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Abstract

Despite impressive success in many tasks, deep learning mod-
els are shown to rely on spurious features, which will catas-
trophically fail when generalized to out-of-distribution (OOD)
data. Invariant Risk Minimization (IRM) is proposed to allevi-
ate this issue by extracting domain-invariant features for OOD
generalization. Nevertheless, recent work shows that IRM is
only effective for a certain type of distribution shift (e.g., cor-
relation shift) while it fails for other cases (e.g., diversity shift).
Meanwhile, another thread of method, Adversarial Training
(AT), has shown better domain transfer performance, suggest-
ing that it has the potential to be an effective candidate for ex-
tracting domain-invariant features. This paper investigates this
possibility by exploring the similarity between the IRM and AT
objectives. Inspired by this connection, we propose Domain-
wise Adversarial Training (DAT), an AT-inspired method for
alleviating distribution shift by domain-specific perturbations.
Extensive experiments show that our proposed DAT can ef-
fectively remove domain-varying features and improve OOD
generalization under both correlation shift and diversity shift.

Introduction
Modern deep learning techniques have achieved remarkable
success in many tasks (He et al. 2016; Wang et al. 2017;
Brown et al. 2020). However, deep models will suffer catas-
trophic performance degradation under some scenarios, as
they tend to exploit spurious correlations in the training data
(Beery, Van Horn, and Perona 2018). One of those represen-
tative scenarios is the Out-of-Distribution (OOD) generaliza-
tion, where the trained model is expected to perform well at
the test time, even when the training and testing data come
from different distributions (Zhang et al. 2021a). Another
representative scenario in which deep models are unstable is
the adversarial example. Researchers have found that deep
models are quite brittle, as one can inject imperceptible per-
turbations into the input and cause the model to make wrong
predictions with extremely high confidence (Szegedy et al.
2014).

These two issues have some similarities to each other. They
both arise because deep networks do not learn the essential
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Figure 1: An illustrative example of the two kinds of distribu-
tion shifts. The curly brackets enclose the distribution shift
between the environments. Here z stands for the spurious
feature, and y stands for label class.

causal associations (or intrinsic features). Nevertheless, in
their corresponding fields, different approaches have been
proposed. A large class of methods called Invariant Causal
Prediction (ICP) (Peters, Bühlmann, and Meinshausen 2016)
is proposed for OOD generalization. Among them, Invariant
Risk Minimization (IRM) (Arjovsky et al. 2019) attracts sig-
nificant attention, which intends to extract invariant features
across different data distributions and expects the model to
ignore information related to the environment1. While for
adversarial robustness against adversarial examples, Adver-
sarial Training (AT) (Madry et al. 2018; Wang et al. 2019)
is the most effective approach at the current stage (Athalye,
Carlini, and Wagner 2018). It trains a model on adversarial
examples generated by injecting perturbations optimized for
each image into natural examples. Several recent works have
explored the relationship between AT and OOD (Volpi et al.
2018; Shankar et al. 2018; Yi et al. 2021), but rarely focus on
the typical domain generalization setting considered by IRM.
Therefore, the two fields still seem rather independent. In this
paper, we are going to explore their potential relationships.

Although IRM and its variants are promising on certain
tasks, e.g., CMNIST (Arjovsky et al. 2019), recent studies

1The terminologies of “domain”, “environment”, and “distribu-
tion” are often used interchangeably in current literature.
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(Gulrajani and Lopez-Paz 2021) show that on a large-scale
controlled experiment on OOD generalization, all these meth-
ods fail to exceed the simplest i.i.d. baseline, i.e., Empirical
Risk Minimization (ERM). Further, two kinds of distribution
shifts in benchmark datasets are identified (Ye et al. 2022),
i.e., , diversity shift and correlation shift, shown in Figure 1.
Diversity shift refers to the shift of the distribution support
of spurious feature z, for example, the style of the images
changed from cartoon to sketch on object classification task.
In contrast, correlation shift refers to the change in condi-
tional probability (posterior distribution) of label y given
spurious feature z on the same support, e.g., , the color in
the CMNIST dataset (Ahuja et al. 2020). They found that an
algorithm that performs well on one kind of distribution shift
tends to perform poorly on the other one (Ye et al. 2022).

