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Abstract

Theoretically, the Markov boundary (MB) is the optimal so-
lution for feature selection. However, existing MB learning
algorithms often fail to identify some critical features in real-
world feature selection tasks, mainly because the strict as-
sumptions of existing algorithms, on either data distribution,
variable types, or correctness of criteria, cannot be satisfied
in application scenarios. This paper takes further steps toward
opening the door to real-world applications for MB. We con-
tribute in particular to a practical MB learning strategy, which
can maintain feasibility and effectiveness in real-world data
where variables can be numerical or categorical with linear or
nonlinear, pairwise or multivariate relationships. Specifically,
the equivalence between MB and the minimal conditional co-
variance operator (CCO) is investigated, which inspires us to
design the objective function based on the predictability e-
valuation of the mapping variables in a reproducing kernel
Hilbert space. Based on this, a kernel MB learning algorithm
is proposed, where nonlinear multivariate dependence could
be considered without extra requirements on data distribution
and variable types. Extensive experiments demonstrate the ef-
ficacy of these contributions.

Introduction
As a basic concept in statistical machine learning, the
Markov boundary (MB) is the smallest variable set that ren-
ders the rest of the variables independent of the target (Pearl
1988). Naturally, MB discovery is a principled solution for
feature selection as MB carries all predictive information
about the class attribute (Guyon, Aliferis et al. 2007). In
the causality research, it has been proved that MB consist-
s of the direct causes, direct effects, and other direct caus-
es of direct effects in a causal graph (Aliferis et al. 2010a).
Hence, MB could imply the local causal mechanism around
a variable, and MB learning algorithms are also alternatively
named causal feature selection (Guyon, Aliferis et al. 2007).
Existing MB discovery methods can be roughly divided in-
to constraint-based and score-based approaches (Yu et al.
2020a). Constraint-based approaches, as the focus of MB
research, learn the MB by identifying the conditional inde-
pendence (CI) relationships between variable pairs. And the
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Figure 1: Example of multivariate dependence.
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Figure 2: Example of cascading errors in MB discovery.

other strategy, score-based approaches, obtains the MB vi-
a learning the local Bayesian network structure around the
target with a scoring criterion. With the continuous improve-
ment of the methodology, state-of-the-art algorithms achieve
ideal performance in a certain type of data satisfying specif-
ic assumptions, while few algorithms could remain practical
in real-world data due to the violation of some assumptions.

A basic assumption of MB learning is the faithfulness
(Spirtes, Glymour, and Scheines 2000) between underlying
distributions and directed acyclic graphs (DAG), which re-
quires that every CI presented in the distribution is entailed
by the DAG and Markov condition (Liu and Liu 2018). This
assumption defaults that all considered CIs are pairwise re-
lationships while ignoring the multivariate relationships that
are ubiquitous but subtle in real-world applications. Multi-
variate dependence occurs when multiple variables jointly
influence the target but none of them is dependent on the
target, e.g., logical operation ‘XOR’ in Figure 1. To remain
tractable, existing approaches only consider pairwise rela-
tionships and thus suffer from performance degradation as
shown in some empirical studies (Yu et al. 2018; Lin and
Zhang 2020). Moreover, existing methods further assume
the correctness of all CI tests or structure learning process
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(Tsamardinos et al. 2019), which is also hard to be satisfied.
The correctness of these techniques is affected by multiple
factors such as the number and diversity of instances, and
the CI test is additionally limited by the scale of the condi-
tioning set. When the true MB is large and the training sam-
ples are insufficient, existing methods easily go astray. Even
worse, the results of CI tests or structure learning processes
are interrelated and affect subsequent decisions in MB dis-
covery, leading to frequent cascading errors as the example
in Figure 2. Existing methods can not deal with situations
violating these assumptions, making the efficacy of the dis-
covered MBs significantly reduce in applications. For exam-
ple in feature selection tasks, MB learning algorithms often
ignore true positives (critical features) (Wu et al. 2020b).

