Models as Agents: Optimizing Multi-Step Predictions of Interactive Local Models in Model-Based Multi-Agent Reinforcement Learning

Authors

  • Zifan Wu Sun Yat-sen University
  • Chao Yu Sun Yat-sen University Pengcheng Laboratory
  • Chen Chen Huawei Noah’s Ark Lab
  • Jianye Hao Huawei Noah's Ark Lab
  • Hankz Hankui Zhuo Sun Yat-sen University

DOI:

https://doi.org/10.1609/aaai.v37i9.26241

Keywords:

ML: Reinforcement Learning Algorithms, MAS: Multiagent Learning

Abstract

Research in model-based reinforcement learning has made significant progress in recent years. Compared to single-agent settings, the exponential dimension growth of the joint state-action space in multi-agent systems dramatically increases the complexity of the environment dynamics, which makes it infeasible to learn an accurate global model and thus necessitates the use of agent-wise local models. However, during multi-step model rollouts, the prediction of one local model can affect the predictions of other local models in the next step. As a result, local prediction errors can be propagated to other localities and eventually give rise to considerably large global errors. Furthermore, since the models are generally used to predict for multiple steps, simply minimizing one-step prediction errors regardless of their long-term effect on other models may further aggravate the propagation of local errors. To this end, we propose Models as AGents (MAG), a multi-agent model optimization framework that reversely treats the local models as multi-step decision making agents and the current policies as the dynamics during the model rollout process. In this way, the local models are able to consider the multi-step mutual affect between each other before making predictions. Theoretically, we show that the objective of MAG is approximately equivalent to maximizing a lower bound of the true environment return. Experiments on the challenging StarCraft II benchmark demonstrate the effectiveness of MAG.

Downloads

Published

2023-06-26

How to Cite

Wu, Z., Yu, C., Chen, C., Hao, J., & Zhuo, H. H. (2023). Models as Agents: Optimizing Multi-Step Predictions of Interactive Local Models in Model-Based Multi-Agent Reinforcement Learning. Proceedings of the AAAI Conference on Artificial Intelligence, 37(9), 10435-10443. https://doi.org/10.1609/aaai.v37i9.26241

Issue

Section

AAAI Technical Track on Machine Learning IV