Thus, we need to seek better alternatives for OOD gen-
eralization, while AT seems to be a promising candidate
from both theoretical and empirical aspects. Theoretically,
by learning invariance w.r.t. local input perturbations (Wu,
Xia, and Wang 2020), AT can be regarded as Distributionally
Robust Optimization (DRO) (Sinha, Namkoong, and Duchi
2018; Volpi et al. 2018; Rahimian and Mehrotra 2019; Duchi,
Glynn, and Namkoong 2021) over the ℓp-bounded distribu-
tional shift. Thus, AT could reliably extract robust features,
e.g., the shape of the object, from the input (Ren et al. 2021).
Empirically, several recent works show that AT has better
domain transferability than ERM (Salman et al. 2020; Yi
et al. 2021). These findings naturally lead to the following
questions:

Is AT related to IRM? If so, is AT helpful for OOD
generalization?

In this paper, we take a further step to answer these intrigu-
ing questions. We first reveal the connections between IRM
and AT, and find that IRM can be regarded as an instance-
reweighted version of Domain-wise Adversarial Training
(DAT), a new version of adversarial training that we propose
for multi-source domain generalization. Inspired by this con-
nection, we further explore how DAT performs on OOD data.
We first notice that DAT is suitable for solving domain gen-
eralization problems, as it can effectively remove relatively
static background information with domain-wise perturba-
tions. We further verify this intuition on both synthetic tasks
and real-world datasets, where DAT shows clear advantages
over ERM. Finally, we conduct extensive experiments on
benchmark datasets and show that our DAT can consistently
outperform ERM on tasks dominated by both correlation
shift and diversity shift.

We summarize our contributions as follows:

• We theoretically derive the connection between IRM and
AT. Based on this connection, we develop a new kind of
adversarial training, Domain-wise Adversarial Training
(DAT), for domain generalization.

• We analyze how DAT is beneficial for learning invariant
features and verify our hypothesis through synthetic data
and real-world datasets.

• Experiments on benchmark datasets show that DAT not
only performs better than ERM under correlation shift

like IRM but also outperforms ERM under diversity shift
like (sample-wise) AT.

Related Works
IRM and Its Variants. Invariant Risk Minimization (IRM)
(Arjovsky et al. 2019) develops a paradigm to extract causal
(invariant) features and find the optimal invariant classifier on
top of several given training environments. The work of Ka-
math et al. (2021) reveals the gap between IRM and IRMv1,
showing that even in a simple model that echos the idea of
the original IRM objective, IRMv1 can fail catastrophically.
Rosenfeld, Ravikumar, and Risteski (2021) prove that when
the number of training environments is not large enough,
IRMv1 can face the risk of using environmental features.

AT and Its Variants. Szegedy et al. (2014) reported that
one can inject imperceptible perturbations to fool deep mod-
els. Among the proposed defenses, Adversarial Training (AT)
(Goodfellow, Shlens, and Szegedy 2015; Madry et al. 2018;
Wang et al. 2020; Wang and Wang 2022) is the promis-
ing and representative approach to training robust models
(Athalye, Carlini, and Wagner 2018). Recently, Salman et al.
(2020) showed that adversarially learned features could trans-
fer better than standardly trained models, while various
works (Volpi et al. 2018; Sinha, Namkoong, and Duchi 2018;
Shankar et al. 2018; Ford et al. 2019; Qiao, Zhao, and Peng
2020; Yi et al. 2021; Gokhale et al. 2021) adopt sample-
wise adversarial training or adversarial data augmentation
to improve OOD robustness. However, most discussions are
limited to distributional robustness w.r.t. Wasserstein distance.
The small perturbations used in AT make it less practical to
account for real-world OOD scenarios (e.g., correlation to
backgrounds), thus Wang et al. (2022) incorporated low-rank
structured priors into AT for this kind of large data distribu-
tion shifts. Moreover, previous work shows that there seems
to be a trade-off between the two distribution shifts: an al-
gorithm that performs well on one task tends to perform
poorly on the other (Ye et al. 2022). Instead, in this work,
our proposed method can achieve fair performance on both
correlation shift and diversity shift tasks.