In addition to the basic assumptions of MB discovery, cri-
teria or measurements used by each algorithm family usually
assume that the data meet certain conditions to ensure theo-
retical reliability. For constraint-based approaches, the com-
monly used λ2-test and G2-test assume that the variables
are discrete (McDonald 2009), whereas the Fishers Z-test is
designed for continuous variables with linear relations and
additive Gaussian errors (Pena 2008). Analogously, the rep-
resentative scoring criteria used by score-based approaches
have strict requirements on data distributions and variable
types. For instance, BDeu (Buntine 1991) and BDe (Hecker-
man, Geiger, and Chickering 1995) scores are implemented
on discrete data, but AIC (Akaike 1974), BIC (Lam and Bac-
chus 1994), and MDL (Lam and Bacchus 1994) scores are
suitable for linear Gaussian parameterization. Other more
recently proposed techniques (Sokolova et al. 2014) for CI
test and DAG score also have certain requirements on the
data to guarantee their robustness on the data satisfying
their assumptions. These limitations narrow the applicability
of algorithms, making them impractical for real-world data
where not all of these assumptions can be fully satisfied.

To promote the application of MB, this paper aims to
propose a practical MB learning strategy, which can main-
tain feasibility and effectiveness in real-world data where
variables can be either numerical or categorical with lin-
ear or nonlinear, pairwise or multivariate relationships. As
we know, kernel-based methods have demonstrated their ca-
pacity to handle nonlinear problems in many learning sce-
narios (Schölkopf et al. 2002). Hence, we intend to adop-
t this technique to convert the multivariate nonlinear rela-
tions into pairwise linear relations by mapping the variables
from a Euclidean space to a reproducing kernel Hilbert s-
pace (RKHS). Nevertheless, the variable relationships in the
high-dimensional RKHS cannot provide a direct reference
for MB learning as MB variables ultimately need to be se-
lected from the original space. To make the (in)dependence
relationships obtained from the RKHS usable in the original
space, the association between the MB and variable depen-
dence in RKHS is constructed by the feat of the condition-
al covariance operator (CCO) (Fukumizu, Bach, and Jordan
2004). We theoretically prove that the MB is equivalent to
the feature subset minimizing the CCO.

However, it is not advisable to learn MB by directly mini-
mizing the CCO since the error in the CCO estimation would
make the discovered MB inaccurate. Besides, the minimiza-

tion of the CCO is a combinatorial optimization problem
whose solution space contains variable combinations of all
scales (Wu et al. 2020c). As a result, neither brute-force er-
godic methods nor suitable optimization approaches can be
used. Even so, we observe that the minimum CCO reflects
the consistency of conditional variance captured by MB and
the entire feature set in kernel space, which inspires us to
design the objective function by evaluating the predictabili-
ty of the mapping variables in the RKHS so that both linear
and nonlinear relationships are taken into account without
any assumptions about data distributions and variable type-
s. Based on these contributions, a Kernel MB learning al-
gorithm (KMB) is proposed. Before learning the MB, KM-
B first reorders the candidates by evaluating the variation
of CCO, to improve time efficiency. Then, KMB solves the
proposed optimization function on a reduced scale and ef-
ficiently recovers the MB around the target, whose results
are proved to be theoretically equivalent to the direct min-
imization of the CCO. Extensive experiments validate the
superiority of KMB in both synthetic and real-world data.

Background
This section briefly provides some key notations and defini-
tions. We first introduce the background knowledge in MB
as well as existing MB learning algorithms, then introduce
the CCO in RKHS, which is involved in the proposed MB
learning strategy.

