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Abstract

We study a normalizing flow in the latent space of a top-
down generator model, in which the normalizing flow model
plays the role of the informative prior model of the gener-
ator. We propose to jointly learn the latent space normaliz-
ing flow prior model and the top-down generator model by a
Markov chain Monte Carlo (MCMC)-based maximum like-
lihood algorithm, where a short-run Langevin sampling from
the intractable posterior distribution is performed to infer the
latent variables for each observed example, so that the pa-
rameters of the normalizing flow prior and the generator can
be updated with the inferred latent variables. We show that,
under the scenario of non-convergent short-run MCMC, the
finite step Langevin dynamics is a flow-like approximate in-
ference model and the learning objective actually follows the
perturbation of the maximum likelihood estimation (MLE).
We further point out that the learning framework seeks to (i)
match the latent space normalizing flow and the aggregated
posterior produced by the short-run Langevin flow, and (ii)
bias the model from MLE such that the short-run Langevin
flow inference is close to the true posterior. Empirical results
of extensive experiments validate the effectiveness of the pro-
posed latent space normalizing flow model in the tasks of im-
age generation, image reconstruction, anomaly detection, su-
pervised image inpainting and unsupervised image recovery.

1 Introduction

A flow-based model (Dinh, Krueger, and Bengio 2015;
Dinh, Sohl-Dickstein, and Bengio 2016; Kingma and Dhari-
wal 2018), also known as normalizing flow, represents a data
distribution by a non-linear invertible transformation of a
simple distribution, e.g., Gaussian distribution. Thanks to
the special design of the computation layers of the transfor-
mation, the flow-based model defines a normalized proba-
bility distribution explicitly, making it convenient for learn-
ing, sampling and inference. Specifically, its learning can be
handily accomplished by the maximum likelihood estima-
tion with the tractable density function, its sampling can be
efficiently achieved by a direct mapping of samples drawn
from a Gaussian distribution, and its inference can be eas-
ily realized by the inverse transformation of data. There-
fore, flow-based models have been widely used for direct
modeling of various types of data, such as images (Kingma
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and Dhariwal 2018), videos (Kumar et al. 2020), point
clouds (Yang et al. 2019), audio (Ping et al. 2020) etc.

In spite of the computational convenience, the expres-
sivity of a normalizing flow is constrained by the unnat-
ural design of the invertible transformation. Increasing the
model expressivity typically requires significantly enlarging
the network structure, thus leading to difficulty in construct-
ing the network architecture and optimizing the network pa-
rameters. In order to foster the strengths and circumvent the
shortcomings of the normalizing flow, we propose to learn
a normalizing flow in the low-dimensional latent space of
observed data. The resulting generative model becomes a
normalizing flow standing on top of a top-down generator
network. The latent space normalizing flow model can not
only reserve the computational merit, but also focus on cap-
turing regularities and rules of the data in the continuous
latent space without having to care about the data type and
data complexity. Also, the learning and the design of a nor-
malizing flow in the latent space is much easier than those
in the data space due to the low dimensionality of the latent
space. Typically, it can be parameterized by a small invert-
ible multi-layer perceptron that consists of several layers.

Besides, the proposed latent space normalizing flow can
be considered an informative prior distribution of the la-
tent variables in the top-down generator model. Compared
to the commonly used isotropic Gaussian (or uniform) non-
informative prior in the conventional generator model, the
informative prior represented by a trainable normalizing
flow can significantly increase the expressive power of the
entire generator. The normalizing flow model is a good fit
for the role of prior distribution in the deep latent variable
framework in the sense that (i) the normalizing-flow-based
prior can be jointly trained with the top-down network due
to the tractability of the prior probability density and (ii) the
data generation from the learned model can be explicit and
fast because of the ease of the prior sampling. We call our
model the latent space flow-based prior model (LFBM).

In this work, we propose a novel and principled way to
jointly train the flow-based prior model and the generator via
maximum likelihood estimation (MLE). The training pro-
cess alternates the inference step and the learning step. Each
inference step involves Markov chain Monte Carlo (MCMC)
sampling of the posterior distribution, which is guided by
both the flow-based prior distribution and the top-down gen-



erator, for the sake of inferring latent variables of each ob-
served example, while, in each learning step, the parameters
of the flow-based prior is updated by maximizing the like-
lihood of the inferred latent variables and the parameters of
the generator are updated by minimizing the regression error
between the inferred latent variables and the corresponding
observed examples. As to the MCMC inference, we adopt a
short-run Langevin dynamics, i.e., a finite-step Langevin dy-
namics initialized with a fixed Gaussian distribution. Even
though the short-run MCMC is an approximate inference
due to the non-convergence, the normalizing flow prior can
be adjusted based on the approximately inferred latent vari-
ables to mend the discrepancy between the aggregate poste-
rior distribution and the prior distribution. We show that the
learning algorithm based on short-run MCMC inference is a
perturbation of MLE. In contrast to the latent space energy-
based prior model (LEBM) (Nijkamp et al. 2020), in which
short-run MCMCs are applied to not only the posterior sam-
pling but also the EBM prior sampling, our model is able to
perform an exact prior sampling via ancestral sampling and
thus less biased from MLE than the LEBM. Compared to
the baseline that trains the same LFBM along with an ex-
tra bottom-up inference model (with additional parameters)
for variational auto-encoders (VAEs) (Kingma and Welling
2014), our framework with a Langevin flow for approximate
inference exhibits superiorities, e.g., better empirical perfor-
mance, less model parameters, and free of inference network
design. Table 1 presents an analytical comparison of dif-
ferent latent variable models using various combinations of
prior and posterior components. This comparison can clearly
show the advantage of our proposed model and the moti-
vation of this work. Specifically, this paper is motivated by
proposing a practical, design-friendly and lightweighted la-
tent variable framework with informative prior.

