesa-Bianchi, and Fischer 2002) to deal with the
exploration-exploitation tradeoff and employing distributed
optimization techniques to properly handle collisions in the
presence of walking arms. This require careful integration
of these techniques since the default optimal methods are
incompatible with external randomness (Vernade, Cappé,
and Perchet 2017; Lykouris, Mirrokni, and Paes Leme 2018;
Madhushani et al. 2021).

Specifically, we study a “networked information sharing”
setting, where all players are arranged in a network G :=
{N , E}, and each player has limited capacity for sharing in-
formation, e.g., their estimates of the arms’ mean rewards
with her neighbors in G, as inspired by the original idea of
utilizing collisions to share sampled arm rewards in MPMAB
settings (Boursier and Perchet 2019; Shi et al. 2020). To
tackle the new dilemma in the presence of walking arms, we
present a decentralized algorithm called MPMAB-WA-UCB,
which is able to avoid collisions after sufficient exploration,
in a decentralized manner, i.e., each player decides which
arm to pull independently based on the local available infor-
mation: the past observed rewards and collisions, along with
the received information from neighbor players. To achieve
this, our high-level idea is to leverage shared information
into exploitation to maximize reward from each player’s per-
spective, which turns out to be a matching problem whose
complexity grows exponentially with the number of play-
ers and arms. To this end, we propose an efficient match-

ing policy and a ranking policy, which assign different rank-
ings to neighbor players so as to avoid collisions. We rigor-
ously prove that a logarithmic growth of the regret is achiev-
able for MPMAB-WA-UCB. Note that our regret analysis is
more challenging as traditional regret analysis becomes non-
applicable here due to the integration of decentralized opti-
mization methods for handling walking arms.

Related Work
As motivated by the cognitive radio channel assignment
problem (Jouini et al. 2009), the MPMAB problems have
been extensively studied in different settings. There are two
classes of algorithms for MPMAB. The first class allows no
information sharing among players, where players sense the
presence of other players through experienced collisions
(Anandkumar et al. 2011). The other class allows infor-
mation sharing among players, e.g., directly sharing esti-
mated mean rewards of arms (Liu and Zhao 2010b; Kalathil,
Nayyar, and Jain 2014; Rosenski, Shamir, and Szlak 2016;
Bistritz and Leshem 2018; Besson and Kaufmann 2018;
Boursier and Perchet 2019; Mehrabian et al. 2020; Wang
et al. 2020; Bubeck et al. 2020; Lugosi and Mehrabian
2021; Hanawal and Darak 2021; Pacchiano, Bartlett, and
Jordan 2021; Shi et al. 2020). In particular, the regret guar-
antees for MPMAB were significantly improved in (Boursier
and Perchet 2019) compared to the non-information shar-
ing case. However, the proposed SIC-MMAB needs to know
the time horizon in advance and the exchange of reward es-
timations leading to the number collisions for communica-
tion grows large with T . (Wang et al. 2020; Hanawal and
Darak 2021; Shi et al. 2021) extended this model to a leader-
follower framework with better regret guarantees.

However, all above literature assume that players have full
access to all arms at each time while we consider a setting
where players can only access a local subset of arms. Fur-
thermore, the local subset of arms is dynamically changing
over time, which exhibits external randomness. As a result,
information sharing is necessary for MPMAB-WA to guaran-
tee a near-optimal performance. This is quite intuitive since
there exists no universal ranking over arms across players
due to the dynamic nature of MPMAB-WA. This results in in-
finitely often collisions with an Õ(T ) regret when all players
independently pull arms in a greedy way. We provide an in-
tuitive example for further illustration along with additional
related work discussions in (Xiong and Li 2022).

Problem Formulation
We consider a stochastic multi-player multi-armed walking
bandits (MPMAB-WA) with collisions setting with a set of
N = {1, · · · , N} players, which are randomly distributed in
a geographical region, and a set of K = {1, · · · ,K} arms.
Each arm k is associated with a reward Xk(t) at each dis-
crete time t = 1, · · · , T. The reward is a random variable on
(0, 1] drawn independent and identically distributed (i.i.d.)
from a certain distribution associated with arm k with an
unknown mean µk. Without loss of generalization (W.l.o.g.),
we assume that µ1 > µ2 > · · · > µK . In addition, in real-
world applications, each player often has limited capability
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for information sharing, e.g., due to limited communication
bandwidth. Thus we consider a networked setting where all
players are arranged in a connected communication graph
G := {N , E} as the vertices. Denote the neighbor players of
player i as Ni = {j|(i, j) ∈ E} ∪ {i}.

