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Abstract

Generalized zero-shot learning (GZSL) aims to recognize
samples whose categories may not have been seen at train-
ing. Standard GZSL cannot handle dynamic addition of new
seen and unseen classes. In order to address this limitation,
some recent attempts have been made to develop continual
GZSL methods. However, these methods require end-users
to continuously collect and annotate numerous seen class
samples, which is unrealistic and hampers the applicability
in the real-world. Accordingly, in this paper, we propose a
more practical and challenging setting named Generalized
Zero-Shot Class Incremental Learning (CI-GZSL). Our set-
ting aims to incrementally learn unseen classes without any
training samples, while recognizing all classes previously en-
countered. We further propose a bi-level meta-learning based
method called MetaZSCIL to directly optimize the network
to learn how to incrementally learn. Specifically, we sample
sequential tasks from seen classes during the offline training
to simulate the incremental learning process. For each task,
the model is learned using a meta-objective such that it is ca-
pable to perform fast adaptation without forgetting. Note that
our optimization can be flexibly equipped with most existing
generative methods to tackle CI-GZSL. This work introduces
a feature generative framework that leverages visual feature
distribution alignment to produce replayed samples of previ-
ously seen classes to reduce catastrophic forgetting. Exten-
sive experiments conducted on five widely used benchmarks
demonstrate the superiority of our proposed method.

Introduction
Generalized Zero-Shot Learning (GZSL) aims to tackle the
unseen classes recognition problem by transferring semantic
knowledge of seen classes to unseen ones (Liu et al. 2021;
Feng et al. 2022). Typically, these models are offline trained
on a set of predefined seen classes and then deployed to tar-
get applications with fixed parameters. Such systems are not
flexible enough since they cannot sequentially learn and ac-
cumulate the knowledge of new classes that might emerge
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Figure 1: Illustration of our CI-GZSL setting. During the
offline training, we learn an initial model based on samples
and attributes of seen classes. During each subsequent online
incremental learning, we are given the attributes of some un-
seen classes without any training examples (i.e., zero-shot).
Our goal is to update the model in each incremental session,
so that the model can recognize all classes (including those
during the offline stage) encountered so far.

after deployment. In contrast, humans are able to learn new
concepts incrementally throughout their lifetime.

Recently, sporadic efforts (Wei et al. 2020; Ghosh 2021)
have been made towards designing models that can dynam-
ically adapt and generalize on the addition of new seen and
unseen classes. The aforementioned works formulate this
setting as continual GZSL. Lifelong ZSL (Wei et al. 2020)
marks the first attempt to address the problem of continual
GZSL. It considers each dataset as an incremental session
to accumulate the knowledge from multiple datasets dur-
ing training, then separately recognizes unseen classes of all
encountered datasets based on task-ids. However, this ap-
proach requires task-level supervision at test time, which
limits its applicability in realistic scenarios. (Skorokhodov
and Elhoseiny 2021) proposes a class normalization-based
approach for the continual GZSL problem, in which the
dataset is divided into multiple subsets and the model en-
counters each of these subsets in an incremental fashion over
time. The setting assumes all previously encountered ses-
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sions as seen and future sessions as unseen classes. It re-
quires the total number of classes or sessions to be known
beforehand. But this fundamentally violates the concept
of continual learning. The latest works (Kuchibhotla et al.
2022; Gautam et al. 2022) reformulate continual GZSL set-
ting where each session has an exclusive set of seen and un-
seen classes and the model can accommodate any number of
sessions over time. However, this setting requires large-scale
annotated samples for new seen classes in each incremental
session. This is unrealistic in practice since it requires end-
users to continually provide numerous training samples.

We argue that a practical continual GZSL model should
incrementally learn new classes without any training sam-
ples, while being able to identify all classes previously en-
countered. It should not require end-users to collect any
annotated samples, since fine-grained annotation is labori-
ous and often requires expert domain knowledge. In this
paper, we propose a more challenging setting named Gen-
eralized Zero-Shot Class Incremental Learning (CI-GZSL).
CI-GZSL consists of an offline training stage and an online
incremental learning stage, as shown in Figure 1. In the of-
fline training stage, CI-GZSL requires the model to learn the
initialization weights based on annotated samples of seen
classes. In the online incremental learning (i.e., evaluation)
stage, the model will encounter a few unseen classes at each
incremental session, where these unseen classes only have
their corresponding attribute descriptors without any anno-
tated samples. Besides, the model cannot store training sam-
ples from seen classes during evaluation, due to data privacy
and limited storage of the deployment environment. The
evaluation protocol is defined such that after learning the un-
seen classes in each incremental session, the model is eval-
uated on all encountered classes (including seen classes).
CI-GZSL is challenging due to two main reasons, namely
catastrophic forgetting of seen classes and adaptation ability
of unseen classes in incremental learning.