We summarize the main contributions of our paper as fol-
lows: (1) We propose a simple but novel deep generative
model where a latent space normalizing flow, which serves
as a prior, stands on a single top-down generator network.
(2) We propose a natural and principled maximum likeli-
hood learning algorithm to jointly train the latent space nor-
malizing flow and the top-down network with MCMC-based
inference over latent variables. (3) We also propose to use
short-run Langevin flow as an approximate inference for ef-
ficient training. (4) We provide theoretical understanding of
the proposed learning framework. (5) We provide extensive
and strong experimental results on different aspects, includ-
ing image synthesis, inference, reconstruction, inpainting
and recovery, to validate the effectiveness of the proposed
models and learning algorithms.

2 Related Work

Data Space Flow-based Models and Latent Space Flow-
based Models. This work builds upon the techniques of
normalizing flows, which have been widely applied to data
space for representing high-dimensional data distributions
directly (Dinh, Krueger, and Bengio 2015; Dinh, Sohl-
Dickstein, and Bengio 2016; Kingma and Dhariwal 2018;
Yang et al. 2019; Ping et al. 2020; Kumar et al. 2020; Shi
et al. 2020). This work moves the flow-based models from
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data space to latent space for representing low-dimensional
latent manifolds from which the observed data are gener-
ated. Some prior works, such as Chen et al. (2017); Huang
et al. (2017); Ma, Zhou, and Hovy (2019); Xiao, Yan, and
Amit (2019); Ding and Gimpel (2021), study flow-based
priors in VAE scenarios. Our paper mainly focus on maxi-
mum likelihood learning of flow-based priors with short-run
Langevin MCMC inference.

Top-down Models with Implicit Density and Explicit
Density. A top-down model is a nonlinear generalization
of the factor analysis model (Rubin and Thayer 1982) and
its density is generally implicit and intractable. Likelihood-
based training of a top-down generator model typically
relies on either the Markov chain Monte Carlo sampling
that evaluates the posterior distribution, such as Han et al.
(2017); Xie et al. (2019) or the variational inference that ap-
proximates the posterior distribution, such as Kingma and
Welling (2014). A normalizing flow is a special top-down
model that defines an explicit and normalized probability
density and it can be learned by maximizing the exact likeli-
hood of the observed data through a gradient ascent algo-
rithm. Our model also belongs to a top-down model that
stacks a top-down model with explicit density on top of
the other one with implicit density. Similar to other generic
top-down generator models, sampling from our model can
also be achieved via direct ancestral sampling. However, the
flow-based model at the top serves as a flexible and tractable
prior distribution for the top-down model at the bottom.

Latent Space Energy-based Prior. Recently, Pang et al.
(2020, 2021); Pang and Wu (2021); Zhang et al. (2021) pro-
pose to use deep energy-based models (EBM) (Xie et al.
2016) to serve as flexible priors for top-down generation
models. Because an EBM prior defines an unnormalized
density, drawing samples from such a prior requires itera-
tive MCMC sampling, thus bringing in inconveniences dur-
ing the training and sampling of the whole model. Given the
inferred latent variables, the update of the latent space EBM
prior involves a non-convergent short-run MCMC that sam-
ples from the prior, which leads to a biased estimation of
the EBM prior distribution (Nijkamp et al. 2019; Xie et al.
2022). In contrast, our normalizing-flow-based prior model
doesn’t have such an issue due to its properties of tractable
density and fast generation.

MCMC-based Inference. Our LFBM is related to MLE
of top-down generator model with MCMC-based inference,
which is also called the alternating back-propagation (ABP)
learning in Han et al. (2017); Xie et al. (2019, 2020); Zhu
et al. (2019); Zhang, Xie, and Barnes (2020); An, Xie, and
Li (2021); Xing et al. (2022). The original ABP algorithm
is designed to train a generator network with a known and
simple Gaussian prior. The LEBM (Pang et al. 2020) gen-
eralizes the ABP algorithm to a framework with a trainable
and unnormalized energy-based prior model, while our pa-
per generalizes the ABP algorithm to a framework with a
trainable and normalized flow-based prior model.

Variational Inference. Most regular variational auto-
encoder (VAE) frameworks employ a fixed Gaussian distri-
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Table 1: A comparison of latent variable models with different priors and inference process. (@ is good, © is OK, and O is bad.)

bution as the prior and use reparameterization trick (Kingma
and Welling 2014) to design the amortized inference net-
work that outputs a Gaussian posterior. Some prior works,
such as Rezende and Mohamed (2015); Kingma et al.
(2016), improve the amortized inference network by using
a normalizing flow that outputs a flexible posterior. Our
LFBM parameterizes the prior by a normalizing flow, treats
the built-in short-run Langevin MCMC as the inference
model, and learns them simultaneously from the observed
data by following the empirical Bayes principle.