Walking Arms with Collisions. An arm could sometimes
be “walking” and not accessible to a player. Hence we call
the set of K arms as “walking arms”. Let Si(t) ⊆ K de-
note the subset of available arms at time t to player i ∈ N .
We refer to Si(t) as “the local walking arm set”, satisfying⋃
i Si(t) = K, ∀t. Since arms are walking, e.g., in a geo-

graphical area where players are located at (see our motivat-
ing examples in Introduction), we further assume that each
arm can only be simultaneously accessed by neighbor play-
ers but not disjoint players in G, i.e., Si(t) ∩ Sj(t) = φ if
j /∈ Ni. At time t, player i can only pull an arm from Si(t),
and only observe a non-zero reward1 if no other neighbor
players pull the same arm. Since our reward support is de-
fined on (0, 1], i.e. P(Xk = 0) = 0, the feedback scenarios
referred to as collision sensing and no sensing settings in
(Boursier and Perchet 2019) are equivalent.

Networked Information Sharing. Inspired by the origi-
nal idea of utilizing collisions to share sampled arm rewards
(Boursier and Perchet 2019; Shi et al. 2020), each player
i ∈ N in our MPMAB-WA is able to share its local estimates
of the arms’ mean rewards with her neighbor players inNi at
each time t. Since players only have access to local walking
arm sets in MPMAB-WA, and hence there exists no universal
ranking over arms across players at each time. Therefore, we
further allow each player to share her local walking arm set
with her neighbor players.

Policy. A policy π determines which arm each player will
pull in each time. We are interested in decentralized poli-
cies, where each player determines which arm to pull inde-
pendently based on the available information to the player,
including the past observed collisions, rewards, as well as
possible information collected from neighbor players on lo-
cal walking arm sets and reward estimates. We denote the
arm pulled by player i at time t as ai(t) under policy π, sat-
isfying ai(t) ∈ Si(t).

Regret. We consider the performance measure of regret
(in expectation) incurred by the set of N players by pulling
suboptimal arms under policy π up to time T . Since the lo-
cal walking arm set Si(t) ⊆ K, ∀i is varying over time t and
each player i does not have full access to all arms in K, the
optimal arms pulled by all players under the genie-aided al-
gorithm that has knowledge of the true mean reward is not
fixed. This differs from existing works where the optimal ex-
pected reward can be simply achieved by pulling the best N
arms (Rosenski, Shamir, and Szlak 2016; Besson and Kauf-
mann 2018; Wang et al. 2020). To this end, we denote the
actions taken by all players under the genie-aided policy as

1There are other reward models for MPMAB settings, e.g., play-
ers can receive a degraded reward, or a full reward is only assigned
to one player when collisions occur (Liu and Zhao 2010b,a). In this
paper, we assume zero reward (Anandkumar et al. 2011; Besson
and Kaufmann 2018) under collision for simplicity. However, our
proposed model and algorithm can be easily generalized to other
reward settings.

a∗(t) := [a∗1(t), . . . , a
∗
N (t)], ∀t, satisfying

a∗(t)=arg max
{∀i:ai(t)∈Si(t)}

N∑
i=1

µai(t)1{ai(t)6=aj(t),∀j 6=i,j∈N}, (1)

and the corresponding optimal expected reward as R∗ ,∑T
t=1

∑N
i=1 µa∗i (t)(t). Then the regret up to time T of policy

π is defined as

R(T ),R∗−E

[
T∑
t=1

N∑
i=1

Xai(t)(t)1{ai(t)6=aj(t),∀j 6=i}

]
. (2)

Remark 1. The key difference of regret definition in (2)
with that under full arm access setting (i.e., static arm set-
ting) in prior works is the definition of R∗. Specifically,
for a collision-free scenario (Martı́nez-Rubio, Kanade, and
Rebeschini 2019; Madhushani et al. 2021), the N players
pull the best arm simultaneously and thus R∗ = TNµ1.
For a collision setting (Anandkumar et al. 2011; Boursier
and Perchet 2019; Wang et al. 2020), the genie-aided algo-
rithm assigns one of theN -best arms to each player and thus
R∗ = T

∑N
i=1 µi. The dynamic nature of our MPMAB-WA

with local walking arm sets for each player brings external
randomness and hence renders higher uncertainty for ex-
ploration and exploitation. We will discuss its impact on the
algorithm design and regret analysis in subsequent sections.