To overcome such issues, we propose a meta-learning
based approach called MetaZSCIL for CI-GZSL. MetaZS-
CIL directly formulates forgetting alleviation and incremen-
tal adaptation as the optimization objective. Specifically, in
the offline training stage, we employ a sequential task sam-
pling scheme to mimic the incremental learning process
of the evaluation stage. For each incremental session, the
model first performs fast learning based on seen classes via
a few gradient updates. Then the meta-objective is defined
by evaluating the learned model on the test images of previ-
ous encountered classes (test forgetting) and current unseen
classes (test adaptation). The goal of our meta-learning is
to learn a model initialization such that it can sequentially
adapt to unseen classes and is less prone to catastrophic
forgetting. The above optimization is built upon a feature-
generative network, in which we further propose a visual
distribution alignment-based replay strategy to transfer pre-
viously learned knowledge to the current incremental ses-
sion. The major contributions are summarized as follows:
• We propose a practical yet more challenging CI-GZSL

setting that is user-friendly and more realistic for applica-
tions. In this setting, the user can easily expand the model
capability to recognize both previously seen classes and

user-specific unseen classes encountered over time by
only providing the attribute descriptors of unseen classes.

• We design a sequential task sampling scheme to mimic
the incremental learning process at evaluation, and ac-
cordingly propose a bi-level optimization MetaZSCIL
based on meta-learning. Our method explicitly trains the
network to facilitate fast learning of new unseen classes
and is robust to forgetting under online updates.

• We propose a feature generative framework that replays
samples closer to true distribution of the original data
via a visual distribution alignment loss. This allows our
model to effectively accumulate learned knowledge from
previous sessions and enable generalization.

• Extensive experimental results on five benchmarks, i.e.,
AWA1, AWA2, CUB, SUN and aPY, clearly demonstrate
the advantages of the proposed MetaZSCIL over other
baseline and current state-of-the-art methods.

Related Work
Generalized Zero-Shot Learning (GZSL). Existing
GZSL approaches can be broadly classified into embedding-
based methods (Cacheux, Borgne, and Crucianu 2019)
and generative methods (Kong et al. 2022). Traditional
embedding-based methods aim to project visual and/or se-
mantic features onto a common embedding space and use a
nearest neighbor-based classifier to classify visual samples.
Feature generation-based methods are proposed to synthe-
size unseen visual features, thus converting the GZSL prob-
lem into a supervised classification problem. Although these
methods have shown promising performance, they cannot
continually learn from sequential streaming data. To this
end, some recent works (Verma et al. 2021) have drawn in-
creasing attention towards continual GZSL. (Wei et al. 2022)
utilizes generative replay and knowledge distillation to facil-
itate the sequential accumulation of knowledge to improve
new classes recognition. (Kuchibhotla et al. 2022) proposes
a feature-generative framework based on bi-directional in-
cremental alignment to avoid catastrophic forgetting and en-
able continual generalization. However, these methods only
consider the incremental steps at test time, which leads to
sub-optimal performance due to the misalignment between
their optimization objectives and evaluation protocol.

Class-Incremental Learning (CIL). Class-incremental
learning aims at continuously updating a trained model with
new classes without forgetting previously learned old ones
(Yan, Xie, and He 2021; Castro et al. 2018; Lyu et al. 2022).
To mitigate the forgetting of the old classes, CIL methods
(Hu et al. 2021; Kang, Park, and Han 2022) typically adopt
the knowledge distillation technique, where external mem-
ory is often used for storing old class samples to compute
the distillation loss. iCaRL (Rebuffi et al. 2017) maintains an
“episodic memory” of the samples and incrementally learns
the nearest-neighbor classifier for the new classes. NCM
(Hou et al. 2019) introduces cosine normalization to bal-
ance between the classifier for old and novel data. In con-
trast to these CIL works, we focus on the more challenging
CI-GZSL problem, where there are only attribute descriptors
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Figure 2: Overview of the proposed MetaZSCIL. (a) Our offline training and online incremental learning process in the setting
of CI-GZSL. (b) Our optimization strategy based on meta-learning during offline training. (c) Our generative network based on
visual distribution alignment to alleviate catastrophic forgetting and generalize knowledge of seen to unseen classes.

without any training samples for each new class. Rather than
directly storing samples of old classes, our method uses a re-
play mechanism to accumulate the knowledge of old classes.

