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Abstract
Privacy in AI remains a topic that draws attention from re-
searchers and the general public in recent years. As one way
to implement privacy-preserving AI, differentially private
learning is a framework that enables AI models to use dif-
ferential privacy (DP). To achieve DP in the learning process,
existing algorithms typically limit the magnitude of gradients
with a constant clipping, which requires carefully tuned due
to its significant impact on model performance. As a solution
to this issue, latest works NSGD and Auto-S innovatively pro-
pose to use normalization instead of clipping to avoid hyper-
parameter tuning. However, normalization-based approaches
like NSGD and Auto-S rely on a monotonic weight function,
which imposes excessive weight on small gradient samples
and introduces extra deviation to the update. In this paper, we
propose a Differentially Private Per-Sample Adaptive Clip-
ping (DP-PSAC) algorithm based on a non-monotonic adap-
tive weight function, which guarantees privacy without the
typical hyperparameter tuning process of using a constant
clipping while significantly reducing the deviation between
the update and true batch-averaged gradient. We provide a
rigorous theoretical convergence analysis and show that with
convergence rate at the same order, the proposed algorithm
achieves a lower non-vanishing bound, which is maintained
over training iterations, compared with NSGD/Auto-S. In ad-
dition, through extensive experimental evaluation, we show
that DP-PSAC outperforms or matches the state-of-the-art
methods on multiple main-stream vision and language tasks.

Introduction
Machine learning has substantially benefited from deep
learning research and implementation. Unfortunately, the
success of deep neural networks depends on a substantial
amount of high-quality data, much of which typically con-
tain sensitive personal data, making data-driven deep mod-
els vulnerable to privacy leaks (Zhu, Liu, and Han 2019).
DP (Dwork, Roth et al. 2014) formally defines the influence
of an individual sample on the final result and provides rig-
orous theoretical guarantees. Differentially Private stochas-
tic gradient descent (DP-SGD) (Abadi et al. 2016), which
first clips each stochastic gradient gt with a predetermined
constant C to constrain the privacy sensitivity and then adds
Gaussian noise to the gradients to perturb the result, is a pop-
ularly used algorithm to defend deep learning models from
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differential attacks. Specifically, the iteration of DP-SGD at
xt is:

xt+1 = xt−
ηt
|Bt|

(∑
i∈Bt

gt,i min

(
C

∥gt,i∥
, 1

)
+N (0, C2σ2)

)
,

where ηt is the learning rate, Bt is the random batch and σ is
the standard deviation of Gaussian noise. Despite its consid-
erable success, DP-SGD with constant clipping suffers from
the following issues:

• The performance of the final model, as Kurakin et al.
(2022) noted, will be significantly impacted by an incor-
rect C. It is really challenging to tune C.

• The search for C itself incurs a extra privacy budget (Pa-
pernot and Steinke 2021).

In order to obtain an optimal clipping threshold to achieve
higher model accuracy, Andrew et al. (2021) estimated the
optimal clipping threshold through gradient quantiles, but
this introduces a bigger hyperparameter search space and a
large amount of extra computation. By using a public dataset
sampled from the private dataset or partial statistics of the
private dataset, Zhang, Ji, and Wang (2018) estimated the
optimal clipping threshold during the learning process, but
this may lead to new privacy leaking problems.

To solve the aforementioned problems, two concurrent re-
search (Bu et al. 2022; Yang et al. 2022) proposed to replace
the clipping threshold with automatic clipping/normalizing,
i.e. g̃ = g/(∥g∥ + r), which can constrain the privacy sen-
sitivity by normalizing all per-sample gradients to the same
magnitude, but it actually assigns different weights to sam-
ples with various gradient norms. Consequently, the batch
gradient becomes a weighted average of the per-sample gra-
dients and the weighted gain is 1/(∥g∥+r), meaning smaller
gradients are given larger weight. As shown in Figure 2,
these techniques will increase the sample’s weighted gain
by up to 1/r times when its gradient norm moves toward 0,
where r is often set to 0.1 or a smaller value (Bu et al. 2022).
Unfortunately, as illustrated in Figure 1, we observe that in
the iterative process, small gradient samples frequently have
a tendency to be practically orthogonal or even opposite to
the true batch-averaged gradient. This means that the contri-
bution of small gradient samples to the true batch gradient is
negligible. Thus, giving small gradient samples large weight
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Figure 1: Average cosine similarity of single sample gradi-
ent and the batch-averaged gradient throughout training on
MNIST dataset with DP-SGD under (3, 10−5)-DP.

results in an overwhelming deviation between the automati-
cally clipped batch gradient and the actual batch gradient.