Notations
In this paper, common upper-case letters denote random
variables and upper-case bold letters denote variable sets.
Specifically, X “ tX1, X2, ¨ ¨ ¨ , Xnu represents the entire
variable (or feature) set, and T represents the target vari-
able (or class attribute). x “ tx1, x2, ¨ ¨ ¨ , xmu and t “
tt1, t2, ¨ ¨ ¨ , tmu represent the m training samples and their
target values. If variables Xi and Xj are (in)dependent con-
ditioned on variable set Z, then we denote the relation as
Xi M Xj |Z (Xi K Xj |Z). The Greek letter X is used
to denote the original space (Euclidean space) of variables,
and HX represents the mapping feature space from X . Bi-
linear mapping function xx, yy denotes the inner product
between vectors x and y. Furthermore, a feature mapping
from Euclidean space X to Hilbert space HX is denoted
as ΦX pXq : X Ñ HX , where kernel function satisfies
kX pxi, xjq “ xΦX pxiq,ΦX pxjqy. For given samples and a
kernel function, the matrix obtained by inputting all sam-
ples into the kernel function in pairs is the kernel matrix or
Gram matrix pKX qij “ kX pxi, xjq.

MB and Causal Feature Selection Algorithms
MB is a concept from the structural causal model (Aliferis
et al. 2010a), where the MB of a target includes the direc-
t causes (parents), direct effects (children), and other direct
causes of direct effects (spouses) in the causal graph (Alif-
eris et al. 2010a). Hence, MB provides a complete picture of
the local causal structure around the target variable, and M-
B learning could be taken as the first step in causal learning,
where the skeleton of the causal model without orientation is
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constructed by MB (Aliferis et al. 2010a,b; Pellet and Elis-
seeff 2008; Wu et al. 2022a,b,c). Besides the causal concept,
the statistical concept of MB claims that:

Definition 1. (Markov boundary) For variable subset Z Ă
X and target T , if all other variables X P X ´ Z are inde-
pendent of T conditioned on Z, and any subsets of Z do not
satisfy the condition, then Z is the Markov boundary of T
(Tsamardinos and Aliferis 2003).

It shows that the MB of a variable is deemed to con-
tain the causal information about the variable and possesses
the most predictive knowledge when the discussion is in a
causal graph. Guyon et. al. applied the MB in feature se-
lection techniques and presented “causal feature selection”
(Guyon, Aliferis et al. 2007), and Yu et. al. theoretically pro-
vide a unified view of causal and non-causal feature selec-
tion methods (Yu, Liu, and Li 2021). In recent years, MB
has been widely applied to various complex application s-
cenarios, such as multi-label data (Wu et al. 2020a, 2022e),
multi-source data (Yu et al. 2020b), and streaming data (Wu
et al. 2023), which achieves more advanced performance
than traditional algorithms (Zhong et al. 2021; Jiang et al.
2022a,b). Existing MB discovery approaches are roughly di-
vided into constraint-based and score-based algorithms (Yu
et al. 2020a; Wu et al. 2022d). As the focus of MB learning
research, constraint-based algorithms (Borboudakis and T-
samardinos 2019; Tsamardinos et al. 2019; Wu et al. 2020b,
2021, 2022f; Guo et al. 2022a,b) account for the majority of
MB discovery algorithms, which learn MB through mining
the CI relations. As previously mentioned, the MB learning
process with a large conditioning set and small-scale train-
ing samples easily suffers from incorrect CI tests. Moreover,
these CI tests are designed for pair-wise dependence, and
can not mine the multivariate relations. Score-based algo-
rithms (Niinimaki and Parviainen 2012; Gao and Ji 2017; Li,
Korb, and Allison 2022) adopt score-based structure learn-
ing approaches to learn the MB set, where a greedy search
method is used to maximize the fitness (scoring function)
between the causal graph and training data. Score-based al-
gorithms are far less numerous. Similarly, they consider one
more variable in each iteration, and thus they can not identi-
fy the multivariate relationships in the distribution.

Conditional Covariance Operator in RKHS
The cross-covariance operator ΣY X can be taken as a gen-
eralization of the covariance matrix over the feature maps
ΦX pXq and ΦYpY q, whose definitions is:

Definition 2. (Conditional covariance operator) Let pH, kq
denote an RKHS H with a positive definite kernel k on R,
then the cross-covariance operator for the random variable
pair pX,Y q is the mapping from HX to HY , and for each
f P HX and g P HY : xg,ΣY XfyHY

“ CovrfpXq, gpY qs.
The conditional covariance operator on HX Ñ HY is de-
fined as ΣY X|Z “ ΣY X ´ ΣY ZΣ´1

ZZΣZX .