3 Proposed Framework
3.1 Normalizing Flow in Latent Space

Let # € RP be an observed signal such as an image, and
let z € R? be the latent variables of x. The joint distribu-
tion of the signal and the latent variables (z, z) is given by
po(x, 2) = pa(2)ps(x|z), where the distribution of z, i.e.,
Pa(2), is the prior model parameterized by «, and the condi-
tional distribution of x given z, i.e., pg(z|2), is the top-down
generation model parameterized by 3. For notational conve-
nience, let § = (o, 8).

The top-down generaton model is a non-linear transfor-
mation of the latent variables z to generate the signal x, in
which the transformation is parameterized by a neural net-
work g : RY — RP, which is similar to the decoder of a
variational auto-encoder (VAE) (Kingma and Welling 2014).
To be specific, z = g3(z) + €, where € ~ N(0,0%1Ip) is
an observation residual. Thus, pg(z|z) = N(gg(2),0%Ip),
where the standard deviation o is a hyper-parameter and as-
sumed to be given.

For most existing top-down generative models, the prior
models are assumed to be non-informative isotropic Gaus-
sian distributions. In this paper, we propose to formulate the
prior p,(z) as a flow-based model (Dinh, Sohl-Dickstein,
and Bengio 2016; Dinh, Krueger, and Bengio 2015; Kingma
and Dhariwal 2018), which is of the form

ey

where ¢o(zo) is a base distribution and has a simple and
tractable density, such as a Gaussian white noise distribu-
tion: go(20) = N(0,14). fo : R? — R% is an invertible or
bijective function, which is a composition of a sequence of
invertible transformations, i.e., fo(20) = fa, © " © fa, ©

z0 ~ QO(ZO)v z = fa(ZO)7
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fay (20), whose inverse and logarithm of the determinants
of the Jacobians can be explicitly obtained in closed form.
Examples of such architectures include NICE (Dinh, Sohl-
Dickstein, and Bengio 2016), ReaNVP (Dinh, Krueger, and
Bengio 2015), and Glow (Kingma and Dhariwal 2018).

Forl=1,...,L,let z; = f,,(z1—1) be a sequence of ran-
dom variables transformed from zg, and define z := zr.
According to the change-of-variable law of probabilities,
qo(z0)dzo = pa(z)dz, the density of the flow-based prior
model can be written as

) 2)

afit(2)

0z

where f1(2) oL o fi(2), and the de-
terminant of the Jacobian matrix (0z;_1/0z;) can be easy
to compute with well-designed transformation functions in
the flow-based models. Typically, choosing transformations
that can lead to a triangle Jacobian matrix will simplify
the computation of the determinant: |det(9z;_1/92)| =
[1|diag(0z—1/0z;)|, where diag() takes the diagonal el-
ements of the Jacobian matrix. Thus, the flow-based prior
model has two nice properties: (i) analytically tractable nor-
malized density (i.e., Eq. (2)), and (ii) easy to draw samples
from by using ancestral sampling (i.e., Eq. (1)).

The flow-based prior model in Eq. (1) can be regarded as a
flow-based refinement or calibration of the original Gaussian
prior distribution gg, which is a widely used prior distribu-
tion in most top-down generative frameworks. There are two
advantages of using flow-based prior models for generative
learning: (i) This enables us to learn a flexible prior from
data to capture more meaningful latent components com-
pared to those using a simple Gaussian prior model; (ii) The
original generator learns gg to map from a fixed unimodal
prior go to the highly multi-modal data distribution, while
in the proposed framework, the flow-based prior model cor-
rects go such that gg can be easier to transform the calibrated
distribution p,, to the data distribution.

dZo

dz

ol (@) T [aet

= qo(20)

Pa(?) 20 (f5'(2)) ‘det (

0z;_1
(921

—1
oy

O---0

3.2 Maximum Likelihood Learning with
Langevin Inference

The top-down generative model with a flow-based prior can
be trained via maximum likelihood estimation. For the train-



ing examples {z;,4 = 1,...,N}, the observed-data log-

likelihood function is given by

1 N
= ZlogPQ(xb)7
N =1

where the marginal distribution is obtained by integrat-
ing out the latent variables z: pg(z) = [pg(z,2)dz =
f Pa(2)ps(x|2)dz. Maximizing the log-likelihood function

L(0) is equivalent to minimizing the Kullback-Leibler (KL)
divergence between the model pg(z) and the data distribu-
tion paaea (). The gradient of £(6) is computed according to

3

Vo logpe(x) = Ep, (z)a) [V log pe(z, 2)]
=Ep, (z12)[Vo(log pa(z) + log ps(z]2))],

where the posterior distribution of z is given by py(z|x) =
po(x, 2)/pe(x) x po(2)pa(z|z). The inference distribution
po(z|x) is dependent on both the prior model « and the gen-
eration model .