The MPMAB-WA-UCB Algorithm
In this section, we consider MPMAB-WA under the above
networked information sharing setting, and propose the
MPMAB-WA-UCB algorithm to address the new dilemma
faced by MPMAB-WA due to walking arms.

Algorithm Overview
Each player needs to resolve a tradeoff between exploration-
exploitation and avoid collisions when attempting to maxi-
mize the reward: (i) pulling the arm with the largest esti-
mated reward in her local walking arm set may contribute
more to the total reward; and (ii) the neighbor players may
share a similar estimation and local walking arm set, which
may lead to a collision, and hence degrade the performance.
Exacerbating this dilemma is the fact that each player re-
ceives feedback from a dynamic local subset of arms at each
time. To resolve this dilemma, we leverage the shared infor-
mation into the exploitation process to avoid collisions while
maximizing the reward. At each time t, MPMAB-WA-UCB
starts with an information sharing process where player i ob-
tains the local walking arm sets {Sm(t), ∀m ∈ N}, and the
local reward estimations r̃i,k(t), ∀k ∈ K, from her neighbor
players ∀j ∈ Ni. Then MPMAB-WA-UCB alternates between
exploration and exploitation as usual based on the past ob-
served collisions and rewards.

Information Sharing. At each time t, player i shares her
local estimate of the mean reward r̃i,k(t), ∀k ∈ K with her
neighbor players ∀j ∈ Ni. Meanwhile, player i receives the
local estimates from her neighbors in Ni and then updates
her local reward estimates as follows:
r̃i,k(t+ 1) =

∑
j∈Ni

r̃j,k(t)Pi,j+µ̂i,k(t+ 1)−µ̂i,k(t), (3)
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where P = (Pi,j) is a N × N non-negative matrix on the
communication graph G with Pi,j ∈ [0, 1], and µ̂i,k(t) is the
empirical estimation of µk for player i at time t, which will
be specified later in (5). This update is analogous to the de-
centralized gradient method for decentralized optimization,
where P is referred to as the consensus matrix2, satisfying

Pi,i = 1−
∑
j∈Ni

Pi,j ,

Pi,j =
1

max{|Ni|,|Nj |} , if j ∈ Ni,
Pi,j = 0, otherwise,

(4)

with
∑N
j=1 Pi,j =

∑N
i=1 Pi,j = 1, ∀i, j. In other words,

at each time t, player i ∈ N computes a weighted average
of the reward estimates of her neighbor players, and then
corrects it by taking into account a stochastic approximation
µ̂i(t + 1) − µ̂i(t) of her local reward estimate at time t. As
aforementioned, each player i also shares her Si(t) so as to
reach a consensus on the information of local walking arms
set of the system, i.e., {Sm(t), ∀m ∈ N} at each time t.

Exploration. The exploration of MPMAB-WA-UCB is
based on the UCB exploration using all observations for
each arm inside of the local walking arm set. Essentially,
each player runs UCB using the cumulative set of observa-
tions it has received. We denote the number of times that
player i pulls arms k by time t as Ii,k(t), in which collisions
occur for Ci,k(t) times. Let Xi,k(t) be the random reward
received by player i when pulling arm k at time t. Then the
local reward estimation of µk, ∀k ∈ K for player i at time t
is given as

µ̂i,k(t) =

t∑
τ=1

1{ai(τ)=k,aj(τ)6=k,∀j 6=i}Xi,k(τ)