The independence relationship X K Y in the probability
distribution can be described in the RKHS with the partic-
ipation of the cross-covariance operator, i.e., ΣY X “ 0 ô
CovrfpXq, gpY qs “ 0. Nevertheless, the correlation cannot

reflect relationships closer to the essence, such as causality
that MB focuses on. Hence, CCO is defined to describe the
CI, which is employed to learn MB in this paper.

MB Representation in RKHS
Since the MB is defined in the original space, kernel MB
learning aims to adopt the multivariate relationships con-
tained in the RKHS to find the MB variables in the original
space, instead of directly selecting the MB from the mapping
features in the RKHS. Then, the CI between variables eval-
uated in RKHS is the premise of kernel-based MB learning.
This section will utilize the CCO to capture these relations in
RKHS, and analyze the connection between MB and CCO
to propose a preliminary kernel-based MB learning idea.

According to Definition 1, the variable subset Z Ă X is an
MB of the target T if it satisfies two conditions: (1) indepen-
dence: X ´ Z K T |Z in the distribution, and (2) minimality:
Z is the minimal set satisfying (1). In the following, we first
give a property of MB described with CCO.

Theorem 1. Let MB Ă X denote the MB of variable T P X.
Mapping target space T and feature space X into the RKHS
HT and HX with two measurable positive definite kernels,
then for @g P HT ,

@

g,ΣTT |MBg
D

HT
“

@

g,ΣTT |Xg
D

HT
.

The detailed proof is provided in the Appendix1. Theorem
1 describes that the CCO on the MB ΣTT |MB is equal to the
CCO on the entire variable set ΣTT |X. According to the char-
acterization of the residual error of g P HY by the CCO, we
can observe a monotonic partial order relation on ΣTT |Z as
the scale of Z increases. This monotonicity combined with
Theorem 1 leads us to solve MB by maximizing or mini-
mizing CCO. Herein, we follow this thinking to prove the
relationship between MB and CCO, as shown in Theorem 2.

Theorem 2. The MB MB Ă X of variable T P X is the
variable subset Z minimizing ΣTT |Z.

The proof is provided in the Appendix, according to
which the independence and minimality property is proved
to be satisfied when a feature subset could minimize the C-
CO. Based on Theorem 2, the MB learning problem can
be transformed to the minimization of the ΣTT |Z, and the
Z minimizing ΣTT |Z is the MB of T . Formally,

MBpT q “ arg min
ZĂX

ΣTT |Z (1)

where the value of ΣTT |Z could be estimated by its sum or
product of the eigenvalues, corresponding to the determinant
and trace, respectively. When the matrix has multiple smal-
l eigenvalues, the calculated determinant is also small and
may exceed the range of precision. Hence, trace-based mea-
surement has the advantage of yielding relatively reliable re-
sults with a simple theoretical analysis.

Based on Eq. (1), we propose an initial kernel MB learn-
ing algorithm (KMB´) with a simple idea in Algorithm 1.
KMB´ directly solves the optimization problem and finds
the variable subset Z minimizing the ΣTT |Z. According to
Theorem 2, KMB- is theoretically correct and the learned

1Appendix: http://home.ustc.edu.cn/„xingyuwu/AAAI23.pdf
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Algorithm 1: The KMB´ Algorithm.

1: Input: Target T , features set X.
2: Find the variable subset Z minimizing Eq. (1)
3: MB Ð Z
4: Output: MB set MB.

Z is just the MB of T . However, as an immature approach,
KMB´ does not possess scalability. Firstly, directly estimat-
ing the ΣTT |Z is susceptible to estimation errors, leading
to unfaithful results. Additionally, Eq. (1) is hard to solve,
which can not be solved by commonly used optimization
algorithms such as gradient descent. Therefore, KMB´ is
only a theoretically feasible solution, and we need to further
explore another practical method.