Relationship between IRM and AT Variants
Notation. Let Φ : X ⊂ Rn → Rd denote the repre-
sentation of a θ-parameterized piecewise linear classifier,
i.e., Φ(·) = ϕL(WLϕL−1(. . . ) + bL−1) + bL, where ϕL

is the activation function, and WL, bL denote the layer-
wise weight matrix and bias vector, collectively denoted
by θ. Furthermore, let β be the linear classifier on the top,
and let the network output be β · Φ(x) = β⊤Φ(x). Let
ℓ(ŷ, y) = − log σ(yŷ) be the sample logistic loss. We con-
sider a two-class (y = ±1) classification setting with output
dimension d = 1, and our discussion can be easily extended
to general cases.

ERM. The traditional Empirical Risk Minimization (ERM)
algorithm optimizes over the loss on i.i.d. data, i.e.,

min
β,Φ

R(β · Φ), where R(β · Φ) = E(x,y)∼Dℓ(β⊤Φ(x), y).

(1)
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In the OOD generalization problem, one faces a set of (train-
ing) environments E , where each environment e ∈ E corre-
sponds to a unique data distribution De. When facing multi-
ple environments, the ERM objective simply mixes the data
together and takes the form

(ERM) min
β,Φ

∑
e

Re(β · Φ), (2)

where Re(β · Φ) = E(x,y)∼De
ℓ(β⊤Φ(x), y).

IRM and IRMv1. Instead of simply mixing the data to-
gether, IRM seeks to learn an invariant representation Φ such
that the objective can be minimized with the same classifier
β in all training domains. Formally, we have

(IRM)

min
β,Φ

∑
e∈E

Re(β · Φ)

s.t. β ∈ argmin
β̄

Re(β̄ · Φ), ∀e ∈ E .
(3)

Since this bilevel optimization problem is difficult to solve,
the practical version IRMv1 is formulated as regularized
ERM, where the gradient penalty is calculated w.r.t. a dummy
variable w:

(IRMv1)min
β,Φ

∑
e∈E

[
Re(β · Φ)

+λ||∇w|w=1.0R
e(w · (β · Φ))||2︸ ︷︷ ︸

PenaltyIRM

]
.

(4)

AT. Adversarial Training instead replaces ERM with a min-
imax objective,

min
β,Φ

RAT(β·Φ) = min
β,Φ

E(x,y)∼D max
||δx||p≤ε

ℓ(β⊤Φ(x+δx), y),

(5)
where one maximizes inner loss by injecting sample-wise
perturbations δx and solve the outer minimization w.r.t. pa-
rameters β,Φ on the perturbed sample (x+ δx, y). Typically,
the perturbation is constrained within an ℓp ball with radius
ε. In this way, AT can learn models that are robust to ℓp
perturbations.

Relating AT to IRM
As shown above, it seems that IRM and AT are two distinct
learning paradigms, while, in fact, we can show that IRM is
closely related to a certain kind of adversarial training. To see
this, we first notice that AT can be rephrased into a regularized
ERM loss with a penalty on sample-wise robustness through
linearization:

RAT(β · Φ) = E(x,y)∼D max
||δx||≤ε

ℓ(β⊤Φ(x+ δx), y)

= E(x,y)∼D

[
ℓ(β⊤Φ(x), y)+

max
||δx||≤ε

(
ℓ(β⊤Φ(x+ δx), y)− ℓ(β⊤Φ(x), y)

) ]
≈ R(β · Φ) + εE(x,y)∼D

∥∥∇xℓ(β
⊤Φ(x), y)

∥∥︸ ︷︷ ︸
PenaltyAT

,

(6)

which resembles the gradient penalty adopted in IRMv1. One
main difference is that AT’s penalty is calculated w.r.t. sample-
wise gradients, while IRM’s penalty w.r.t. the population
loss. This difference motivates us to adopt a population-level
perturbation δ instead.
Algorithm 1: Domain-wise Adversarial Training

Input: Dataset of multiple environments De, e ∈ E ,
desired lp norm of the perturbation ε,
perturbation step size α

Output: Model (Φ, β)
Randomly initiate θ, perturbation δe, ∀e ∈ E
for iterations = 1, 2, 3, . . . do

for each environment e do
1. Sample batch Be from environment e
2. Update the perturbation δe using one-step

gradient ascent with step size α
3. Project the perturbation δe to a ℓp ball of radius ε
4. Generate adversarial examples

xadv ← x+ δe, ∀x ∈ Be

5. Update Φ and β with gradient descent on xadv

end for
end for

Proposed DAT. Inspired by the above connection, we pro-
pose DAT, which adopts a domain-wise perturbation δe for
each training domain e ∈ E . Formally, we have

min
β,Φ

∑
e∈E

E(x,y)∼De
ℓ
(
β⊤Φ(x+ δe)), y

)
s.t. δe ∈ argmax

∥δ∥≤ε

E(x,y)∼De
ℓ(β⊤Φ(x+ δ), y), ∀e ∈ E .