Ii,k(t)− Ci,k(t)
, (5)

where the numerator indicates the total rewards obtained by
pulling arm k without collisions, and the denominator de-
notes the corresponding times that no collisions occur. To
accommodate the uncertainty of the local reward estimation
r̃i,k(t) and follow the idea of UCB, we add a perturbed term
to the estimated local reward in (3) and define

qi,k(t) = r̃i,k(t) +Bi,k(t), (6)

with Bi,k(t) being a function of Ii,k(t) and Ci,k(t).
Remark 2. Player i often regards qi,k(t) in (6) as an index
of arm k, and pulls the arm with the largest index at time
t for exploitation in most prior works (Anandkumar et al.
2011; Boursier and Perchet 2019; Wang et al. 2020). How-
ever, this will inevitably cause a larger number of collisions
since the local walking arm sets of neighbor players may
share the same arm with the largest estimated reward. To
alleviate collisions, learning-to-rank (Combes et al. 2015;
Tibrewal et al. 2019) or leader-follower (Wang et al. 2020;
Mehrabian et al. 2020) frameworks have been proposed
where parsimonious exploration can be done by a single

2The easy-to-compute weights in (4) have been widely used in
the decentralized optimization literature. Our proposed model and
algorithm are not restricted to (4) and can be easily generalized to
other stochastic weights for P (Xiao, Boyd, and Lall 2006).

Algorithm 1: MPMAB-WA-UCB for player i at time t
Initialize: The feasible arm sets for each player
{Sm(1), ∀m ∈ N}; the sample mean available at
player i {µ̂i,k(1) = 0, ∀k ∈ K, the local esti-
mated reward {r̃i,k(1) = 0, ∀k ∈ K, and the statis-
tics {qi,k(1) = ∞, ∀k ∈ K}; the number of pulls
{Ii,k(1) = 0, ∀k ∈ K} and the number of collisions
{Ci,k(1) = 0, ∀k ∈ K}.

1: for t = 1, ..., T do
2: Share local walking arm sets among players to yield

{Sm(t), ∀m ∈ N};
3: Solve (8) by Learn2Match and select the arm indi-

cated as a∗,ii by Learn2Rank;
4: Update Ii,k(t+ 1) and Ci,k(t+ 1) according to (9);
5: Update µ̂i,k(t + 1) according to (5) and r̃i,k(t + 1)

according to (3);
6: Update qi,k(t+ 1) according to (6).
7: end for

player (i.e., the leader) to find the best N empirical arms,
and then send this information to all other players (i.e., the
followers). However, these frameworks are based on the as-
sumption that each player has full access to all arms, render-
ing them inapplicable in MPMAB-WA, in which each player
only has access to a dynamic local walking arm set. As a
result, there exists no such a best empirical arm set accessi-
ble for all players. To this end, a new exploitation strategy is
needed to leverage the information received from neighbor
players in the above information sharing process.

Exploitation. After sharing information with neighbor
players and estimating the rewards of arms, each player i
determines which arm to pull at time t from her local walk-
ing arm set Si(t). Since we are interested in decentralized
decision makings, each player pulls one arm independently
based on her local information. As a result, each player i has
no information on the selected arms of her neighbor players.
To avoid collisions, player i now leverages {Sm(t), ∀m ∈
N} along with the estimated reward of qi,k(t) in (6) to de-
termine which arm to pull, instead of simply using qi,k(t) to
pull the arm with the largest index value in Si(t).

Specifically, let ami (t) be the arm3 pulled by player ∀m =
1, · · · , N from the perspective of player i at time t. Denote
ai(t) =

[
a1i (t), . . . , a

N
i (t)

]
as the set of arms pulled by each

player from the perspective of player i, and define the set
containing all possible combinations as Ui(t) satisfying

Ui(t) :=
{
ai(t)

∣∣∣ami (t) ∈ Sm(t), ∀m = 1, · · · , N
}
. (7)

Then player i leverages the collected local walking arm
sets {Sm(t), ∀m ∈ N}, which are now embedded in
Ui(t), together with her local estimated reward qi(t) :=
{qi,k(t), ∀k ∈ K} to determine which arms all players
should pull to maximize reward from her perspective. This

3Note that am
i (t) is the arm pulled by player m from the per-

spective of player i, which may not be the true arm pulled by player
m since players make decisions in a decentralized manner.
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Algorithm 2: Learn2Match for player i at time t
Input: K, qi(t), Ui(t).
Ouput: U∗i (t).