Intuitively, we hope that samples with different mag-
nitudes of gradient norm will receive similar order of
weights to preserve the average of clipped gradients as
close to the original batch-averaged gradient as possible.
Based on this, we propose Differentially Private Per-Sample
Adaptive Clipping (DP-PSAC) algorithm, by adopting a
non-monotonous adaptive weight function. We summarize
our contributions as follows:

• We propose a per-sample adaptive clipping algorithm,
which is a new perspective and orthogonal to dynamic
adaptive noise (Du et al. 2021) and coordinate clipping
methods (Pichapati et al. 2019; Asi et al. 2021), and
prove that it can be as private as currently used privacy-
preserving optimization algorithms.

• We show how our algorithm converges in non-convex
settings and provide a convergence error bound under DP.
In addition, we demonstrate that DP-PSAC has a lower
non-vanishing bound than Auto-S/NSGD.

• We demonstrate the empirical superiority of the proposed
algorithm through extensive experiments while obtaining
new state-of-the-art performance of differentially private
learning on several datasets.

Related Work
Deep learning based on gradient clipping and the Gaussian
mechanism has become the most popular differentially pri-
vate learning scheme. Constant clipping was firstly adopted
in (Abadi et al. 2016) to equip SGD with privacy protection,
called DP-SGD. Subsequentially, it was well studied in a se-
ries of works (Wang, Ye, and Xu 2017; Li et al. 2022; Wang,
Chen, and Xu 2019; Kuru et al. 2022; Mangold et al. 2022;
Bassily, Guzmán, and Menart 2021; Yu et al. 2021a; Wang
et al. 2022; Wu et al. 2021; Esipova et al. 2022) to apply
DP to other optimization algorithms, such as DP-AdaGrad,
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Figure 2: Gradient weight for calculating the batch-averaged
gradient of our method and the Auto-S/NSGD method for
different gradient norms.

DP-SVRG, and ApolySFW. From a theoretical perspective,
Zhang et al. (2020a) and Zhang et al. (2020b) analyzed the
convergence of clipped SGD. From the perspective of appli-
cation, DP-Lora (Yu et al. 2022) and RGP (Yu et al. 2021b)
enabled differential privacy learning for large-scale model
fine-tuning through methods such as low-rank compression.

Nevertheless, it is shown that the optimal threshold is
always changing during the optimization process (van der
Veen et al. 2018). Numerous studies are proposed to dynam-
ically adjust the threshold in training in order to lessen the
impact of a fixed threshold on the performance of DP-based
algorithms. Among them, Andrew et al. (2021) predicted the
optimal clipping threshold using extra privacy budget dur-
ing the optimization process. Du et al. (2021) proposed to
dynamically decrease the clipping threshold and noise mag-
nitude along with the iteration round t. More fine-grained,
some works (Pichapati et al. 2019; Asi et al. 2021) proposed
axis-level adaptive clipping and noise addition methods,
giving different clipping thresholds and non-homogeneous
noise to the gradient components on a different axis. De-
spite the great success of these algorithms, the initial thresh-
old still needs to be manually set, and the final performance
is sensitive to the initial threshold.

To get rid of the dependence of differentially private learn-
ing on the clipping threshold, Bu et al. (2022) and Yang
et al. (2022) concurrently proposed to constrain the gradi-
ent sensitivity with normalization, called Automatic Clip-
ping (Auto-S) or Normalized SGD (NSGD). They showed
that when normalizing all gradients to the same magnitude,
the learning rate and the clipping hyperparameter can be
coupled, thus only the one hyperparameter need to be tuned.
However, this method suffers from a large deviation between
their normalized batch-averaged gradient and the unnormal-
ized one when some gradient norms in a batch are tiny. The
proposed algorithm in this paper alleviates the above prob-
lem by reducing the size of deviation and achieves better
theoretical and experimental results.
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Preliminary
Notations and Definitions
Throughout the paper, we will let ∥ · ∥ denote the ℓ2 norm
of a vector and ⟨·, ·⟩ denote the inner product of two vectors.
The gradient of f(x) is represented by ∇f(x). The training
dataset for the optimization problem is represented by D.
The probability that event z occurs is represented by Pr[z].
A random variable’s mathematical expectation is denoted by
E(·). We consider the following empirical risk minimization
problem:

min
x∈Rd

f(x) :=
1

|D|
∑
ξi∈D

f(x, ξi),

where f(x, ξi) is the loss function with respect to data point
ξi. In addition, we use x∗ to indicate the optimal solution to
the above problem.

DP (Dwork, Roth et al. 2014) provides a formal definition
of individual privacy, with the intuition that the result of a
random algorithm on a dataset should not be different too
much with or without one data point:

Definition 1 ((ϵ, δ)-DP). A randomized mechanism M :
D → R offers (ϵ, δ)-differential privacy if for any two ad-
jacent datasets D,D′ ∈ D differing by a single data point
and any S ⊂ R it satisfies that:

Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ.

In deep learning training, (ϵ, δ)-DP is the most widely em-
ployed type of DP. It mainly relies on the Gaussian mecha-
nism, which involves introducing Gaussian noise to gradi-
ents. Its privacy budget can calculated by means of the mo-
ments accountant (Abadi et al. 2016), Rényi-DP (Mironov
2017) or f -DP (Dong, Roth, and Su 2019).

Assumptions
In this paper, we formulate the following assumptions, all of
which are common and basic in past works (Ghadimi and
Lan 2013; Bu et al. 2022; Yang et al. 2022).

Assumption 1 ((L0, L1)-generalized smooth). We assume
that f(x) is (L0, L1)-generalized smooth, this is, for all
x, y ∈ Rd, there exist constants L0 > 0 and L1 ≥ 0 such
that ∥∇f(x)−∇f(y)∥ ≤ (L0 + L1∥∇f(x)∥) ∥x− y∥.

Assumption 2 (Bounded variance). For all x ∈ Rd, there
exist constants τ0 > 0 and 0 ≤ τ1 < 1, such that ∥g(x, ξi)−
∇f(x)∥ ≤ τ0 + τ1∥∇f(x)∥ with probability 1.

Review: Normalized/Automatic DP Training
The fundamental method of Normalized/Automatic differ-
entially private training (Bu et al. 2022; Yang et al. 2022)
is to limit the magnitude of each gradient by using normal-
ization rather than clipping. Specifically, it normalizes all
per-sample gradients to the same size:

g̃ = Clip(g) = g/∥g∥.

The algorithm called Auto-S/NSGD (Bu et al. 2022; Yang
et al. 2022) jumps out of the original gradient clipping

framework, so that the gradient clipping parameter and the
learning rate are coupled:

xt − xt+1 =
ηt
|Bt|

(∑
i∈Bt

Cgt,i
∥gt,i∥

+N (0, C2σ2)

)

=
ηtC

|Bt|

(∑
i∈Bt

gt,i
∥gt,i∥

+N (0, σ2)

)
.

As a result, it is unnecessary to tune the hyperparameter C.
Additionally, a regularization term r is added to the scaling
factor to enhance training stability:

g̃ = Clip(g) = g/ (∥g∥+ r) ,

where r is usually set to 0.1 or less (Bu et al. 2022).
On the one hand, Auto-S/NSGD outperforms standard

clipping-based techniques on numerous vision and language
tasks. On the other hand, it eliminates reliance on the clip-
ping threshold and reduces the searching space for hyperpa-
rameters. The algorithm proposed in this paper is a refine-
ment of Auto-S/NSGD.

Motivation
Small Gradients Should not Get Huge Gains
The contribution of small gradients are negligible. The
gradients of the samples in the batch are mathematically
averaged to produce the update for each iteration of batch
SGD without clipping. The gradient sizes for various sam-
ples within a batch may differ over orders of magnitude.
Therefore, small gradient samples have little impact on the
batch-averaged gradient for the entire batch. We calculate
the cosine similarity between each sample’s gradient and the
actual batch-averaged gradient to determine how much each
sample contributed to the final update. Giving very large
weights to small gradient samples will result in a significant
difference between the normalized batch-averaged gradient
and the unnormalized gradient, as shown in Figure 1 where
larger individual gradients maintain higher cosine similarity
to the true batch average while smaller gradient samples are
almost orthogonal or even negative to it. Additional datasets
have produced similar results (Appendix D).