(7)
where the perturbation δe is defined at the distribution level.

In practice, we solve the above problem by alternating up-
dates of model parameters β,Φ and perturbations δe. Specifi-
cally, for each mini-batch Be sampled from domain De, we
update δe with Be using gradient ascent to find the best ad-
versarial perturbations. The adversarial samples are then used
to train the model. A detailed description is in Algorithm 1.

In the setting of single-source domain generalization,
where only one training domain is provided, DAT degenerates
into universal adversarial training (UAT) (Moosavi-Dezfooli
et al. 2017), where a single perturbation is provided for the
entire training distribution.
Connection between IRM and DAT
Here, we establish a formal connection between IRM and
DAT. To begin with, we note that DAT can also be reformu-
lated as a regularized ERM in the multi-domain scenario.

RDAT(β · Φ) =
∑
e∈E

max
||δe||≤ε

E(x,y)∼De
ℓ(β⊤Φ(x+ δe), y)

=
∑
e∈E

[
E(x,y)∼De

ℓ(β⊤Φ(x), y)+

max
||δe||≤ε

E(x,y)∼De

(
ℓ(β⊤Φ(x+ δe), y)− ℓ(β⊤Φ(x), y)

) ]
≈

∑
e∈E

[
Re(β · Φ) + ε

∥∥E(x,y)∼De
∇xℓ(β

⊤Φ(x), y)
∥∥︸ ︷︷ ︸

PenaltyDAT

]
.

(8)

10521



Based on this reformulation, we can show that there exists
an intrinsic relationship between DAT and IRM as in the
following proposition:

Proposition 0.1. Consider each De as the corresponding
distribution of a particular training domain e. For any β · Φ
as a deep network with any activation function, the penalty
term of IRMv1, PenaltyIRM (Eq. 4), could be expressed as
the square of a reweighted version of the penalty term of
the above approximate target, PenaltyDAT(Eq. 8), on each
environment e with coefficients related to the distribution De,
which could be stated as follows:

PenaltyIRM =
∥∥∥EDe

[Lxx+ B̃x]
∥∥∥2 (9)

PenaltyDAT = ∥EDe
Lx∥ (10)

where Lx = (1 − σ(yβ⊤Φxx))yβ
⊤Φx and B̃x =(

1− σ
(
yβ⊤Φxx

))
yβ⊤Bx. Bx denotes the collection of

constants introduced by bias terms in neural network lay-
ers.

If we consider the extreme case where each domain only
contains one sample, we can see that DAT degenerates into
AT as a special case. The equivalence between IRMv1 and
(linearized) DAT in this setting can be shown as follows,
which extends the similarity between IRM (Eq. 4) and AT
(Eq. 6).

Remark 0.2 (Equivalence under Single-sample Environ-
ments). When the environments degenerate into a single
data point, we have the following relationship: If ε is suf-
ficiently small, then for β · Φ as a deep network with any
activation function, the penalty term of IRMv1 (Eq. 4) on
each sample and the square of the maximization term of the
linearized version of Eq. 7 (LDAT, obtained by the first-order
approximation of DAT)

PenaltyLDAT =
〈
∇xℓ

(
βTΦ(x), y

)
,±δ̂x

〉
(11)

on each sample with perturbation δ̂x = ±εx only differ by a
fixed multiple ε2 and a bias term Bx, which is formally stated
as

Penalty2LDAT = [⟨∇xℓ
(
βTΦ(x), y

)
,±εx⟩]2

= ε2(1− σ(β⊤Φ(x)))2
∥∥β⊤Φxx

∥∥2
= ε2 · Penalty′IRM,

(12)

where Penalty′IRM = (1 − σ(yβ⊤Φ(x)))2
∥∥β⊤(Φxx)

∥∥2,

PenaltyIRM = (1− σ(yβ⊤Φ(x)))2
∥∥β⊤(Φxx+Bx)

∥∥2.