1: Let Ai be a permutation on K with a decreasing order
based on the estimated reward qi(t), i.e., qi,A1

i
(t) ≥

qi,A2
i
(t) ≥ · · · ≥ qi,AK

i
(t);

2: for h = 1, 2, ..., N do
3: Add all players with local walking arm sets contain-

ing A1
i into X hi ;

4: if |
⋃h
l=1 X li | ≥ h then

5: Ai = Ai \ {A1
i }, Oi(t) = Oi(t) ∪ {A1

i };
6: else
7: Ai = Ai \ {A1

i },X hi = φ, and h = h− 1;
8: end if
9: end for

10: Let S∗i,m(t) = Sm(t) ∩ Oi(t), ∀m ∈ N ;
11: Replace Sm(t) by S∗i,m(t), ∀m ∈ N to obtain U∗i (t).

turns out to solving the following matching problem:

max
ai(t)∈Ui(t)

N∑
m=1

qi,ami (t)(t)1{ami 6=ani ,∀n6=m,n=1,··· ,N}. (8)

Denote the optimal solution to (8) as a∗i (t). Then player i
pulls arm a∗,ii (t) at time t. Again, we note that a∗,mi (t) is the
optimal arm that player ∀m = 1, · · · , N should pull at time
t by solving (8) from the perspective of player i. Finally,
player i updates the indicators Ii,k(t + 1) and Ci,k(t + 1)

based on the outcome of pulling arm a∗,ii (t) at time t, i.e.,

Ii,k(t+ 1) = Ii,k(t) + 1{ai(t)=k},

Ci,k(t+ 1) = Ci,k(t) + 1{Xi,k(t)=0}. (9)

We summarize our MPMAB-WA-UCB algorithm from the
perspective of any player ∀i ∈ N in Algorithm 1.

Learn2Match
To execute the exploration-exploitation process in Algo-
rithm 1, player i needs to solve the optimal matching prob-
lem in (8), whose complexity grows exponentially with the
number of players N and the number of arms in local
walking arm set Sm(t), ∀m = 1, · · · , N , since |Ui(t)| =∏N
m=1 |Sm(t)|. To address this challenge, we now develop

an efficient matching algorithm named Learn2Match to
solve (8), which is summarized in Algorithm 2 from the per-
spective of any player ∀i ∈ N . Since players receive no
rewards when pulling the same arm, our approach to find
an optimal a∗i (t) to maximize reward from the perspective
of player i over all other players is straightforward: based
on the local reward estimation qi(t) and all players’ local
walking arm sets {Sm(t), ∀m ∈ N}, findN “feasible” arms
with the largest estimated reward that can be assigned to all
players in N to maximize (8).

Specifically, Learn2Match first constructs a permuta-
tion on set K, denoted as Ai. W.l.o.g., we order arms in
K in a decreasing order based on the estimated reward

Algorithm 3: Learn2Rank for player i at time t
Input: U∗i (t).

1: Construct Ii := {a∗,ii (t)} and sort Ii in a decreasing
order based on qi(t);

2: Construct Ji := {j, j ∈ Ni|Ii ⊆ S∗i,j(t)};
3: Sort players ∀j ∈ Ji in a decreasing order according to

their indices;
4: Player i pulls arm Iβi

i with βi being her ranking.

qi(t), and let Aki denotes the k-th position4 in Ai satisfy-
ing qi,A1

i
(t) ≥ qi,A2

i
(t) ≥ · · · ≥ qi,AK

i
(t). Based on this

ordering, Learn2Match matches arms in K to all players
by checking the arms with estimated rewards in a decreas-
ing order defined by Ai, until finding N feasible arms for
all players at time t (lines 2-9 in Algorithm 2). For example,
Learn2Match first checks the 1st position/arm A1

i with
the largest estimate reward inAi, and adds all players whose
local walking arm sets contain A1

i into X 1
i (line 3 in Algo-

rithm 2). If the number of such players is no less than h = 1,
then arm A1

i is feasible and should be pulled by one player.
Thus Learn2Match adds it into the feasible arm setOi(t),
and removes armA1

i fromAi(t), i.e.,Ai = Ai\{A1
i } (lines

4-5 in Algorithm 2).
Now suppose Learn2Match searches for the h-th arm

to be added into Oi(t). Learn2Match checks the arm in
current A1

i and finds all players whose local walking arm
sets contain A1

i and adds them into X hi . If |
⋃h
l=1 X li | ≥ h,

i.e., the number of players that can pull the h arms in
Oi(t) ∪ {A1

i } is no less than h, and hence Learn2Match
should remove the current A1

i arm from Ai and put it into
its feasible set Oi(t) (lines 4-5 in Algorithm 2). Otherwise,
simple discard this arm since the number of arms in Oi(t)
is enough for all players in |