For the flow-based prior model,

) + Z log |det

“

log pa(z) = log qo(f, )I

Q)
)

. 0211
=1lo + sum(log |dia
g o(z0) l; (log |diag(—~

where log() takes element-wise logarithm, and sum() takes
the sum over all elements in a vector. Given a datapoint z,
computing its log-likelihood only need one pass of the in-
verse function f; 1. We define [, () = log p,(2) to explic-
itly indicate that computing the log-likelihood of z under the
flow-based model is computationally tractable and can be re-
garded as a function of z. The learning gradient of « for a
datapoint z is

Vo logpe (Z‘) = Epg(z|w) [va Ingoz(Z)]

= Epg(Z|I) [Vala(z)].

The update of the latent space flow-based prior model de-
pends on the observed example z, but different from the
original data space flow-based model, it treats the latent vari-
ables inferred from x as a training example and seeks to
maximize the log-likelihood of the inferred latent variables.
The updated p,, (z) will further influence the inference accu-
racy of pg(z|z).

As to the generation model, the learning gradient of 3 for
a datapoint z is

Q)

= Epy(212) [V log ps(z|2)]. (7

Since pg(x|z) is in the form of a Gaussian distribution
with a mean of gg(z) and a standard deviation of o,
Vslogps(alz) = Va(—gzllz — ga(2)I[* + const)
-2 (x = g5(2))V95(2).

The learning gradient of 6 in Eq.(4) is decomposed into
the learning gradient of « in Eq.(6) and the learning gra-
dient of 3 in Eq.(7), both of which involve the expectation
with respect to the intractable posterior py(z|z), which can

Vs logpe(x)
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be approximated by drawing samples from py(z|x) and then
computing the Monte Carlo average. Sampling from pg(z|x)
can be achieved by Langevin dynamics that iterates

‘.%' + /2 e(k),
k) ~N(0,1q),

where k indexes the Langevin time step, V, log pg(z|z)
V.logpa(z) + V.logps(zlz) = V.la(z) + H(z —
93(2))V.g5(2), and € is the Langevin step size. Algorithm 1
presents the learning algorithm of LFBM. We use the Adam
optimizer (Kingma and Ba 2015) to update the parameters.

2(k+1) = 2(k) + &V log py(2

2(0) ~ qo(2z )a ®)

3.3 Perturbation of Maximum Likelihood

The Langevin inference in Eq.(8) is practically non-mixing
and non-convergent because MCMC chains from different
stating points can get trapped in local modes of the poste-
rior distribution or MCMC chains are not sufficiently long
to converge. Using a short-run non-convergent MCMC, e.g.,
a finite-step Langevin dynamics, as a flow-like approximate
inference is more computationally efficient than using a
long-run MCMC and more implementationally convenient
than using an amortized inference network. We use pg(z|x)
to denote the short-run Langevin flow distribution, which is
obtained by running a K-step Langevin dynamics starting
from a fixed initial distribution go(z) toward the true poste-
rior py(z|x). Strictly speaking, Algorithm 1 with a short-run
MCMC inference is a perturbation of maximum likelihood.
That is, given 6, at iteration ¢, the learning gradient of 6 is

N

_ % > D (o, (zil2:) Ipo (zi]:)),

(€))

which is a lower bound of £(6). Theoretically, if K — oo,
& — 0, then Dxy.(Po(z|x)||pe(=]x)) — 0. The estimate of ¢
is an MLE solution. However, Dxy.(pg(z|x)||po(z]x)) # O
in practise, the estimate of 6 is biased from MLE.

In Eq.(9), the first term £(#) corresponds to MLE, i.e.,
we want py(z) to be close t0 pgan, While the second KL-
divergence term means that we want to bias € from MLE so
that pg(z|z) is close to Py, (z|z). In fact, this is not a bad
thing because it means we intend to bias the model so that
short-run MCMC is close to the true posterior.

The algorithm converges when learning gradients equal
to zeros. The resulting estimators of § = (a, 3) solve the
following estimating equations:

N

1

5 Y Epyeen[Valogpa(z)] =0, (10)
i=1

1 N

N > Epy(alen) [V log ps(@il )] = 0.

i=1

(1)

In contrast to LFBM, the latent space energy-based prior
model (LEBM) (Pang et al. 2020) adopts an unnormalized
energy-based density PP (2) oc exp(fa(2))qo(z) as the
prior. The MLE of LEBM requires not only MCMC infer-
ence from pg(z|x) but also MCMC sampling from p™(2).
The short-run MCMC inference and sampling cause the



learning algorithm of the LEBM to be a perturbation of
MLE. Given 6;, the update of 6 is based on the gradient of

N
Ligpm(0) =L£(0) — %ZDKL@«% (zili)|[po(zi|z:))

+ D (B3 (2)][p5™ (2)),

where p2™(z) represents the short-run MCMC distribution.
The second KL-divergence term in Eq.(12) is due to imper-
fect sampling from the EBM prior. Our flow-based prior
pa(z) is capable of exact sampling, therefore the second

KL-divergence term disappears in Eq.(9). Thus, £y ggm(6)
is more biased from MLE than £(6).

12)

Algorithm 1: Maximum likelihood learning of latent space
normalizing flow model

Input: (1) Observed signals for training {z;}; (2) Max-
imal number of learning iterations 1% (3) Numbers of
Langevin steps for posterior K; (4) Langevin step size £ for
the posterior; (5) Learning rates for flow-based prior model
and the generation model {n,,n3}.