The proofs of Proposition 0.1 and Remark 0.2 can be found
in Appendix. The above connection between DAT and IRM
highlights that our DAT is potentially helpful in addressing
OOD problems.

Empirical Investigation on Domain-Wise
Adversarial Training

In this section, we further explore how domain-wise pertur-
bations could help alleviate distribution shifts in real-world

cat on grass cat on snow dog on beach elephant in forest

(a) Images and heatmaps of ERM from NICO.

Original

ERM

DAT

Mixed-Same Mixed-Rand

(b) Images and heatmaps of ERM and DAT from Mixed-Same
and Mixed-Rand.

Figure 2: Images from NICO and Mixed datasets and cor-
responding heatmaps of the models. The red regions in the
heatmaps correspond to the model’s focus during prediction.
Heatmaps demonstrate the effectiveness of DAT in attending
to interested objects rather than uncorrelated background in-
formation compared to ERM.

scenarios. In particular, we noticed that domain-wise pertur-
bations could effectively remove the domain-varying back-
ground information, which usually corresponds to spurious
features for image classification tasks. We empirically verify
this property by applying DAT to a well-designed OOD task
based on background shift.

Comparing ERM to DAT for Background Removal
ERM Learns Spurious Background Features. Our un-
derstanding of DAT is based on the idea that an image is
composed of a foreground object and a corresponding back-
ground, and typically the object is the invariant feature, while
the background is only spuriously correlated with the labels.
However, models that rely on spurious background infor-
mation will easily fail when encountering images from a
different domain. This phenomenon is also empirically veri-
fied by Xiao et al. (2021), who find that models trained on an
ImageNet-like dataset with ERM require image backgrounds
to correctly classify large portions of test sets. These findings
point out the limitations of ERM and motivate us to find a
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solution that could effectively learn a background-invariant
classifier.

Removing Background Information with DAT. Com-
pared to the failure of ERM above, we notice that DAT can
be applied to eliminate domain-wise background information
with its domain-specific perturbations. Take the NICO images
in Figure 2a as an example, where samples from the envi-
ronment “on grass” have a common background dominated
by green grass with low frequency, while the foreground ob-
ject (e.g., the cats) has complex and instance-specific shape
and texture with much higher frequency. In fact, Moosavi-
Dezfooli et al. (2017) show that a universal perturbation
vector lies in a low-dimensional subspace, which fits the
background statistics and could be used to eliminate the low-
frequency background factor. Therefore, when our DAT is
applied to these samples, the domain-wise perturbation will
capture the common domain-specific background. Conse-
quently, domain-wise AT will help remove the dependence
on these spurious background features.

Empirical Verification with Controlled Experiments
We construct a synthetic OOD task to verify the above anal-
ysis by evaluating a classifier’s dependence on background
information. It is based on two datasets introduced by Xiao
et al. (2021), Mixed-Same and Mixed-Rand, which are con-
structed from a subset of ImageNet images with the back-
ground of each image replaced by another background that
is either of the same class (Mixed-Same) or a random class
(Mixed-Rand). As they are perfect candidates for evaluating
a classifier in terms of its background dependence, we con-
struct a new OOD task by using Mixed-Same as the training
domain and evaluating the learned classifier on Mixed-Rand
as the test domain. If the classifier relies heavily on back-
ground information, it will perform poorly in the test domain,
where objects and backgrounds are disentangled. In partic-
ular, the experiment results show that ERM achieves a test
accuracy of 71.9%, while DAT achieves 72.6% in the test
domain with random background, which means that DAT
has a better generalization ability by effectively removing
background information. Sample images from the dataset and
the corresponding attention heatmaps are shown in Figure
2b, demonstrating that ERM may lose focus when the back-
ground correlation is broken while DAT does not. Details of
the experiment are shown in Appendix.