⋃h
l=1 X li | to pull (line 7 in Al-

gorithm 2). As a result, Learn2Match ends up with a fea-
sible arm set Oi(t) that contains N unique arms from K
that maximizes (8). Finally, we update the local walking arm
sets for all players and obtain the optimal arms pulled by
all players at time t as a∗i (t) and denote all possibilities as
U∗i (t) (lines 10-11 in Algorithm 2). The complexity for ob-
taining Oi(t) and U∗i (t) is linear in the numbers of arms K
and players N . Since there may exist more than one optimal
arm a∗,ii (t) that all maximize reward over all players from
the perspective of player i, we next design a ranking policy
named Learn2Rank to assign different ranks to all players
to determine the unique arm pulled by player i at time t.

Learn2Rank
Our key observation is that when there are d different op-
timal arms a∗,ii (t), i.e., |S∗i,i(t)| = d, then there must be d
players (including player i herself) that are indifferentiable
with these d optimal arms. Let Ii := {a∗,ii (t)} be the set
containing all optimal arms that player i can pull at time t.
W.l.o.g, we order arms in Ii in a decreasing order based on

4For abuse of notation, Ak
i refers to the arm in K with the k-th

largest estimated reward from the perspective of player i.
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the estimated reward qi(t) such that I1i ≥ I2i ≥ . . . ≥ I
|Ii|
i

(line 1 in Algorithm 3). Then, Learn2Rank finds the set
Ji := {j, j ∈ N|Ii ⊆ S∗i,j(t)} containing all neighbor
players which can pull the optimal arms in Ii as player
i (line 2 in Algorithm 3). In other words, players in Ji
are indifferentiable with arms in Ii. To avoid collisions, a
simple rank strategy is to use players’ indices. Specifically,
Learn2Rank sorts players in Ji in a decreasing order ac-
cording to their indices, and then player i pulls arm Iβi

i with
βi being the ranking of player i (lines 3-4 in Algorithm 3).
This rank assignment associates each player in Ji with a
unique ranking and hence can be used to avoid collisions.

Remark 3. We note that the idea of ranking players has also
been adopted in recent works (Boursier and Perchet 2019;
Wang et al. 2020). However, all players are assumed to have
full access to all arms at each time. As a result, only one
player needs to perform the ranking once and shares the
universal ranking with all other players. However, in our
MPMAB-WA model, each player only has access to a local
walking arm set that differs across players, and is dynam-
ically changing over time. Hence there exists no universal
ranking across players, making existing ranking methods
(Boursier and Perchet 2019; Wang et al. 2020) inapplica-
ble. Finally, we provide an example in (Xiong and Li 2022)
to illustrate the operations of our proposed Learn2Match
and Learn2Rank policies.

Performance Analysis
In this section, we first analyze the performance of our
Learn2Match and Learn2Rank policies, and then pro-
vide a finite-time analysis of MPMAB-WA-UCB.

Collision Mitigation
We first show that Learn2Match and Learn2Rank can
be used to avoid collisions in MPMAB-WA.

Lemma 1. Learn2Match and Learn2Rank jointly pro-
vides an optimal solution to (8), i.e., no collision occurs
when the q-statistics are accurate.

Remark 4. When local reward estimation q-statistics at
each player are not accurate, players may pull sub-optimal
arms and experience collisions, which incur regret (see
Theorem 1 and Remark 5). When q-statistics are accu-
rate (i.e., after a finite-time of exploration-exploitation), our
Learn2Match and Learn2Rank jointly ensure an op-
timal solution to (8) without collisions. Our proof consists
of two steps. First, based on the construction of Oi(t) in
Learn2Match using the expected estimated reward from
the perspective of player i, and by contradiction, we show
that Oi(t) contains N feasible arms, each pulled by one of
the N players which achieve the largest expected reward for
(8). Second, since there may be more than one optimal arm
to pull from the perspective of any player i, i.e., |S∗i,i(t)| > 1,
and players determine which arm to pull in a distributed
manner, collisions may occur if each player randomly pull
an arm from S∗i,i(t). To this end, Learn2Rank assigns a
ranking to each player to determine the unique arm to pull
from S∗i,i(t) and hence avoid collisions.