Output: Parameters /3 for the generation model and « for
the flow-based prior model

1: Randomly initialize & and 3

2: fort < 1to T do
3: Sample a batch of observed examples {x;}?
4: For each z;, sample the posterior z; ~ pg(z|x;) us-

ing K Langevin steps in Eq.(8) with a step size &.
Update flow-based prior by Adam optimizer with

the gradient Vo in Eq.(6) and a learning rate ,,.
Update generation model by Adam optimizer with

the gradient V3 in Eq.(7) and a learning rate 3.

end for

3.4 Matching Normalizing Flow Prior and
Aggregated Langevin Flow Posterior

We further reveal the interaction between the normaliz-
ing flow prior and the Langevin flow posterior in latent
space during maximum likelihood estimation. The maxi-
mum likelihood learning minimizes the KL-divergence be-
tween the aggregated posterior and the prior. Let p(z, z) =
Pdata(T)po (2] 2), and then the aggregated posterior is p(z) =
S p(x,2)de = By, (2)[pe(z|z)]. Also, we have p(z,z) =
p(2)p(x|z). We show that

DKL (Paata () |[po (2))
=Dk (Paaa ()po (2|2)|[po ()po
=Dk (p(2)p(x[2)|Ipa(2)ps(2]2))
=Dkr(p(2)|[pa(2)) + Dxo(p(z|2)Ips(2]2)),

which means that the maximum likelihood learning of the
whole latent variable models involves a behavior that mini-
mizes the KL divergence between the aggregated posterior
and the normalizing flow in the latent space.

The above analysis is based on the ideal scenario
with a long-run convergent Langevin inference. In our

(z|2))

_ (13)
P(
p(z
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framework, we assume and allow short-run Langevin
sampling, and then our objective turns into maxi-
mizing the perturbation of maximum likelihood, i.e.,
log po(x) — Dk (Po, (z]2)||pe(z|x)), or equivalently mini-
mizing D (paaa ()] [P (2)) -+ Dir (o, (2] |po (2])). We
now generalize the above analysis to the short-run non-
convergent Langevin flow scenario. We show that

Dk (Pdaa (%) [[po () + D (Do, (2]2)||po(2]))
=Dk (Paata () Do, (2]2)||P6 (2)pe (2]2))
=Dk (Pdaa (%)Po, (2|2)[|pa(2)ps(2]2))
( )

(

( (14)
=Dx1(Pdata(2)Po. (2]2)|[Pa(2)ps(2]2))

(2)

z) =

=Dk (Paaa(2)[[Pa(2)) + D (Do, (x]2)|ps (z]2)),
where pddtd = [ pdaa(®)Po, (z|x)dz is the aggregated
posterior. Py, (2|2) = Paaa(2)Po, (2]2)/Paaa(2) is the gen-
eration model based on data distribution and the inference
model (i.e., short-run Langevin flow). KL-divergence be-
tween conditional distributions is understood to be averaged
over the variable z being conditioned upon. In the above, we
update p,, (%) to be close to Pyaa(2). We update pg(z|z) to
be close to Py, (z|z). Both pyaa(2) and py, (x|z) depends on
the short-run Langevin flow py, (z|x).

Therefore, the learning of our model accomplishes two
things: (1) Let the flow-based prior match the aggregated
posterior produced by the short-run Langevin flow inference
model. (2) Bias the model from MLE so that the short-run
Langevin flow inference is close to the true posterior.

4 Experiments
4.1 Experiment Settings

We conduct a set of experiments to examine the effective-
ness of the proposed latent space flow-based prior model in
image modeling. In particular, we evaluate the model from
the perspectives of synthesis, reconstruction and inference.
We use SVHN (Netzer et al. 2011), CelebA (Liu et al. 2015),
and CIFAR-10 (Krizhevsky 2009) image datasets for gen-
eration and reconstruction tasks, and use MNIST (LeCun
et al. 1998) dataset for anomaly detection. All the inpaint-
ing and recovery experiments are conducted on CelebA face
dataset. The network architectures and the hyperparameters
are presented in Supplementary Material. The experiments
are mainly for the sake of proof of concepts rather than
state-of-the-art performance. We will compare our frame-
work with two important baseline methods, which are (1)
LFBM-VAE baseline, which trains LFBM using variational
inference instead of MCMC inference, (2) LEBM baseline,
which uses an energy-based model in the latent space. For
fair comparison, the architecture designs of the top-down
generators gg in LEBM, LFBM-VAE and ours are the same,
and the flow-based prior models f, in LFBM-VAE and ours
are also identical. The design of the inference network of
LFBM-VAE follows Kingma et al. (2016), who parameter-
ize the inference network by an encoder followed by an in-
verse autoregressive flow. The designed network architec-
tures are expected to vary in different datasets due to var-
ious image sizes and pattern complexities. We use LFBM-
MCMC to denote our LFBM using Langevin inference in
order to distinguish from the baseline LFBM-VAE.



(a) CIFAR10

(b) SVHN

(c) CelebA

Figure 1: Generated examples from the LFBM-MCMC models traind on the CIFAR10 (32 32), SVHN, (32x 32) and CelebA
(64x 64) datasets. The LFBM-MCMC model is trained with short-run Langevin flow as approximate inference.