Experiments
For the experiments, we follow the setting in Ye et al. (2022)
and evaluate the OOD generalization on both types of distri-
bution shift: diversity shift and correlation shift. In particular,
we select four representative tasks. For the correlation shift,
we use CMNIST (Arjovsky et al. 2019), a synthetic dataset
on digit classification with color as the spurious feature, and
NICO (He, Shen, and Cui 2020), a real-world dataset on
object classification with context as the spurious feature. Re-
garding diversity shift, we use PACS (Li et al. 2017) and Terra
Incognita (Beery, Van Horn, and Perona 2018), which are
both datasets consisting of natural images with four domains.
To ensure fair evaluation, we perform all of our experiments
following the evaluation pipeline of DomainBed (Gulrajani

and Lopez-Paz 2021). Specifically, we use the same dataset
splitting and model selection strategy as in Ye et al. (2022)
for each task. For datasets except for NICO, one of the do-
mains is used as the test domain. We train the models in each
run, treating one of the domains as the test domain and the
rest as training domains, then report the average accuracy
of all domains. For NICO, the training, test, and evaluation
domains are predefined. We train the models on training do-
mains, evaluate them on the evaluation domain for model
selection, and report their accuracy on the test domain. More
details of the experimental settings and domain-split results
can be found in Appendix.

When training models using DAT, we first perform stan-
dard data augmentation (Gulrajani and Lopez-Paz 2021), then
proceed with the update of the perturbation and model param-
eters as shown in Algorithm 1, where the perturbed samples
are clipped to the legal range after data augmentation. We
use DAT with perturbation bounded by ℓ2-norm in our exper-
iments. To test DAT on a wider range of tasks, we also carry
out experiments on DomainBed (Gulrajani and Lopez-Paz
2021), the results are shown in Appendix.

Evaluation on Benchmark Datasets
We compare our results with previous work, including vanilla
ERM, invariance-based methods including IRM (Ahuja et al.
2020), robust optimization methods including GroupDRO
(Sagawa et al. 2020), distribution matching methods includ-
ing MMD (Li et al. 2018b) and CORAL (Sun and Saenko
2016), a method based on domain classifier DANN (Ganin
et al. 2016), and various other algorithms. The results of
the CMNIST dataset are adopted from Gulrajani and Lopez-
Paz (2021), which is the average of three domains, while
the results of the other datasets are adopted from Ye et al.
(2022). In addition to that, we implement and test four AT-
based algorithms, including sample-wise adversarial training
AT (Goodfellow, Shlens, and Szegedy 2015), universal ad-
versarial training UAT (Shafahi et al. 2020), WRM (Sinha,
Namkoong, and Duchi 2018), and adversarial data augmenta-
tion ADA (Volpi et al. 2018).

From Table 1, we can see that DAT consistently outper-
forms ERM and achieves good performance under both di-
versity and correlation shifts. Specifically, DAT achieves
much better results than ERM on correlation-shift tasks
(CMNIST and NICO) like IRM. Second, we can see that
most domain generalization algorithms at the moment can-
not surpass ERM on tasks dominated by diversity shifts. Al-
though RSC has great performance on these tasks, it performs
much worse under correlation shifts. However, DAT consis-
tently outperforms ERM and could account for both kinds of
shifts. Furthermore, compared to other AT-based algorithms
(i.e., sample-wise AT, UAT, WRM, and ADA), DAT has a
fair performance by considering a domain-wise perturbation
that removes domain-varying spurious features. The results
demonstrate the effectiveness of DAT in dealing with domain
discrepancy.
Extension to Single Domain Generalization
As discussed in Section , DAT can reduce the influence of
background even when no domain labels are given, which
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Algorithm Correlation shift Diversity shift