Monotonic weights bring larger convergence errors.
Recall that the update in Auto-S/NSGD is equivalent to us-
ing a weighted average of per-sample gradients:

Gbatch =
1

|Bt|
∑
i∈Bt

g̃t,i =
1

|Bt|
∑
i∈Bt

wt,igt,i,

where wt,i is monotonically decreasing with respect to
∥gt,i∥, i.e. wt,i = 1/(∥gt,i∥ + r). This leads to a larger
learning rate for a smaller individual gradient. As a result,
in the later stages of the optimization process, the magni-
tude of the majority of individual gradients tends to zero,
but the size of the update is still in the same order as that in
the beginning, making steady convergence more challeng-
ing. This intuition is also reflected in its theoretical analysis.
The norm of the gradient in Auto-S/NSGD has an O(r−1)
non-vanishing upper bound, which cannot be reduced as the
number of iterations increases.
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Figure 3: Cosine similarity histogram between the weighted
batch-averaged gradients used in different methods and the
real batch-averaged gradients.

Non-Monotonous Adaptive Weight Function

We provide a non-monotonic adaptive weight function that
gives small gradient samples a weight near 1 while weight-
ing large gradients similarly to 1/∥gt,i∥:

w(gt,i) = 1/

(
∥gt,i∥+

r

∥gt,i∥+ r

)
.

Our weight function can provide weights that are closer to
automatic clipping when the gradient is large, as in Figure
2. Additionally, we restrict the gradient’s weight to a certain
order of magnitude when it is small in order to lessen the
overall deviation. We offer both theoretical and experimental
evidence of the benefits of our adaptive weight function.

We describe our algorithmic pipeline and theoretical con-
tributions in more detail in the following section.

Per-Sample Adaptive Clipping Training

Here, we formally define the differentially private training
algorithm DP-PSAC based on the per-sample adaptive clip-
ping method. In the k-th iteration, The i-th gradient gt,i is
clipped as

g̃t,i = Clip(gt,i) = Cgt,i/

(
∥gt,i∥+

r

∥gt,i∥+ r

)
,

where C is the hyperparameter for clipping. Then, we can
define the clipping weight (scaling factor) as

w(gt,i) =
g̃t,i
Cgt,i

= 1/

(
∥gt,i∥+

r

∥gt,i∥+ r

)
.

As the result, the model increment in the t-th iteration can

Algorithm 1: DP-PSAC
Input: initial weights x0 ,learning rate ηt , batch size
B, dataset S = (z1, ..., zN ), privacy budget (ϵ, δ), max
clipping threshold C, the number of iterations T

1: Compute the standard deviation σ of noise based on
Theorem 1

2: for iteration t = 0, ..., T − 1 do
3: Sample a batch Dt := {zti}bi=1 from S uniformly

with replacement
4: Compute the gradient gt,i for each sample

5: g̃t,i = Cgt,i/

(
∥gt,i∥+

r

∥gt,i∥+ r

)
6: ĝt =

b∑
i=1

g̃t,i +N (0, C2σ2)

7: xt+1 = xt −
ηt
B
ĝt

8: end for

be formulated as below:

∆xt

= −ηt
B

(
B∑

i=1

g̃t,i +N (0, C2σ2)

)

= −ηt
B

(
B∑

i=1

Cgt,i/

(
∥gt,i∥+

r

∥gt,i∥+ r

)
+N (0, C2σ2)

)

= −ηtC

B

(
B∑

i=1

gt,i/

(
∥gt,i∥+

r

∥gt,i∥+ r

)
+N (0, σ2)

)
.

The clipping parameter C does not require adjustment be-
cause it is coupled with the learning rate ηt, as can be seen
from this equality. The entire procedure of per-sample adap-
tive gradient clipping-based differential privacy training is
summarized in Algorithm 1.