Meta-Learning. Existing meta-learning methods include
model-based (Santoro et al. 2016; Wu et al. 2021),
metric-based (Koch et al. 2015; Vinyals et al. 2016) and
optimization-based (Finn, Abbeel, and Levine 2017; Chi
et al. 2022, 2021). Our proposed method builds upon the
most popular model agnostic meta-learning (MAML) algo-
rithms (Finn, Abbeel, and Levine 2017). MAML learns the
model using a nested optimization, where the inner loop per-
forms task-level optimization, while the outer loop performs
a meta-level model update via meta-objective. The goal of
MAML is to learn a model initialization such that it can
quickly adapt to new tasks. In this paper, we advance the
MAML to automatically learn the optimal trade-off between
two competing factors, namely adapting to new classes
knowledge and retaining the knowledge of old classes.

The Proposed Method
Problem Definition. CI-GZSL aims to incrementally
learn unseen classes with only attribute descriptors by ac-
cumulating past knowledge. Let subscripts s and u denote
seen and unseen classes respectively. We define a sequence
of incremental sessions {D0,D1, · · · ,DT } and their corre-
sponding class set Ct at session t (t = 0, 1, · · · , T ). Note that
the class sets are disjoint among different sessions (Ci∩Cj =
∅(i ̸= j)). Only the classes in the first session D0 contains
large-scale training samples, i.e., D0 = {(training samples
of seen classes X 0

str , their class label Y0
str , class attribute

A0)}. We refer C0 as seen classes. The offline training is per-
formed using these seen classes to learn a model initializa-
tion in D0. Once the offline training stage is done, CI-GZSL
requires the model to adapt to unseen classes in subsequent

incremental sessions (Dt, t>0). Each subsequent incremen-
tal session only requires the attribute of unseen classes in
Ct. After learning on Dt, the model is evaluated on test im-
ages of all encountered classes so far, i.e., C0 ∪ C1 · · · ∪ Ct.
We assume our model has access to class attributes of all
encountered classes so far. Let At be the union of class at-
tributes of seen (At

s) and unseen (At
u) classes encountered

so far. So Dt
tr = {(class attributeAt)} and Dt

te = {(test sam-
ples of seen and unseen classes encountered so far (X t

ste and
X t

ute
), their class labels (Yt

ste and Yt
ute

), class attributeAt)}.
CI-GZSL is motivated by challenges in real-world appli-

cations. Consider the scenario of a company that provides
image classification models to users. The company can do
an offline training with annotated samples of seen classes to
get the model. After the model is deployed to a user, the user
may want to incrementally adapt the model to recognize new
object classes of interest to this specific user. For the end-
user, it is not practical to access the labeled seen samples
from the company or to provide annotated samples of new
(unseen) classes. It is much desirable if the user can simply
provide the semantic information (e.g. attribute descriptors)
of the new objects. Our proposed CI-GZSL setting can be
used to solve the above practical scenario, which recognizes
both the seen classes and the user-specific unseen classes
encountered over a period of time using only attribute de-
scriptors of unseen classes.

Feature Generation-based GAN Classifier
Revisiting f-CLSWGAN. In this paper, we use f-
CLSWGAN (Xian et al. 2018b) as our backbone to learn the
semantic→ visual mapping. f-CLSWGAN is composed
of a Wasserstein Generative Adversarial Network (WGAN)
and a classifier. WGAN consists of a generator G and a dis-
criminator network D that competes in a two-player mini-
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max game. The generator G(z, a) synthesizes a visual fea-
ture x̃ with a random input noise z, whereas the discrimina-
tor D(x, a) takes a visual feature x (real or synthetic) and
outputs a real value indicating the degree of realness or fak-
eness. Both G and D are conditioned on the class attribute
a. Learning of G and D is done by optimizing WGAN loss:

LWGAN = E[D(x, a)]− E[D(x̃, a)]−
λE[(||∇x̂D(x̂, a)||2 − 1)2],

(1)

where x̃ = G(z, a), x̂ = ϵx + (1 − ϵ)x̃ with ϵ ∼ U(0, 1),
and λ is the coefficient of gradient penalty that enforces the
gradient of D to have a unit norm along the straight line
between pairs of real and generated points (Gulrajani et al.
2017). Through this adversarial training, WGAN learns to
generate visual features similar to the real visual features.
Then a standard softmax classifier is trained with seen sam-
ples and synthesized unseen samples to distinguish different
classes. The classification loss is defined as follows:

LCLS = −Ex̃∼px̃
[logP (y|x̃; θC)], (2)

where y is the class label of x̃ and P (y|x̃; θC) denotes the
probability of x̃ corresponding to its true class label y.