Regret Analysis
We now provide a finite-time analysis of MPMAB-WA-UCB.
For ease of exposition, we define some additional notions.
Let Vi,k(t) be the number of times that arm k ∈ K is only
pulled by player i ∈ N by time t, and denote Vk(t) :=∑N
i=1 Vi,k(t). Then the regret defined in (2) reduces to

R(T ) = R∗ −
∑K
k=1

∑N
i=1 µkE[Vi,k(T )]. Furthermore, we

define Ik(t) :=
∑N
i=1 Ii,k(t), where Ii,k(t) is the number

of times player i pulling arm k by time t as defined ear-
lier. It is straightforward to see that

∑K
k=1 Ik(T ) = TN .

We denote Kb as the set containing arms with the largest
N mean reward, i.e., Kb := {µ1, µ2, . . . , µN}, and let
K−b = K \ Kb contain the remaining arms. Finally, let
C(T ) :=

∑
k∈Kb

Ik(T ) − Vk(T ) be the number of colli-
sions faced by players by pulling arms in Kb by time T .
Theorem 1. The regret of MPMAB-WA-UCB satisfies
R(T ) ≤

µ1

(
max

 ∑
k′∈K−b

∑
k∈K\{k′}

6 log T

(µk − µk′)2
, NKL

+

max

{
N∑
k=1

K∑
k′=k+1

6 log T

(µk − µk′)2
, NKL

}
+
π2

3
K(K +N)

)
,

with Bi,k(t) =
√

3 log t
2NVi,k(t)

, ∀i ∈ N , k ∈ K and L =

mint 3(1 − βN )t/24N(1+β−N ) ≤ (1−βN )
48N(1+β−N )t

, where β is
the smallest positive value of all consensus matrices, i.e.,
β = argminPi,j with Pi,j > 0, ∀i, j ∈ N .
Remark 5. The first term corresponds to the regret incurred
by pulling suboptimal arms during the exploitation. The sec-
ond term is incurred by collisions on pulling the bestN arms
when bad rankings caused by incorrect reward estimation,
which dominates the regret due to low probability events of
bad rankings from our Learn2Rank policy with good re-
ward estimation. The last term is the regret incurred by the
exploration during the initial learning periods, which does
not scale with the time horizon T since after a finite time
of exploration, all players learn the exact rank through our
Learn2Rank policy and hence there would be no regret
accumulating afterwards.

The regret of the first two terms scale with O(K2 log T )
and O(NK log T ), which is sub-logarithmic in time T and
matches the regret in existing works, e.g. (Anandkumar et al.
2011; Besson and Kaufmann 2018; Boursier and Perchet
2019; Wang et al. 2020; Mehrabian et al. 2020), where
all players are required to have full access to all arms in
each time. In contrast each player in our MPMAB-WA has
the flexibility to access a dynamic subset of arms. Though
such flexibility of arm subsets regularly brings external ran-
domness, it does not result in the multiplicative pre-factor
that goes with the time-dependent function in the regret
to be higher than KN in (Wang et al. 2020; Boursier
and Perchet 2019). For instance, the state-of-the-art algo-
rithm SIC-MMAB (Boursier and Perchet 2019) achieves an
asymptotically optimal regret of Õ(KN log T ) under the
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Figure 1: MSE of mean re-
ward.
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Figure 2: Accumulated re-
gret.