We compute the cosine similarity between the batch-
averaged gradient that was weighted using different func-
tions and the true batch-averaged gradient in the same it-
eration in order to determine the deviation between the
two gradients. The greater the cosine similarity, the closer
the two gradients are. We run both our weight function
and that in Auto-S/NSGD five times each on the Fashion-
MNIST dataset, measuring the cosine similarity between
the weighted batch-averaged gradient and the true batch-
averaged gradient every 10 iterations. As shown in Figure 3,
compared with Auto-S/NSGD, our method has a higher per-
centage of gradients with larger similarity, which demon-
strates that our method is statistically closer to the true
batch-averaged gradient than Auto-S/NSGD. Besides, for
the “lazy region” problem of Auto-V (Bu et al. 2022), we
show that our method can solve this problem better than
Auto-S through simulation experiments under the same set-
ting (Appendix C).

It should be highlighted that our method applies an adap-
tive norm constraint depending on the properties of each gra-
dient sample, which is a novel and unexplored viewpoint.
Although Auto-S and NSGD are incredibly close to this per-
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Method Clipping threshold Additional assumption Non-vanishing bound

DP-SGD (Yang et al. 2022) Yes c > 2τ0
1−τ1

/
Auto-S/NSGD (Bu et al. 2022; Yang et al. 2022) No p(∆) = p(−∆) or r > τ0 O(r−1)

DP-PSAC (Ours) No / O(r−1/2)

Table 1: Comparison of theoretical results of DP-SGD, Auto-S/NSGD and DP-PSAC.

spective, they focus on scaling all gradient norms to the same
or similar size, which limits their adaptability.

Privacy Guarantee of DP-PSAC
To achieve privacy protection, existing learning methods
with DP such as DP-SGD mainly adopt two techniques,
namely clipping gradients and adding Gaussian noise. The
first technique is used to limit the privacy sensitivity of
gradients such that ∥g∥ ≤ C and the second technique
is used to apply the Gaussian mechanism (Dong, Roth,
and Su 2019) to achieve DP. We observe the per sam-
ple adaptive clipped gradient in DP-PSAC satisfies g̃t,i =

Cgt,i/
(
∥gt,i∥+ r

∥gt,i∥+r

)
≤ C, which means that DP-

PSAC can achieve the same privacy-sensitivity constraint for
gradients as DP-SGD. Furthermore, this means that the pri-
vacy analysis on DP-SGD still can be applied on DP-PSAC.
Theorem 1. There exist constants c1 and c2 so that given the
sampling probability q = B/N and the number of iterations
T , for any ϵ ≤ c1q

2T and δ > 0, Algorithm 1 is (ϵ, δ)-
differentially private if we choose

σ ≥ c2
q
√
T log(1/δ)

ϵ
.

Convergence Guarantee of DP-PSAC
Without losing generality, we prove that DP-PSAC con-
verges to the stationary point, i.e. limt→+∞ ∥∇f(xt)∥ = 0,
which is widely adopted criterion for general non-convex
optimization (Ghadimi and Lan 2013). All detailed proofs
are deferred to the appendix due to the page limitation. We
first give Theorem 2 to bound the expected gradient norm
with the number of iteration T and the variance of the Gaus-
sian noise σ2.
Theorem 2. For f(x) satisfying Assumptions 1, 2. Given
an arbitrary noise multiplier σ and constant r ∈ (0, 1],
we run DP-PSAC for the number of iterations T ≥
A(L, τ, d, r, σ,B) (Lemma 6 in Appendix. B) with a constant
learning rate

η =

√
2B2

dσ2T (L0 + L1(τ0 + 1))
.

We can observe that the gradient norm can be bounded by
the following inequality:

E( min
0≤t<T

∥∇f(xt)∥) ≤ O

(
4

√
dσ2

TB2
+

4

√
B2

Tdσ2

)

+
8τ20 (1 + τ0)

3N(τ0, τ1, r)(1− τ1)3(τ0 +
r(1−τ1)

2τ0+r(1−τ1)
)(2

√
r − r)

,

where

N(τ0, τ1, r)=min

(
τ0

1−τ1
,

2τ2
0 + rτ0(1− τ1)

4τ2
0 +2rτ0(1− τ1)+r(1− τ1)2

)
.