Generative Replay. We work in a setting where new ob-
ject classes are continually learned over time, and samples
from previous sessions are not accessible during the current
session. This results in catastrophic forgetting. In order to
retain learned knowledge, we use generative replay to syn-
thesize visual features of previously seen classes. Given the
relatively weak constraint of the above generation process,
it is possible to produce visual features that are too far from
the true distribution present in the training set, resulting in
ineffective multi-class classifier training (Gong, Yuan, and
Bao 2021, 2022a). To this end, we propose a visual distribu-
tion alignment loss (LV DA) consisting of class consistency
(LCC) loss and sample diversity (LSD) loss. The former
guarantees that the generated visual features contain repre-
sentative features of the classes, while the latter encourages
the generator to learn more discriminative class-relevant fea-
tures for better generalization, as shown in Figure 2 (c).

LCC =
1

|C0|

|C0|∑
c=1

(xc − x̃c)
2, (3)

LSD =
1

|C0|

|C0|∑
c=1

M∑
i=1

M∑
j=1,
j ̸=i

sim(x̃i
c, x̃

j
c), (4)

where xc / x̃c denotes visual prototype of seen class c, which
is computed by averaging all real / replayed visual features
from this class. LCC is used to narrow the distance between
the above two prototypes to achieve intra-class compactness
and inter-class separability, and |C0| is the number of all seen
classes. Besides, sim(x̃i

c, x̃
j
c) denotes cosine similarity be-

tween samples i and j, where x̃i
c stands for the ith generated

feature of class c, and M is the number of replayed sam-
ples. LSD tries to minimize visual similarity among gener-
ated features of each seen class to improve intra-class sam-
ple diversity. Note that LV DA optimizes the parameters of

Algorithm 1: The optimization procedure of MetaZSCIL

Require: α, β, γ: learning rates
Require: D0: training set of seen classes

1: randomly initialize parameters θ
2: while not converged do
3: Ds = {(Dj

ptr
,Dj

pte
)}Nj=0 ▷ sample a pseudo sequence

4: Dpte
= ∅ ▷ empty cumulative pseudo test set

5: Ap = ∅ ▷ empty cumulative pseudo class attribute
6: θW ← θW − γ∇θWLWGAN (X 0

pstr ,Y
0
pstr ,A

0
p; θ

W )
7: ▷update parameters using pseudo seen classes
8: Dpte

= Dpte
∪ D0

pte
; Ap = Ap ∪ A0

p
9: for j = 1, · · · , N do
10: θW

′
= θW − α∇θWLWGAN (Ap; θ

W )
11: ▷ compute adapted params with all previous classes
12: Dpte = Dpte ∪ Dj

pte
; Ap = Ap ∪ Aj

p
13: ▷accumulate the test set and class attribute
14: θ ← θ − β∇θ

∑
(Xpte ,Ypte )∈Dpte

L(Xpte
,Ypte

,

15: Ap; θ
W ′

, θC)
16: ▷ update meta-model θ to adapt to new session
17: end for
18: end while

the generator G. Our final objective function is defined as

L = min
G

max
D

(LWGAN + LV DA) + LCLS . (5)

At the test time, given the attributes of unseen classes
from the current incremental session, we combine it with
Gaussian noise and generate corresponding synthetic vi-
sual features X̃ t. In order to accumulate previously learned
knowledge, we further generate replay features X̃ t′ of previ-
ously encountered seen classes by the generator network. A
combination of synthetic features of previous all classes and
unseen classes from the current session act as input data to
train a new softmax classifier (Liu et al. 2018). The classifier
minimizes the negative log-likelihood loss as follows:

min
θC
− 1

|T |
∑

(x̃,y)∈T

logP (y|x̃; θC), (6)

where θC is the weight matrix of a fully connected layer
that projects the visual feature x̃ to C probabilities, with
C being the number of all classes encountered so far. Here
T = (X̃ t,Yt) ∪ (X̃ t′ ,Yt′), where Yt and Yt′ are the class
labels corresponding to X̃ t and X̃ t′ , respectively. Finally,
the prediction function of the test data x ∈ X t

ste ∪ X
t
ute

is
argmaxP (y|x; θC), which is used to generate predicted la-
bels and evaluate the performance of the method.