Kernel MB Learning

Since directly minimizing the CCO may lead to suboptimal
solutions due to inaccurate estimation of CCO, this section
exploits another more effective solution for MB discovery
based on the above analyses. According to Theorem 1, we
can reach the following corollary as ΣTT |X “ ΣTT |Z:

Corollary 1. Let MB Ă X denote the MB of variable
T P X. Mapping target space T and feature space X into
the RKHS HT and HX with two measurable positive defi-
nite kernels, then for @g P HT , EMBrDT |MBrgpT q|MBss “
EXrDT |XrgpT q|Xss.

Corollary 1 demonstrates that, to predict any-dimensional
vector ΦT pT q in HT , the predictive model constructed on
ΦX pMBq could theoretically achieve the same performance
as that on all features. In the following, we evaluate the like-
lihood of a subset to be MB by measuring its predictive abil-
ity in RKHS. Since kernel methods have transformed non-
linear problems into linear ones, we directly model the map-
ping target in the mapping feature space employing the most
commonly used linear model, whose general formulation is:

ΦT pT q “ ΦX pZqW ` ε (2)

where W and ε represent the feature projection matrix and
the regression error vector, respectively. Note that the di-
mensions of the mapped vectors ΦT pT q and ΦX pZq are
unknown, even infinite, it is difficult to calculate the pre-
dictability of the model in Eq. (2) to measure the candidate
subset. The main challenge comes from the unknown dimen-
sion of ΦT pT q, while the dimension problem of ΦX pZq will
be finally eliminated by calculating the inner product be-
tween the mapping vectors, which will be shown in the fol-
lowing analyses. According to the classical representer the-
orem (Schölkopf, Herbrich, and Smola 2001; Wahba 1990),
a target could be represented with the linear combination of
the mapped training samples. Hence, the information in the
ΦT pT q is equivalent to the information in vector function

fkptq defined as:

fkptq “

»

—

—

—

–

xΦT pt1q,ΦT ptqyHT

xΦT pt2q,ΦT ptqyHT

...
xΦT ptmq,ΦT ptqyHT

fi

ffi

ffi

ffi

fl

T

“

»

—

—

–

kT pt1, tq
kT pt2, tq

...
kT ptm, tq

fi

ffi

ffi

fl

T

(3)
In this way, linear model in Eq. (2) can be materialized as:

fkptq “ ΦX pZqWf ` εf (4)

where Wf P R|ΦT ptq|ˆm and εf P Rmˆ1. Generally, the
model in Eq (4) containsm independent sub-models, and the
i-th sub-model is recorded as: kT pti, tq “ ΦX pZqpWf qi `

pεf qi, where pWf qi denotes the i-th column in Wf and pεf qi
denotes the i-th element in εf . Herein, the input to the M-
B learning problem is also adopted to train the model in
Eq. (4). Each sample corresponds to m results for m sub-
models, constructing a matrix:

“

fkpt1qT , fkpt2qT , ¨ ¨ ¨ , fkptmqT
‰T
“ KT (5)

which is a symmetric matrix. Then, the objective function is
formulated as follows:

min
Wf

ÿ

i,j

}pKT qji´ΦX pZqxj pWf qi}
2`λpWf q

T
i pWf qi (6)

where the ΦX pZqxj is the value of mapping features of Z on
j-th sample xj . Since the mapping feature space could be
very high-dimensional, we introduce a regularization term
λpWf q

T
i pWf qi. Obviously, the prediction of kT pti, tq for d-

ifferent i is independent of each other, and the optimization
problem could be solved by focusing on each sub-model.

Herein, we consider its i-th column pKT qi for the i-th sub-
model. The solution of pWf qi can be obtained via the normal
equation, which is directly given as:

pWf qi “
`

ΦX pZqT ΦX pZq ` λId
˘´1

ΦX pZqT pKT qi (7)

where d P p0,`8q is the dimension of each mapping
sample, ΦX pZq P Rmˆd includes all mapping samples in
RKHS, and Id is a dˆ d identify matrix.