CMNIST NICO PACS TerraInc

ERM (Baseline) 58.5± 0.3 72.1± 1.6 81.5± 0.0 42.6± 0.9

VREx (Krueger et al. 2021) 56.3± 1.9 71.5± 2.3 81.8± 0.1 40.7± 0.7
GroupDRO (Sagawa et al. 2020) 61.2± 0.6 71.0± 0.4 80.4± 0.3 36.8± 1.1
IRM (Ahuja et al. 2020) 70.2± 0.2 73.3± 2.1 81.1± 0.3 42.0± 1.8
ARM (Zhang et al. 2021b) 63.2± 0.7 67.3± 0.2 81.0± 0.4 39.4± 0.7
RSC (Huang et al. 2020) 58.5± 0.5 74.3± 1.9 82.8± 0.4 43.6± 0.5
DANN (Ganin et al. 2016) 58.3± 0.2 69.4± 1.7 81.1± 0.4 39.5± 0.2
MMD (Li et al. 2018b) 63.4± 0.7 68.9± 1.2 81.7± 0.2 38.3± 0.4
MTL (Blanchard et al. 2021) 57.6± 0.3 70.6± 0.8 81.2± 0.4 38.9± 0.6
MLDG (Li et al. 2018a) 58.4± 0.2 66.6± 2.4 73.0± 0.4 27.3± 2.0
SagNet (Nam et al. 2021) 58.2± 0.3 69.8± 0.7 81.6± 0.4 42.3± 0.7
CORAL (Sun and Saenko 2016) 57.6± 0.5 70.8± 1.0 81.6± 0.6 38.3± 0.7
Mixup (Yan et al. 2020) 58.4± 0.2 72.5± 1.5 79.8± 0.6 39.8± 0.3

AT (sample-wise) (Goodfellow, Shlens, and Szegedy 2015) 57.9± 0.4 70.5± 0.7 82.0± 0.2 42.6± 0.3
UAT (Shafahi et al. 2020) 58.7± 2.3 69.1± 1.2 80.7± 0.4 41.9± 1.8
WRM (Sinha, Namkoong, and Duchi 2018) 57.9± 3.3 68.2± 1.0 80.4± 0.0 26.1± 1.5
ADA (Volpi et al. 2018) 56.3± 0.4 69.5± 1.9 80.2± 0.2 41.2± 0.7

DAT (our work) 68.4± 2.0 72.6± 1.7 82.0± 0.1 42.7± 0.7

Table 1: Test accuracy (%) on four representative tasks for OOD generalization. According to the OOD-Bench (Ye et al. 2022),
two are dominated by correlation shift, CMNIST and NICO, and two are dominated by diversity shift, PACS and TerraInc. We
highlight the top two results on each task.

corresponds to the single-source domain generalization set-
ting. We conduct experiments that strengthen this claim to
see how DAT could help in the single-source domain gener-
alization setting. The experimental setting can be found in
Appendix.

The results on the four datasets used in Table 1 are shown
in Table 2. We can see that our DAT has fair performance on
all four datasets compared to ERM, either under correlation
shift or diversity shift. Although the difference is not as sig-
nificant as in the multiple-domain setting, it shows that our
DAT works for both single-domain and multi-domain gen-
eralization scenarios. In particular, its advantages are more
significant with multiple domains, where the domain-wise
perturbation mechanism is more effective.

We also test DAT on Digits, a common single-source do-
main generalization dataset consisting of five sub-datasets:
MNIST (LeCun et al. 1998), MNIST-M (Ganin and Lem-
pitsky 2015), SVHN (Netzer et al. 2011), SYN (Ganin and
Lempitsky 2015), and USPS (Denker et al. 1988). We show
the results in Table 3. The performance of ERM is adopted
from Qiao, Zhao, and Peng (2020). From these results, we
can see that DAT retains its better generalization ability in the
challenging single-domain generalization setting by outper-
forming ERM in all tasks and could be a promising alternative
to ERM.

Algorithm CMNIST NICO PACS TerraInc

ERM 45.8 63.2 59.8 27.3
±0.7 ±2.9 ±1.6 ±4.0

DAT 46.0 64.4 59.9 28.1
±2.0 ±0.7 ±2.4 ±4.0

Table 2: Average test accuracy (%) of ERM, DAT on four
representative tasks (single-source domain generalization).

SVHN MNIST-M SYN USPS Avg

ERM 27.83 52.72 39.65 76.94 49.29
DAT 28.2 55.8 43.1 81.3 52.1

±1.0 ±1.4 ±0.2 ±1.0

Table 3: Results of ERM and DAT on Digits dataset

Algorithm CMNIST NICO

UAT 58.7± 2.3 69.1± 1.2
Ensemble UAT 58.2± 2.3 60.8± 0.2

DAT 68.4± 2.0 72.6± 1.7

Table 4: Results of UAT, Ensemble UAT, and DAT on CM-
NIST and NICO.