Learning to Incrementally Learn
The optimization scheme of our method is inspired by
MAML (Finn, Abbeel, and Levine 2017) for few-shot learn-
ing. During the meta-training stage, MAML learns from a
set of tasks, in which each task is constructed as a few-
shot learning problem to mimic the scenario during meta-
testing. In CI-GZSL, we regard the online incremental stage
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as the “meta-testing stage” in MAML. The online incremen-
tal stage adapts the model to a sequence of incremental ses-
sions, where each session involves several unseen classes
with only attribute descriptors. As Figure 2 (a) shows, we
simulate this scenario during the offline training stage and
use a meta-learning algorithm to learn a model initialization
from the seen classes. The high-level idea of our method is to
use seen classes to mimic the incremental learning scenario
that the model will encounter during the online incremental
learning, so that the model is learned in a way that it can
effectively adapt to unseen classes during evaluation.

Sequential Task Sampling. In the offline training, we
mimic the online incremental process to learn a model
initialization using the seen classes. Specifically, at each
task, we first randomly separate the seen classes as pseudo
seen classes and pseudo unseen classes without overlap-
ping. Next we sample a sequence of T + 1 sessions, Ds =

{(Dj
tr,D

j
te)}Tj=0, where Dj

tr and Dj
te are the training and

test set for the jth session. Note that we set (D0
tr,D0

te) as the
pseudo seen set with more classes and training samples, i.e.,
D0

tr= {(training samples of pseudo seen classes X 0
pstr , their

class labels Y0
pstr , class attributesA0

p)},D0
te= {(test samples

of pseudo seen classes X 0
pste , their class labels Y0

pste , class
attributes A0

p)}. The subsequent sessions (e.g. j>0) follow
the online incremental learning setting as evaluation, such
asDj

tr= {(the attributes of pseudo unseen class from current
session j (Aj

p))},Dj
te= {(test samples of pseudo seen classes

and unseen classes encountered so far (X j
pste and X j

pute
),

their class labels (Yj
pste and Yj

pute
), class attributes (Aj

p))}.

Meta-Training. For each sampled sequence Ds, we pro-
pose a bi-level optimization based on MAML to directly
formulate incrementally adapting without forgetting as the
meta-objective. We denote θ = {θW , θC} as the parameters
for the whole network, where θW and θC denote the param-
eters for WGAN and classifier. The meta-learning procedure
is illustrated in Alg. 1 and Figure 2 (b). At the beginning of
training, we respectively define an empty cumulative pseudo
test set Dpte

and class attribute set Ap to store the test sam-
ples and class attributes from previous sessions. After that,
we conduct supervised training of θW on the pseudo seen
classes (j = 0) using the Wasserstein GAN loss. In each
subsequent session (j>0), we perform fast adaptation to all
classes previously encountered and update θW via a few gra-
dient steps for the inner-loop task-level optimization:

θW
′
= θW − α∇θWLWGAN (Ap; θ

W ), (7)

where Ap is the attribute set of all pseudo seen and unseen
classes from the beginning to the session j − 1. The loss
LWGAN (·) means that WGAN learns a better mapping for
the class attributes. In other words, generative network G
learns to generate visual features similar to the real features
of all previous classes (Gong, Yuan, and Bao 2022b). This
alleviates catastrophic forgetting of seen classes and helps
new unseen classes to synthesize visual features.

The above adaptation process mimics how the model
learns unseen classes at test time. Ideally, we would like the

adapted parameters to perform well on the classes from the
previous and current sessions. The test sets from previous
sessions reflect whether the updated model is robust to the
catastrophic forgetting, while the test set of the current ses-
sion validates model adaptation to new unseen classes (Chi
et al. 2020). Thus, we append Dj

pte
to Dpte

. To predict all
classes encountered so far, we also append Aj

p to Ap since
our classifier is obtained based on a linear mapping over
their class attributes. Accordingly, the meta-objective is de-
fined as follows for the outer-loop meta-level optimization:

min
θW ,θC

∑
(Xpte ,Ypte )∈Dpte

L(Xpte
,Ypte

,Ap; θ
W ′

, θC).