As shown in Eq. (7), some matrices with unknown di-
mensions are involved in the calculation of Wf , it is stil-
l challenging to measure the predictability of the predic-
tion model. To solve this problem, some transformations
are made to Eq. (7). According to the matrix inversion lem-

ma (Greub 2012) on block matrix
„

A B
C D



, if A and D are

square and invertible matrices, then the following identity
holds:

`

A´ BD´1C
˘´1 BD´1 “ A´1B

`

D´ CA´1B
˘´1

.
Let A “ λId, B “ ΦX pZqT , C “ ´ΦX pZq, and D “ Im,
and substitute them into Eq. (7):

pWf qi “
1

λ
ΦX pZqT

ˆ

Im `
1

λ
ΦX pZqΦX pZqT

˙´1

pKT qi

“ ΦX pZqT
`

λIm ` ΦX pZqΦX pZqT
˘´1

pKT qi
(8)
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Different from the unknown dimension of ΦX pZqT ΦX pZq
in Eq. (7), ΦX pZqΦX pZqT P Rmˆm could be transformed
into the form of a kernel matrix. Inputting test sample x, the
estimated ˆkT pti, tq is calculated as follows:

ˆkT pti, tq

“ fkptiq pKX pZq ` λImq
´1

»

—

—

—

–

xΦX pZqx1 ,ΦX pZqxyHX

xΦX pZqx2 ,ΦX pZqxyHX

...
xΦX pZqxm ,ΦX pZqxyHX

fi

ffi

ffi

ffi

fl

(9)

where the result corresponds to the i-th mapping target of
the sample x.

To evaluate the performance of this model, training sam-
ples are used to learn the Wf and test samples are input to
the learned model. The estimated values of all mapping tar-
gets on the j-th sample are obtained as:

ˆfkptjqT “ KT pKX pZq ` λImq
´1 ˜pKX pZqT qj (10)

where the ˜pKX pZqT qj “ ΦX pZqΦX pZq
T is calculated with

mapping samples of training samples and test samples, re-
spectively, and the pKX pZqqj denotes the j-the column of
the Gram matrix of Z. Since the fkptjq constructs the Gram
matrix of target T and it is a symmetric matrix, the predicted
results can be represented as:

K̂T “ KT pKX pZq ` λImq
´1 ˜KX pZqT (11)

The performance of regression in Eq. (2) can reflect the
congruent relationship between variable subsets and poten-
tial MB by Corollary 1, so the MB learning process can be
transformed into the process of selecting the best regression
model. We can measure the predictability of the model ac-
cording to the trace of its cost matrix, i.e.:

arg min
ZĂX

Tr
”

pK̃T ´ K̂T qpK̃T ´ K̂T q
T
ı

(12)

where each element in the K̃T is calculated using a kernel
function with a training sample and a test sample. To avoid
overfitting when learning Wf , K-fold cross-validation could
be used here to measure the predictability of the regression
model. Practically, the input data can be split into K blocks,
and K ´ 1 blocks are used to train the model and 1 block
to test its performance, until K different results have been
recorded, in which the average result is calculated. More-
over, Eq. (12) can be further rephrased so that some contin-
uous optimization algorithms could be employed to solve it.
Firstly, the parameter Ω “ tω1, ω2, . . . , ωnu P t0, 1u

n is
introduced to replace the decision variable Z and describes
whether a feature is an MB variable, then Z “ Ω d X
describes the Hadamard product between Ω and X, and
pKX pZqqij “ kX pΩdxi,Ωdxjq. To use gradient descent for
optimization, the domain of Ω can be relaxed to Ω P r0, 1sn

and a certain number of variables with the largest values are
selected to the results.

Based on Eq. (12), a kernel MB learning (KMB) algorith-
m is presented in Algorithm 2. If the noise term follows a

Algorithm 2: The KMB Algorithm.