It can be inferred from Theorem 1 that the noise multiplier
σ depends on the privacy parameters (ϵ, δ) and the number
of iterations T . In order to achieve the DP guarantee, The-
orem 2 can be extended to observe the following Corollary
by properly setting σ.

Corollary 1. With the same setting as Theorem 2, we
set T ≥ O(N2ϵ2/(d log(1/δ))). To achieve (ϵ, δ) DP
guarantees with a sufficient number of samples N ≥
L1A

′(ϵ, δ, τ, L, d, r) (Lemma 8 in Appendix. B), the ex-
pected gradient norm can be bounded as:

E( min
0≤t<T

||∇f(xt)||) ≤ O

√√d log(1/δ)

Nϵ


+

8τ2
0 (1 + τ0)

3N(τ0, τ1, r)(1− τ1)3(τ0 +
r(1−τ1)

2τ0+r(1−τ1)
)(2

√
r − r)

.

From Theorem 2 and Corollary 1, it can be observed
that when we choose a suitable learning rate, DP-PSAC can

achieve the convergence rate of O(

√√
d log(1/δ)

Nϵ ), which is
consistent with the latest results of the differentially private
non-convex optimization (Bu et al. 2022; Yang et al. 2022).

Remark 1. There are no additional assumptions to limit the
hyperparameters or distribution of gradients in the conver-
gence proof of Theorem 2.

In previous work, the convergence results of (Bu et al.
2022) rely on the assumption that the gradient distribution
is symmetric. The convergence results of Yang et al. (2022)
depend on the assumption that the regularization term satis-
fies r > τ0, but τ0 is difficult to observe. DP-PSAC does not
rely on extra-assumed properties because its weight func-
tion is non-monotonic and there is a strict upper bound that
does not depend on ∥∇f(x)∥. We summarize the theoretical
comparison of different algorithms in Table 1. We demon-
strate the theoretical superiority of this weight function by
briefly introducing our proof procedure.

Similar to conventional non-convex optimization based
on (L0, L1)−generalized smooth, our convergence analy-
sis is developed by the following lemma:

Lemma 1. Under the premise of Assumption 1, for each
iteration t, letting wt,i = w(gt,i) indicate the sample weight
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Task Model (ϵ, δ) DP-SGD(%) Auto-S/NSGD(%) DP-PSAC(%)

MNIST CNN (3, 1e− 5) 98.12± 0.07 98.17± 0.07 98.24± 0.07
FashionMNIST CNN (3, 1e− 5) 86.22± 0.29 86.30± 0.21 86.56± 0.16

CIFAR10 SimCLRv2 (2, 1e− 5) 92.47± 0.07 92.72± 0.16 92.78± 0.13
imagenette ResNet9 (8, 1e− 4) 63.66± 0.05 63.44± 0.24 64.00± 0.16

CelebA [Smiling] ResNet9 (8, 5e− 6) 91.17± 0.06 91.10± 0.02 91.41± 0.02
CelebA [Male] ResNet9 (8, 5e− 6) 95.46± 0.03 95.48± 0.04 95.57± 0.02

CelebA Multi-label ResNet9 (8, 5e− 6) 88.56± 0.04 88.49± 0.10 88.69± 0.01

Table 2: Test accuracy of DP-SGD, Auto-S and DP-PSAC on image classification tasks.

function, the following inequality holds:

Et[f(xt+1)]− f(xt) ≤ −ηEt[
1

B

B∑
i=1

⟨wt,i∇f(xt), gt,i⟩]

+Et
L0 + L1∥∇f(xt)∥

2
η2(

dσ2

B2
+

1

B

B∑
i=1

∥wt,igt,i∥2).

For the first term, it can be scaled to O(η∥∇f(xt)∥)
(when ∥∇f(xt)∥ ≥ τ0/(1 − τ1)) or O(η∥∇f(xt)∥2) +
O(η)) (when ∥∇f(xt)∥ < τ0/(1− τ1)) by lemma 5 in Ap-
pendix A. For the second term, a suitable η is chosen so that
it can be upper bounded by O(η2) + O(ηwt∥∇f(xt)∥2).
Since O(ηwt∥∇f(xt)∥2) is consistent with the form of the
first item, it can be similarly scaled as the first term. At this
point, we only need to take η ∝ 1/

√
T , and sum up the

above formula from t = 1 to T to deduce convergence re-
sult.