4.2 TImage Synthesis and Reconstruction

A well-trained latent variable generative model can be useful
for generation and reconstruction. We train models on train-
ing images of SVHN, CelebA and CIFAR-10 respectively,
and generate synthesized examples by first sampling latent
vectors from the learned latent space normalizing flow and
then transforming the vectors to image space. We calculate
the Fréchet inception distance (FID) (Heusel et al. 2017) to
measure the quality of the synthesized images in Table 2.
We show generated samples of the learned LFBM-MCMC
models in Figure 1. The models can reconstruct images by
first inferring the latent vectors from the images, and then
mapping the inferred latent vectors back to data space. The
inference of latent variables can be achieved by the MCMC
in our LFBM-MCMC. The quality of reconstruction im-
ages are measured by mean squared error (MSE) in Table 2.
We mainly compare our methods with likelihood-based top-
down models rather than adversarial frameworks. Specif-
ically, we compare with traditional variational inference
baselines, such as VAE (Kingma and Welling 2014) and
SRI (Nijkamp et al. 2020) which use Gaussian priors and
two VAE variants, 2sVAE and RAE, which learn their priors
from posterior samples in the second stage. We also com-
pare with MCMC inference frameworks, such as ABP (Han
et al. 2017) and LEBM (Pang et al. 2020) whose prior dis-
tributions are fixed Gaussian distribution and energy-based
model, respectively. We also compare our LFBM-MCMC
with the VAE variant, i.e., the LFBM-VAE. Our models out-
perform other baselines in terms of MSE and FID.

4.3 Supervised Image Inpainting

We can train an LFBM-MCMC from fully-observed train-
ing images, and then use the learned model to complete
the missing pixels of testing images. Let m be a matrix,
which has the same number of dimension as that of an im-
age x, with values ones indicating the visible pixels and
zeros indicating the invisible ones (corrupted or occluded)
of the image x, respectively. Suppose there is an incom-
plete image x,, with missing pixels indicated by a mask
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m. With the learned flow-based prior model p,(z) and the
generation model pg(x|z), we can restore the missing pix-
els by first inferring the latent vectors z from z,,, and then
using gg(zm,) to generate an image x, which is a com-
plete version of x,,. The inference can be easily performed
by Langevin dynamics that follows Eq.(8) with the gra-
dient of a modified log-posterior V log py(z|zm,, m)
V:logpa(z) + V:logps(wm|z,m) = V.la(2) + %(m ©
(m — 98(2)))V.95(2), where © is the element-wise mul-
tiplication operator. That is, we evaluate the posterior over
only the visible pixels of the images. Each testing image is
occluded by a 40 x 40 region mask at the center. The res-
olution of the images are 64 x 64 pixels. For each testing
image, our LFBM-MCMC model can generate diverse and
meaningful inpainting results by using different zy sampled
from ¢o(z) to initialize the Langevin chains for inference.

Figure 2 displays some qualitative results, where we com-
pare our LFBM-MCMC model with the baseline LFBM-
VAE. Both LFBM-MCMC and LFBM-VAE are trained on
fully observed training images of CelebA dataset. For task
of inpainting, given an incomplete image with a mask oc-
cluding pixels at the center, our LFBM-MCMC first infers
the latent variables of the incomplete image by the Langevin
flow, and then generate the occluded region of the image by
the top-down generator taking the inferred variables as input.
As to the LFBM-VAE, the learned inference model in the
LFBM-VAE is hard to employ for inferring latent variables
from an incomplete data, which means that even though the
variational inference is computationally efficient, it is not
suitable to infer latent variables from a partially observed
image because the encoder can not map a portion of the im-
age into the latent space. In order to use the LFBM-VAE
for image inpainting, we abandon the learned inference net-
work, and derive the Langevin dynamics from the learned
prior and generator models in LFBM-VAE. We adopt the de-
rived Langevin flow as in the LFBM-MCMC for inference
and inpainting. As shown in Figure 2, each row illustrates
one inpainting task. The first column displays the original
images, and the second column shows the testing images



LFBM

Models VAE 2sVAE RAE SRI  SRI(L=5) ABP LEBM VAE  MCMC
SVHN MSE | 0.019 0.019 0.014 0.018 0.011 - 0.008 | 0.005 0.005
FID 46.78 4281  40.02 44.86 35.23 4971  29.44 | 2496  23.64

Cifar10 MSE | 0.057 0.056  0.027 - - 0.018 0.020 | 0.020  0.016
FID | 10637 7290 74.16 - - 90.30 70.15 | 69.70  66.41

CelebA MSE | 0.021 0.021  0.018 0.020 0.015 - 0.013 | 0.014  0.011
FID 65.75 4440 4095 61.03 47.95 51.50 37.87 | 33.64  33.64

Table 2: Quantitative results of image reconstruction and generation on different datasets.
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Figure 2: Supervised image inpainting results on the CelebA dataset. Images in the first column are the original images. Images
in the second column are the masked images to be inpainted. Images in column 3 to column 12 (yellow panel) are inpainting
results using the learned LFBM-MCMC model. Images in column 13 to column 22 (green panel) are inpainting results using
the trained LFBM-VAE. For each panel, different columns correspond to different initializations of the inference process.