(8)
Note that L(·) is a function of θW

′
but the optimization is

performed on θW . We then minimize the meta-objective in
Eq. 8 using gradient decent, as shown in Line 14 of Alg. 1.
When all N +1 sessions in a task are done,Dpte andAp are
reset to empty as they can be dynamically extended to any
length in terms of different tasks.

Meta-Testing. The meta parameter θC is learned to per-
form fast adaptation via synthesized visual features of new
unseen classes. And θW is trained to facilitate the learning
process without forgetting based on the replayed samples of
all classes previously encountered. During the online learn-
ing, we perform Line 10 of Alg. 1 to accumulate historical
knowledge to synthesize discriminative visual features for
new unseen classes. The procedure in Alg. 1 matches the
evaluation protocol: at each incremental session, the model
is evaluated on all encountered classes after training on the
current session. Our meta-objective optimizes the model to-
wards what it is supposed to do at evaluation.

Experiments
Datasets and Setup
Dataset. We conduct experiments on five widely used
ZSL datasets: Animals with Attributes 1&2 (AWA1 (Lam-
pert, Nickisch, and Harmeling 2013) & AWA2 (Xian et al.
2018a)), UCSD Birds-200-2011 (CUB (Wah et al. 2011)),
Scene Recognition (SUN (Patterson and Hays 2012)), and
Attributes Pascal and Yahoo (APY(Farhadi et al. 2009)).
AWA1 and AWA2 share the same 50 animal classes with 85-
dimensions attributes. AWA1 includes 30,475 images and
AWA2 consists of 37,322 images. They are split into 40 seen
classes and 10 unseen classes; CUB contains 11,788 im-
ages of 200 bird species in which 150 classes are treated as
seen and 50 classes are unseen; SUN consists of 14,340 fine-
grained images from 717 classes, including 645 seen classes
and 72 unseen classes. In aPY, there are 15,339 images be-
longing to 32 classes, and 20 of these classes are treated as
seen and 12 are unseen.

Session-wise Data Split. In our CI-GZSL setting, all seen
classes are used for offline training (i.e., session 0). The un-
seen classes are dynamically added in each subsequent ses-
sion (i.e, session 1∼ T ) during the online incremental learn-
ing stage. In this work, we focus on the data split of unseen
classes. Specifically, AWA1 and AWA2 datasets are divided
into 5 incremental sessions. In each session, 2 new unseen
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Methods AWA1 (Session Number) Average Final AWA2 (Session Number) Average Final
1 2 3 4 5 Acc Impro. 1 2 3 4 5 Acc Impro.

f-CLSWGAN 67.97 62.07 53.98 45.45 42.08 54.31 +24.91 74.63 67.02 59.29 53.43 48.40 60.55 +19.10
CADA-VAE 85.59 76.79 70.07 67.75 62.74 72.59 +4.25 88.78 82.30 74.14 70.87 63.30 75.88 +4.20
CN-CZSL 88.20 74.58 70.55 68.93 65.06 73.46 +1.93 90.39 74.75 70.35 68.63 65.50 73.92 +2.00

Online-CGZSL 77.61 67.48 65.36 63.28 61.14 66.97 +5.85 71.82 61.46 62.76 60.62 57.78 62.89 +9.72
MetaZSCIL(ours) 86.31 81.45 73.99 71.61 66.99 76.07 86.19 85.16 80.15 73.83 67.50 78.57

Methods aPY (Session Number) Average Final SUN (Session Number) Average Final
1 2 3 4 Acc Impro. 1 2 3 4 5 6 7 8 Acc Impro.

f-CLSWGAN 40.13 28.53 21.93 21.62 28.05 +20.67 29.96 27.90 25.81 24.58 24.78 24.33 25.98 25.12 26.06 +17.09
CADA-VAE 64.64 51.79 46.92 40.48 50.96 +1.81 45.74 45.72 43.89 43.68 42.45 40.78 40.39 39.55 42.78 +2.66
CN-CZSL 60.86 46.41 44.24 41.13 48.16 +1.16 50.48 49.18 47.98 45.91 42.59 42.75 40.88 38.39 44.77 +3.82