The hardest part of dealing with the second term is bound-
ing (L0 + L1∥∇f(xt)∥2)wt with a constant that does not
depend on ∇f(xt). Due to its monotonically decreasing
weight function, NSGD can only find an upper bound that
does not depend on ∇f(xt) by assuming r > τ0. In our
method, we can find a constant upper bound without mak-
ing any additional assumptions by the following lemma.
Lemma 2. Under Assumption 2, for any r ∈ (0, 1], wt,i =
1/(∥gt,i∥+ r/(∥gt,i∥+ r)), we have the following inequal-
ity:

(L0 + L1∥∇f(xt)∥)wt,i≤max(
L0(1−τ1) + L1(

√
r−r+τ0)

(1− τ1)(2
√
r − r)

,

L0(1− τ1) + L1τ0 + L1
√
r√

r(1− τ1)
).

Since Lemma 2 does not use any additional assumptions
on r, any choice of r ∈ (0, 1] is feasible to achieve the the
theoretical results in Corollary 1.
Remark 2. Theorems 2 and Corollary 1 give the non-
vanishing bound in the order of O(r−1/2), which is superior
compared with O(r−1) in NSGD (Yang et al. 2022).

The normalization-based method innovatively solves the
problem that the clipping threshold is difficult to tune. But
it introduces an immortal deviation to the optimization pro-
cess, which cannot be eliminated by increasing the number
of iterations or the privacy budget. At the same time, the up-
per bound of this deviation is inversely proportional to the

multiplication of r, which is a constant from 0 to 1 (e.g.
0.01). Our method reduces the upper bound on immortal-
ity deviation from O(r−1) to O(r−1/2) by controlling the
maximum weight of the weight function.

Experiments
We evaluate the effectiveness of the proposed algorithm on
multiple datasets for both image and sentence classification.

Hardware and software information All experiments
are performed on a server with an Intel Xeon Platinum
8369B CPU, an NVIDIA A100 GPU, and 125GB mem-
ory. The operating system is Ubuntu 20.04 and the CUDA
Toolkit version is 11.3. All computer vision experimental
training procedures are implemented based on the latest
versions of Pytorch and Opacus (Yousefpour et al. 2021).
The natural language processing experiments are based on
private-transformers (Li et al. 2021) of version 0.1.0, trans-
formers of version 4.11.3, and the latest version of Pytorch.

Image Classification Task
Dataset We conduct extensive experiments on multiple
image classification datasets, including MNIST (LeCun
et al. 1998), FashionMNIST (Xiao, Rasul, and Vollgraf
2017), CIFAR10 (Krizhevsky, Hinton et al. 2009), ima-
genette (a subset of imagenet (Deng et al. 2009) with ten
labels), and CelebA (Liu et al. 2015).

Method Our main comparison methods are DP-SGD and
Auto-S/NSGD. For DP-SGD, we refer to the implementa-
tions of Papernot et al. (2021), Tramer and Boneh (2020),
and Klause et al. (2022), which achieves the state-of-the-art
performance of Abadi’s clipping-based DP learning on dif-
ferent image datasets. For Auto-S/NSGD, we adopt the same
settings as Bu et al. (2022), which exhibits the state-of-the-
art differentially private optimization performance. Specif-
ically, we train a four-layer CNN model on MNIST and
FashionMNIST, which have the same settings as Tramer and
Boneh (2020). Then for CIFAR10, we keep the same ex-
perimental setup as Tramer and Boneh (2020) and use pre-
trained SimCLRv2 (Chen et al. 2020). Further, we train a
ResNet9 (He et al. 2016) model on imagenette and CelebA
to validate the performance of our method on more complex
multi-classification and multi-label classification problems,
and the experimental setup for this part is the same as pre-
vious works (Klause et al. 2022; Bu et al. 2022). We run all
methods five times to get all of the results shown in Table 2.
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Figure 4: Test accuracy heatmap on the FashionMNIST task. Left: DP-PSAC. Middle: Auto-S/NSGD. Right: DP-SGD.