that need to be inpainted. The yellow panel shows inpainted
images by the LFBM-MCMC, while the green panel shows
inpainted images by the LFBM-VAE. Different columns in
each panel show different inpainting results due to the differ-
ent initialization (i.e., randomness) of the inference process.
Although the LFBM-VAE adopts the MCMC inference for
inpainting, its results are still not as good as those by our
LFBM-MCMC. Some obvious artifacts are observed in the
inpainting results of the LFBM-VAE. Further, we quanti-
tatively evaluate the image inpainting performance of both
LFBM-MCMC and LFBM-VAE in Table 3. We use two
metrics, i.e., FID and MSE, to measure the quality of the in-
painting performance. We test the models in 10,000 images.
For the MSE, we compute the per pixel difference between
the inpianting result and the ground truth image within the
masked region. Our model outperforms the baseline.

Method FID MSE
LFBM-MCMC (ours) 0.0557 0.1937
LFBM-VAE 0.0562 0.2074

Table 3: Quantitative results of image inpainting.

4.4 Anomaly Detection

We evaluate our generative model on anomaly detection of
MNIST (LeCun et al. 1998) data. Given a latent variable
model that is well-trained on normal examples, we can per-
form anomaly detection on a testing image z by firstly in-
ferring its latent variables z and then computing the loga-
rithm of the joint probability log pg(x, 2z) = logpa(z) +
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log ps(]2) = La(2) — gl — gs(2)|I? — log oV as a
decision score. The score should be high for a normal exam-
ple and low for an anomalous one. We can see that a normal
example can be well-reconstructed by the learned generator
(i.e., small reconstruction error ||z — gs(z)||?) with a cor-
rectly inferred latent variables (i.e., high log likelihood in
the learned prior distribution [, (z)).

Following the same experiment setup as Zenati et al.
(2018a); Kumar et al. (2019); Pang et al. (2020), we treat
each class of digit images in MNIST dataset as anomaly ex-
amples and the remaining 9 classes of digit images as normal
examples. We train models only on the normal examples,
and then test the models on both the normal and anomalous
examples. To quantify the model performance, we compute
the area under the precision-recall curve (AUPRC) based
on the decision function log py(z, z). We report the mean
and variance of AUPRC scores over 10 runs of each experi-
ment.We show the results of our LFBM in Table 4, and com-
pare with the related models, including the VAE (Kingma
and Welling 2014), MEG (Kumar et al. 2019), BiGAN-
o (Zenati et al. 2018b), EBM-VAE (Han et al. 2020),
LEBM (Pang et al. 2020) and ABP model (Han et al. 2017).
From Table 4, we can find that the proposed LFBM can ob-
tain much better results than those of other methods.

4.5 Analysis of Hyperparameters

In Figure 3(a), we show the effects of using different
Langevin step sizes and numbers of steps for LFBM. We
carry out experiments on SVHN dataset. We can see that the
best FID score is achieved when the number of Langevin
steps is around 40 and the model with 20 steps can already



Heldout Digit 1 4 5 7 9
VAE (Kingma and Welling 2014) 0.063 0.337 0.325 0.148 0.104

MEG (Kumar et al. 2019) 0.281 £ 0.035 0.401 £0.061 0.402 £0.062 0.290 + 0.040 0.342 £+ 0.034
BiGAN-o (Zenati et al. 2018b) | 0.287 £0.023  0.443 £0.029 0.514 £0.029 0.347 £0.017  0.307 = 0.028
EBM-VAE (Han et al. 2020) 0.297 £0.033 0.723 £0.042 0.676 £0.041 0.490 £ 0.041 0.383 &+ 0.025
LEBM (Pang et al. 2020) 0.336 +£0.008 0.630 £0.017 0.619 £0.013 0.463 + 0.009 0.413 +0.010
ABP (Han et al. 2017) 0.095 £0.028 0.138 £0.037 0.147 £0.026  0.138 £0.021  0.102 4 0.033
LFBM (ours) 0.349 + 0.002 0.812 +0.007 0.823 £ 0.009 0.682 + 0.004 0.514 + 0.008

Table 4: AUPRC scores (larger is better) for unsupervised anomaly detection. Results are averaged over 10 experiments.

give us good results. On the other hand, the optimal step
sizes for Langevin flows using different numbers of steps
are different. Figure 3(b) displays the effect of tuning latent
size. We can see the best result can be achieved in the range
from 50 to 100. Figure 3(c) shows FID scores using different
depths of the flow-based prior on Cifar10. We find that in-
creasing the depth of the prior can improve the performance.