Online-CGZSL 46.56 38.38 39.81 33.28 39.51 +9.01 41.06 37.31 38.44 38.14 38.85 37.20 38.46 37.81 38.40 +4.40
MetaZSCIL(ours) 69.35 55.56 47.92 42.29 53.78 50.11 50.31 48.72 46.98 45.94 44.55 43.65 42.21 46.56

Methods CUB (Session Number) Average Final
1 2 3 4 5 6 7 8 9 10 Acc Impro.

f-CLSWGAN 33.44 30.52 24.53 22.62 19.91 17.49 15.77 14.86 13.90 11.80 20.48 +34.18
CADA-VAE 63.03 59.10 51.59 47.57 46.24 44.65 41.55 40.04 39.92 39.46 47.32 +6.52
CN-CZSL 39.55 51.58 49.88 48.12 48.23 49.89 48.79 47.82 45.90 44.21 47.40 +1.77

Online-CGZSL 42.39 48.42 43.36 41.92 42.30 43.92 43.09 41.81 40.26 38.91 42.64 +7.07
MetaZSCIL(ours) 40.43 62.31 55.94 54.40 53.53 53.05 50.35 49.39 46.68 45.98 51.21

Table 1: Performance (in %) comparisons with the state-of-the-art methods on AWA1, AWA2, aPY, SUN, CUB datasets. The
results of other methods are obtained by running their released codes under the CI-GZSL setting.

classes are added. CUB dataset is divided into 10 sessions,
where 5 unseen classes are added in each incremental ses-
sion. SUN dataset is divided into 8 incremental sessions with
9 unseen classes per session. The aPY dataset consists of 4
incremental sessions with 3 unseen classes in each session.

Sequential Task Sampling. In the offline training stage,
we use the training set of seen classes to sample sequential
tasks. We first split them into non-overlapping pseudo seen
and pseudo unseen classes (30/10 for AWA1 and AWA2,
100/50 for CUB, 573/72 for SUN, 12/8 for aPY). For each
sequence task, we randomly sample pseudo seen classes first
(pre-training WGAN for generative replay in subsequent
incremental sessions), followed by T incremental sessions
with pseudo unseen classes. Both the session number and
the number of unseen classes in each incremental session
are consistent with the online incremental learning scenario.

Evaluation Metrics. We adopt three widely used zero-
shot metrics to evaluate each comparison method, including
the top-1 accuracy on seen classes (S), unseen classes (U )
and their harmonic mean (defined as H = 2× S × U/(S +
U)). Besides, we report the average of all sessions such as
mean seen accuracy (mSA), mean unseen accuracy (mUA)
and mean harmonic value(mH). Note that our evaluation
protocol is more practical and different from existing setting
(Kuchibhotla et al. 2022; Gautam et al. 2022). In previous
continual GZSL setting, during the online learning stage, the
evaluation is performed only at the end of all sessions. How-
ever, in our CI-GZSL setting, the model is evaluated at each
session during the online learning stage.

Implementation Details. Our networks are optimized by
the Adam optimizer with β1 = 0.5, β2 = 0.999, and initial
learning rate 0.0001 in both offline training and online in-
cremental learning stages. The penalty coefficient λ is set to
10. The input noise in the generator has the same dimension
as the corresponding attributes. We set mini-batch to 512 for
AWA1 and AWA2, 64 for CUB, SUN and aPY. In the meta-
training (offline) stage, we first perform supervised training
on pseudo seen classes for 30 epochs, followed by 5 inner
and 1 outer gradient updates for adapting new pseudo un-
seen classes without forgetting. In the meta-testing (online)
stage, we directly perform 10 gradient updates to fast adapt
unseen classes of each incremental session.

Experiment Results
Main Results. Since this paper considers a new problem
setting, there is no prior work that we can directly compare.
Nevertheless, we compare with state-of-the-art methods on
GZSL by running their codes under our CI-GZSL setting,
including classic GZSL baseline f-CLSWGAN (Xian et al.
2018b), CADA-VAE (Schonfeld et al. 2019), ans recent con-
tinual GZSL models CN-CZSL (Skorokhodov and Elho-
seiny 2021), Online-CGZSL (Kuchibhotla et al. 2022). We
report the harmonic mean between seen and unseen classes
for each incremental session and the average of all incre-
mental sessions. We also show relative improvement for the
final session. As shown in Table 1, the proposed method
outperforms all comparison methods on all five datasets
among most incremental sessions. Specifically, our MetaZS-
CIL surpasses the most recent method online-CGZSL by
5.85%, 9.72%, 9.01%, 4.40 and 7.07% on AWA1, AWA2,
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Methods
AWA1 (Session Number) Average