Method ϵ = 3 ϵ = 8

MNLI(m/mm) QQP QNLI SST-2 MNLI(m/mm) QQP QNLI SST-2

DP-SGD (Li et al. 2021) 82.45/82.99 85.56 87.42 91.86 83.20/83.46 86.08 87.94 92.09
Auto-S (Bu et al. 2022) 83.22/83.21 85.76 86.91 92.32 83.82/83.55 86.58 87.85 92.43

DP-PSAC(Ours) 82.74/83.36 85.83 87.48 92.43 83.65/83.87 86.60 88.03 92.55

Table 3: Test accuracy of sentence classification for DP-SGD, Auto-S, and DP-PSAC with ϵ = 3, 8.

Result Firstly, as shown in Figure 4, we notice that the test
accuracy changes very little with r in DP-PSAC and Auto-
S/NSGD for the same learning rate. Correspondingly, when
using DP-SGD, the test accuracy is very sensitive to the clip-
ping threshold C. This shows that the hyperparameter r is
more stable and easier to tune than the clipping threshold C.
Usually, we only need to set r to a positive number not larger
than 1, for instance, 0.1, to get a near-optimal result. It can
be observed from Table 2 that, our method outperforms both
DP-SGD and Auto-S in differentially private learning on the
mainstream image classification datasets. In particular, DP-
PSAC is more robust than Auto-S/NSGD since it exhibits a
lower level of variance. This corroborates with our theoret-
ical result that DP-PSAC has a lower non-vanishing bound
than Auto-S/NSGD. These evaluations show that our algo-
rithm performs well on logistic regression, basic CNN, and
ResNet, and its high performance is independent of any par-
ticular network architecture.

Sentence Classification Task
Dataset We used four sentence classification datasets
from the GLUE benchmark dataset, including MNLI
(multi-genre inference) (Williams, Nangia, and Bowman
2017), QQP (equivalence classification), QNLI (Question-
answering inference) (Rajpurkar et al. 2016), and SST-2
(sentiment classification) (Socher et al. 2013).

Method The code of the sentence classification experi-
ment refers to Li et al. (2021). In order to ensure the ad-
equacy of the experiment, we use the roberta-base model
to compare the full-parameter training performance of DP-
PSAC, Auto-S/NSGD (Bu et al. 2022; Yang et al. 2022) and
DP-SGD (Li et al. 2021) on four different datasets under
large(ϵ = 3) and small(ϵ = 8) noise conditions, respec-
tively. The test accuracy for DP-SGD and Auto-S are taken
from (Li et al. 2021) and (Bu et al. 2022), respectively.

Result Table 3 shows that DP-PSAC performs better than
or similar to the best baseline in both small and large
noise conditions. Specifically, on the MNLI dataset, our
method outperforms Auto-S/NSGD on the MNLI-mm test
set, which is not independent and identically distributed with
the training set, and outperforming DP-SGD on both MNLI-
m and MNLI-mm. For the QQP dataset, a sentence classi-
fication dataset with uneven sample distribution, DP-PSAC
achieves higher accuracy than the baselines. Although Auto-
S/NSGD does not achieve better results than DP-SGD on
the QNLI dataset, our method, as an improvement of Auto-
S/NSGD, achieves the latest state-of-the-art. Meanwhile, on
the SST-2 dataset, our method not only achieves better ac-
curacy but also enables our model performance at ϵ = 3 to
reach the previous state-of-the-art at ϵ = 8.

Conclusion
In this study, we propose a differentially private optimization
approach with per-sample adaptive clipping, which can re-
duce deviation by giving gradients different weights accord-
ing to their magnitudes while preserving privacy constraints.
Without making any extrinsic assumptions, we investigate
the convergence of DP-PSAC in non-convex scenarios and
demonstrate that it offers a reduced upper bound on inde-
structible deviation than Auto-S/NSGD. Experimental re-
sults demonstrate that DP-PSAC accomplishes the state-of-
the-art in differentially private optimization on both lan-
guage and computer vision problems.

Per-sample adaptive clipping is a new perspective, which
is different from adaptive clipping with iterations (Du et al.
2021; Andrew et al. 2021) and per-axis adaptation (Asi et al.
2021). In future work, we will consider to develop a data-
driven adaptive weight function and more realistic applica-
tion scenarios, such as resource offloading and flow detec-
tion in network (Yao et al. 2022; Zhou et al. 2023).
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