1: Input: Dataset D, target T , features set X, k.
2: Initialize Xs,MBT ,DelX Ð ∅
3: while X ‰ ∅ do
4: X Ð arg minXPX ΣTT |X´tXu
5: Xs Ð Xs Y tXu using a stack, X Ð X ´ tXu.
6: end while
7: for each X P Xs ´MBT ´ DelX ´ tT u do
8: MBT Ð Solve Eq.(12) on MBT Y tX,T u.
9: if MBT does not change then

10: MBT Ð Solve Eq.(12) on MBT Y DelX Y tX,T u.
11: DelX Ð DelX Y tXu ´MBT

12: end if
13: If the MBT does not change in k steps, break.
14: end for
15: Output: MB set MBT .

Gaussian distribution, the KMB and KMB´ can be proved
to be equivalent, as shown in Theorem 3, whose detailed
proof is provided in the Appendix.
Theorem 3. If the noise term follows a Gaussian distribu-
tion, then KMB and KMB´ are equivalent.

KMB does not directly solve the optimization problem on
the entire variable set X but employs a stepwise optimization
process. As shown in Figure 3, KMB roughly includes two
steps: 1) Lines 3-6: Reorganize the variables in X; and 2)
Lines 7-14: Identify MB set MBT .

Step (1) evaluates the likelihood of each variable to be an
MB variable according to the Eq. (1) and the monotonic par-
tial ordering relation ΣTT |X ĺ ΣTT |Z proved in Theorem 2.
In other words, when a variable X is eliminated from the
variable set, the smaller the value of ΣTT |X´tXu, the less
likely X is the MB variable (line 4). By iteratively elimi-
nating those variables that are irrelevant to T , the MB vari-
ables would be always included in the remaining variables,
in which the multivariate effect on T is obviously considered
in the backward elimination. As a result, the inverted order
represents the relative importance of each variable, and thus
KMB uses a data structure, stack Xs in line 5, to reorganize
these ordered variables. By Step (1), only the first several
variables in Xs need to be considered, significantly improv-
ing efficiency within the allowable precision range.

Step (2) learns the MB. In each iteration, KMB sequen-
tially pops a variable from stack Xs (line 7) and learn-
s the MBT by repeatedly optimizing Eq. (12) on curren-
t MBT Y tX,T u (line 8). The introduced decision vari-
able Ω could be solved by gradient descent as well as some
commonly-used greedy search approaches. Since each iter-
ation only considers one more variable, the strategy may
lead to some multivariate relationships being ignored even
though the optimization function has measured multivariate
nonlinear relationships. When there exist other variables af-
fecting the T together with the popped X , line 8 may mis-
take it for an irrelevant variable. To make up for this defect,
line 10 does not directly discard it, but looks back at the pre-
viously invalid variables to consider the possible joint effect-
s of these variables on the target T . If the possible synactic
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Figure 3: Diagram of the KMB algorithm.

variables are not included in DelX, then X will be added
into DelX to wait for its possible synactic variables in line
11. Actually, in the implementation of KMB, this procedure
(lines 9-12) does not need to be repeated in each iteration,
but only considers the multivariate relations at one time af-
ter the algorithm has identified all pairwise relations, which
will significantly improve the time efficiency. In line 13, a
monitor is arranged at the end of each iteration with a prede-
termined parameter k. When the monitor finds that the MBT

has not changed in the last k iterations, then KMB will ter-
minate the search of the MBT . This is because the variables
in Xs are sorted according to their likelihood to be an MB
variable, and thus MB variables are mostly found in the first
few iterations of KMB.

Experiments
We first verify the effectiveness of KMB on synthetic
datasets with foregone (in)dependence relationships to ver-
ify its superiority on mixed data. Then, KMB is conducted
on real-world datasets to demonstrate the superiority against
traditional feature selection algorithms and causal feature s-
election algorithms on the feature selection task.