1 2 3 4 5 Acc
S U H S U H S U H S U H S U H mSA mUA mH

+ Baseline 54.61 90.01 67.98 51.55 78.00 62.07 42.97 72.57 53.98 34.82 65.42 45.45 40.97 43.24 42.07 44.98 69.85 54.31
+LCC 74.25 93.08 82.60 74.82 81.55 78.04 73.04 76.50 74.73 67.72 70.26 68.97 67.67 61.76 64.58 71.50 76.63 73.78
+LSD 75.32 91.66 82.69 75.62 82.76 79.03 73.82 76.95 75.35 69.17 71.80 70.46 66.99 64.15 65.54 72.18 77.47 74.62

+ Meta-learning 83.63 89.18 86.31 82.58 80.35 81.45 75.94 72.14 73.99 73.67 69.66 71.61 72.16 62.51 66.99 77.60 74.77 76.07

Table 2: Ablation study of various components of our MetaZSCIL on the AWA1 dataset. For each incremental session and the
average of all incremental sessions, we report their seen accuracy (S), unseen accuracy (U) and their harmonic mean (H).

(a) Naive generator loss LG (b) LG + LCC

(c) LG + LSD (d) LG + LCC + LSD

Figure 3: The t-SNE visual results of sample distributions on
the AWA1 dataset. The red and blue respectively represent
the data distribution of the real and replayed samples.

aPY, SUN and CUB datasets for final accuracy. We also
outperform the strong CN-CZSL method by 1.93%, 2.00%,
1.16%, 3.82% and 1.77%. This shows that learning to incre-
mentally learn during the offline training stage is crucial for
alleviating forgetting and promoting future learning.

Ablation Studies. To evaluate the effectiveness of each
component in our proposed framework, we conduct abla-
tion studies on the AWA1 dataset as shown in Table 2. The
baseline model is the sequential version of f-CLSWGAN.
Considering the relatively weak constraint of generator in
the baseline model, we gradually employ class consistency
loss (LCC) and sample diversity loss (LSD) which result
in 19.47% and 0.84% higher harmonic mean. To intuitively
understand their effectiveness, we randomly select one class
and visualize the data distribution of the real and replayed
samples under different losses. The results are shown in
Figure 3. We can observe that the distributions with LCC

(Figure 3 (b)) are closer to real visual center while that
with LSD (Figure 3 (c)) exhibit the diversity of samples,
which are consistent with their functions. The closest ap-
proximation to the true distribution is achieved when LCC

andLSD are both applied, as shown in Figure 3 (d). Besides,
our meta-learning optimization strategy further improves the
harmonic mean of seen and unseen classes to 76.07% in the
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(a) Sampling sequence tasks
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(b) Replay samples per unseen

Figure 4: We compare the Mean Harmonic accuracy (mH)
with different hyper-parameter on all datasets.

last row of Table 2. Particularly, it greatly boosts the seen
class accuracies per incremental session and improves ro-
bustness to forgetting.

Hyper-parameter Sensitivity. We study the performance
of the proposed method given different parameter settings.
We first vary the number S of sampling sequential tasks in
meta-training. According to Figure 4 (a), we find that more
serialization tasks are beneficial for coarse-grained datasets,
but are prone to overfitting for fine-grained datasets. Empir-
ically, the optimal value of S is set to 9 in the AWA1, AWA2
and aPY datasets, and 2 in the CUB and SUN datasets. Then
we evaluate the performance of different replayed samples
number per unseen classes in Figure 4 (b). We observe that
AWA1 and AWA2 perform well when the number of re-
played samples is more than 20. We use a replay of 30 for
both datasets in this work. For aPY, CUB and SUN datasets,
we replay only 20 samples per unseen class.

Conclusion
This paper has proposed a practical and challenging set-
ting called CI-GZSL. The goal is to incrementally learn un-
seen classes without any training samples, while keeping the
knowledge of previously learned classes. To fast adapt to
new classes without forgetting old classes during evaluation,
we further propose a bi-level meta-learning-based optimiza-
tion strategy to directly optimize the network to learn how
to incrementally learn. Furthermore, our learning network is
designed as a visual distribution alignment-based generative
framework that can replay class-related discriminative fea-
tures with robustness to forgetting. Extensive experiments
demonstrate the superiority of our proposed method.
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