assumption that players have full arm access at each time.
In addition, it needs to know the time horizon in advance
while our MPMAB-WA-UCB requires no knowledge on prob-
lem parameters. The number of communication bits is up-
per bounded by O(N2KT ). When the network is large,
the communication may be predominant over the log T , and
hence it is interesting to further explore the joint effect of K
and T instead of only considering asymptotic results in T ,
which largely remains exclusive in multi-player multi-armed
bandit settings (Boursier and Perchet 2019).
Remark 6. As discussed in Related Work, information shar-
ing, in particular, the local walking arm sets, is necessary
to guarantee a near-optimal performance for MPMAB-WA
since players in MPMAB-WA can only access a local sub-
set of arms, which is also dynamically changing over time.
In addition, we allow players to share their local estimates
of the arms’ mean rewards with their neighbor players in
our MPMAB-WA-UCB algorithm as motivated by (Boursier
and Perchet 2019; Shi et al. 2020) which showed that such
reward estimate sharing in the traditional MPMAB model
improved regret guarantees compared to non-sharing case.
We now show that this is also true for MPMAB-WA model.
Specifically, we consider a variant of MPMAB-WA-UCB,
where no reward estimate is shared among players, and call
the corresponding policy as MPMAB-WA-UCB-NR. We pro-
vide the detailed description of MPMAB-WA-UCB-NR and
its regret analysis in (Xiong and Li 2022). As expected,
MPMAB-WA-UCB attains an improved regret bound with a
factor of O(N) compared to that of MPMAB-WA-UCB-NR.
This is intuitive since player i in MPMAB-WA-UCB also re-
ceives the reward estimation from her neighbors Ni at each
time, where |Ni| < N, which can be regarded as a means to
improve the exploration efficiency by a factor of O(N), i.e.,
an O(N) decrease for the number of time steps needed to
obtain the accurate statistics of arms.

Numerical Evaluations
Experiments on Constructed Instance. We consider N =
6 players and K = 100 arms with rewards drawn from
Gaussian distributions with mean µk = 0.06(101 − k) and
σk = 0.01(101 − k). Each player has three neighbor play-
ers in the communication graph G. At each time, we ran-
domly assign 25 arms to each player with neighbor players
possibly sharing some arms. All the regret and MSE val-
ues are averaged over 40 independent runs. Figure 1 com-
pares the mean-square-error (MSE) between each arm’s true
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Figure 3: MSE of mean re-
ward in wireless downlink
scheduling.
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Figure 4: Accumulated re-
gret in wireless downlink
scheduling.

mean reward and estimated mean reward with our proposed
algorithms over a time horizon of T = 104 rounds. It is
clear that sharing estimated rewards with neighbor play-
ers as in MPMAB-WA-UCB substantially improves the ex-
ploration efficiency compared to only sharing local walking
arm sets as in MPMAB-WA-UCB-NR. This advantage results
in a lower regret as shown in Figure 2, which is consistent
with our theoretical performance guarantees. Finally, we ob-
serve that communication significantly improves the perfor-
mance since communication is required to determine opti-
mal matching and ranking to avoid collisions. Its importance
is especially pronounced when players only have access to a
dynamic local walking arm set as considered in this paper.
Experiments on Wireless Downlink Scheduling. We fur-
ther consider a wireless downlink scheduling problem (Li
2021; Li, Liu, and Ji 2019) that fits into our MPMAB-WA
model, see (Xiong and Li 2022) for details. There are N =
6 base stations (BSs) and K = 10 walking users. Each
BS covers a geographical region and each user randomly
moves across the whole region with uniform distribution,
i.e., each user moves into the region covered by BS n with
a probability 1/N at each time slot. BSs are connected
via a ring, i.e., each BS has two neighbors. The rewards
of serving users in each slot (Huang, Hu, and Pan 2021)
are i.i.d. drawn from Bernoulli distributions with mean re-
wards 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, 0.5. All
MSE and regret reported in Figures 3 and 4 are averaged
over 40 independent runs, from which we draw the same
conclusions as above.

Conclusion
In this paper, we studied the stochastic multi-player multi-
armed bandits with collisions problem in the presence of
walking arms, dubbed as MPMAB-WA. This new framework
integrates several critical factors of systems for many real-
world applications. In MPMAB-WA, each player only has
access to a dynamic local walking arm set at each time,
and only observes a full reward if no other players pull
the same arm. This introduced a new dilemma to manage
the balance between maximizing the reward via exploration-
exploitation, and avoiding collisions when players only re-
ceive feedback from a dynamic local walking arm set. To ad-
dress this challenge, we considered a practical information
sharing setting to coordinate players, and proposed a decen-
tralized algorithm with theoretical guarantee on the regret.
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