Under this setting, DAT generates perturbations in the only
training domain, thus degenerating into UAT. However, as
shown in Table 1, DAT performs much better in the mul-
tidomain setting, which shows the necessity of generating
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domain-specific perturbations. Furthermore, to show that
models trained using DAT on multi-domains are not a triv-
ial ensemble of models trained on single-domains, we train
voting classifiers on CMNIST and NICO using UAT models
trained separately on each domain. The results are shown in
Table 4. We can see that neither UAT nor ensemble UAT has
the same performance as DAT. This verifies the effectiveness
of learning domain-wise perturbations using DAT.

Analysis
We conduct extensive experiments to better understand what
our algorithm learns and how the magnitude of hyperparame-
ters affects its performance.

Qualitative Analysis through Semantic Graphs. We use
GradCam (Selvaraju et al. 2017; Gildenblat and contributors
2021) to visualize the attention heatmaps of models trained
by ERM, sample-wise AT, and DAT on the NICO dataset.
The results are shown in Figure 3, where we can see that
DAT pays more attention to the object itself than the strongly
correlated background, while ERM and sample-wise AT tend
to use environmental features instead.

Snow

Grass

Forest

Beach

Original ERM AT DATIRM

Figure 3: Attention heatmaps of ERM, IRM, (sample-wise)
AT, and our DAT on the NICO dataset. Compared to other
methods, DAT focuses more precisely on the object itself.

Perturbation Radius and Step Size. We investigate the
effect of the perturbation radius ε and the perturbation step
size α on the NICO dataset. The results are shown in Table 5.
The results show that the perturbation radius ε greatly affects
the OOD performance. When ε is too large (> 10−1), it
begins to hurt the invariant feature and causes performance
degradation (from 72.9% to 67.9%). The step size α has a
smaller influence, and choosing a value between 1/100 and
1/10 times the size of ε would be appropriate. The effect
of the norm used for perturbation in DAT is analyzed in
Appendix.

Discussions
Comparison with Sample-wise AT. Previous works
(Hendrycks et al. 2021; Yi et al. 2021) try to exploit sample-
wise AT as a data augmentation strategy to obtain higher

Radius ε Step Size α Acc (%)

[10−2, 10−1]
[10−4, 10−3] 72.6± 1.7
[10−3, 10−2] 72.0± 2.1
[10−2, 10−1] 68.9± 1.5

[10−1, 100]
[10−3, 10−2] 71.2± 0.4
[10−2, 10−1] 66.6± 1.7
[10−1, 100] 69.4± 0.4

[100, 101]
[10−3, 10−2] 64.6± 0.3
[10−2, 10−1] 67.9± 2.0
[10−1, 100] 67.4± 0.4

Table 5: Comparison of the test accuracy of different pertur-
bation radius ε and step size α of ℓ2-norm bounded DAT on
the NICO dataset.

OOD performance. However, the performance only improves
when the distribution shift is dominated by diversity shift,
e.g., noise, and blurring. Otherwise, performance might be de-
graded, as shown in Table 1. One possible explanation is that
sample-wise AT fails to capture the domain-level variations
as DAT. As a result, it may add perturbations to the invariant
features and hurt performance, especially under correlation
shift.

Comparison with Invariant Causal Prediction. A thread
of methods, including ICP (Peters, Bühlmann, and Mein-
shausen 2016), IRM (Arjovsky et al. 2019), and IGA
(Koyama and Yamaguchi 2020), try to find invariant data
representations that could induce an invariant classifier. They
have superior performance on synthetic datasets like CM-
NIST but fail to outperform ERM on real-world datasets
(tasks dominated by both correlation shift and diversity shift).
We believe that these failures could be attributed to the lack
of prior information of their invariant learning principles. In
our DAT, we effectively exploit the foreground-background
difference in image classification tasks through domain-wise
perturbations.

Conclusion
In this work, we carefully analyze the similarity between
IRM and adversarial training in a domain-wise manner and
establish a formal connection between OOD and adversarial
robustness. Based on this connection, we propose a new ad-
versarial training method for domain generalization: Domain-
wise Adversarial Training (DAT). We show that it could effec-
tively remove spurious background features in image classifi-
cation and obtain fair performance on benchmark datasets. In
particular, our DAT could consistently outperform ERM on
tasks dominated by both the correlation shift and the diversity
shift, while previous methods typically fail in one of the two
cases.
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