4.6 Unsupervised Image Recovery

The LFBM can be learned from incomplete training data,
e.g., images with occluded pixels. The learning algorithm
updates the model parameters by maximizing the likelihood
of the visible pixels in training images. This also belongs
to unsupervised image inpainting, which is essentially dif-
ferent from the task of supervised image inpainting shown
in Section 4.3. Traditional VAE-based frameworks, such
as LFBM-VAE, are incapable of learning from incomplete
data. To demonstrate this ability of the LFBM, we experi-
ment on 10,000 occluded images that we create. They are
selected from the CelebA dataset and occluded with dif-
ferent types of masks. A mask is randomly placed in each
image. Two types of masks are designed, including single
region mask and salt-and-pepper mask. We specify three
different sizes of single regions, e.g., 20 x 20, 30 x 30,
and 40 x 40, and three different occlusion percentages of
salt-and-pepper masks, e.g., 30%, 50%, and 70%. We com-
pare our LFBM with a fixed Gaussian prior and an energy-
based prior learned by MCMC inference. We can evalu-
ate the performance from two aspects: (i) Recovery qual-
ity: The incomplete training images are gradually recovered
as the learning algorithm proceeds. MSE between recov-
ered images and the corresponding ground truth images at
masked regions are calculated; (ii) Generation quality: We
use FID to measure the visual quality of the synthesized im-
ages, which are generated by models learned from incom-
plete data. Table 5 and Table 6 show comparisons of our
method with the baselines using EBM prior and Gaussian
prior in terms of MSE and FID, respectively. Figure 4 shows
the recovery results for learning from incomplete training
images of the CelebA dataset. We further evaluate the gen-
eration capacities of the models trained in this scenario. We
present qualitative results in Figure 5, which shows the ran-
domly generated images by the models learned from incom-
plete images with different occlusion levels. We can see that
frameworks using Gaussian priors have the worst generated
results. Our LFBM model using Langevin flow as an infer-
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ence process can generate more realistic images than other
baselines in the task of unsupervised learning.

Salt and pepper mask

Occ % 30% 50% 70%
flow (ours) 0.0244  0.0317  0.0464
EBM 0.0256  0.0319  0.0465
Gaussian 0.0259  0.0326  0.0472

Single region mask

mask size 20 x 20 30 x 30 40 x 40
flow (ours) 0.0420  0.0587  0.0864
EBM 0.0429  0.0684  0.0957
Gaussian ~ 0.0404  0.0572  0.0918

Table 5: MSEs of methods with different priors (e.g., flow,
EBM and Gaussian) in unsupervised image recovery.

Salt and pepper mask
Occ % 30% 50% 70%
flow (ours) 46.2 59.14 86.77
EBM 52.78 61.91 88.27
Gaussian 153.01 156.71 172.77
Single region mask
mask size 20 x 20 30x30 40 x40
flow (ours) 42.39 47.52 72.47
EBM 49.16 51.59 77.39
Gaussian 150.95 146.41 184.53

Table 6: FIDs of methods with different priors (e.g., flow,
EBM and Gaussian) in unsupervised image recovery.

5 Conclusion

Summary In this paper, we study modeling the latent
space of data by the normalizing flow model and follow
the philosophy of empirical Bayes to learn the latent space
flow-based model (LFBM) from observed data. Specifically,
we propose a novel top-down generative model with a latent
space flow-based prior model. We propose a novel learning
framework, in which the LFBM built on top of a top-down
generative network serves as the prior model of the latent
space, and is trained simultaneously with the top-down net-
work in an MCMC-based MLE algorithm. We show that the
learning algorithm with a short-run Langevin flow is a per-
turbation of MLE. The LFBM is more flexible and informa-
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Figure 4: A comparison of unsupervised image recovery results by different methods on training images with different levels
of occlusions. In each panel, the first row shows some original images that are used in the training process, the second row
shows the corresponding occluded images with a certain occlusion level, and the third, fourth and fifth rows show the recovered
images by models using Gaussian prior, EBM prior and normalizing flow prior, respectively.
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Figure 5: Image synthesis by models learned from incomplete images. Each panel represents a different level of occlusion.

tive than Gaussian prior and less biased to MLE than the un-
normalized energy-based prior (LEBM). We test our LFBM
on a variety of tasks to validate its effectiveness.

Limitation and Future Work In contrast to EBM prior,
the normalizing flow prior allows for efficient and unbiased
sampling and training of the prior distribution. However,
these good properties do not come for free, and the usage of
the flow-based prior implies the assumption that the latent
variables are computationally efficient to normalize and can
be generated by a finite sequence of invertible transforma-
tions. This assumption might potentially limit the expressive
power of the prior distribution for the latent space. Given
the fact that EBM prior is an unnormalized probability den-
sity and doesn’t constrain the prior distribution by invertible
functions, we may consider combining the representational
flexibility of the EBM and the computational tractability of
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the normalizing flow model to tackle the above limitations.
To be specific, we specify a latent space EBM (LEBM) and a
latent space flow-based model (LFBM) together to represent
the prior distribution. We generalize the data space flow con-
trastive estimation (FCE) (Gao et al. 2020) to latent space for
jointly training the LEBM and the LFBM without relying on
MCMC. Flow contrastive estimation (Gao et al. 2020) can
be considered as an improved version of noise contrastive
estimation (NCE) (Gutmann and Hyvirinen 2010) for train-
ing EBM, where the original Gaussian noise is replaced by a
normalizing flow to make it closer to the target distribution
and a stronger contrast to the EBM. Meanwhile, the flow
model is updated by approximately minimizing the Jensen-
Shannon divergence between the flow model and the target
distribution. In our future work, we will learn both LFBM
and LEBM together in the latent space via FCE.
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