MB Discovery on Mixed Data
The main superiority of KMB over existing MB learning
algorithms is that it breaks through the limitations of al-
l strong assumptions about data distributions and variable
types. Therefore, the simulation data, sampled from synthet-
ic Bayesian networks, are mainly to verify the robustness
of KMB in various experimental environments, where the
underlying data distributions and variable types are exact-
ly known so that comparing methods can be evaluated in
a controlled setting. Some classic or state-of-the-art algo-
rithms in each type are chosen to compare with KMB, in-
cluding four constraint-based algorithms IAMB (Tsamardi-
nos et al. 2003), HITON-MB (Aliferis, Tsamardinos, and
Statnikov 2003), CCMB (Wu et al. 2020b), and SRMB (Wu
et al. 2021) and two score-based algorithms SLL (Niinimaki
and Parviainen 2012) and S2TMB (Gao and Ji 2017).

To validate the effectiveness of KMB in different ex-
perimental environments, each dataset is set with differ-
ent controlled parameters: (1) proportion of the continu-
ous variables pc; (2) proportion of the nonlinear relation-
ships (including multivariate relationships) pn. The simulat-
ed Bayesian network includes 50 variables and 1000 train-
ing samples, which are the same in all experiment groups.
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Figure 4: The F1 score of MB discovery on synthetic mixed
data with different MB scale.
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Figure 5: The F1 score of KMB achieved by different k.

The Bayesian network is constructed by randomly choosing
the MB variables for each target. Firstly, the variable type
should be determined, where each variable becomes a con-
tinuous variable with probability pc, followed by the random
initialization of the variables without parent nodes. After
that, the values of the remaining nodes are obtained through
the operation of their parent nodes, and the nonlinear func-
tions are selected according to the probability pn. Note that
linear operations on discrete variables will be implemented
first since they can only be obtained by other discrete vari-
ables, the remaining operations are determined later. The ex-
periment consists of two groups, and each group keeps one
of the pc and pn invariant but changes the other, to show the
performance of KMB and other comparing algorithms in d-
ifferent cases. Tables 1 and 2 compare the average F1 score
of discovered MB with respect to the proportion of nonlinear
relationships and continuous variables in data, respectively.
The details of comparing algorithms and experimental pro-
cesses are provided in the Appendix.

Performance comparison with controlled settings:
With the increase in the proportions of nonlinear relation-
ships and continuous variables, existing algorithms witness
a downward trend, albeit to widely varying degrees. While
KMB remains steady regardless of the experimental en-
vironments and consistently achieves better performance,
which shows the robustness of KMB. From the performance
of other comparing algorithms and their variance changes,
the impact of the nonlinear relationship on the performance
of the algorithm is greater than that of continuous variables,

10393



pc pn pn “ 0.00 pn “ 0.25 pn “ 0.50 pn “ 0.75 pn “ 1.00 lgptq

pc “ 0.00

IAMB 83.74˘0.98 77.25˘1.32 71.44˘1.97 63.13˘3.55 56.37˘3.93 0.26
HITON-MB 90.74˘0.74 85.36˘0.99 78.73˘1.56 68.12˘2.03 61.39˘2.58 1.16

CCMB 93.06˘0.69 86.99˘1.21 77.04˘1.99 70.57˘2.85 63.31˘3.79 1.26
SRMB 92.94˘0.71 87.02˘1.26 78.19˘2.09 70.27˘ 3.04 62.02˘4.04 1.26

SLL 92.98˘1.02 88.45˘1.97 84.73˘2.99 79.62˘4.05 73.10˘5.02 3.88
S2TMB 91.72˘1.14 86.01˘2.05 81.39˘3.13 75.42˘4.20 69.98˘5.31 3.19
KMB´ 93.12˘2.06 91.08˘2.12 87.94˘2.64 85.03˘3.07 82.73˘3.05 1.36
KMB 96.74˘0.57 96.46˘0.59 96.31˘0.76 95.79˘0.69 95.10˘0.63 1.64

pc “ 1.00

IAMB 77.12˘1.14 71.25˘2.15 64.73˘3.42 54.10˘4.01 43.06˘4.73 0.25
HITON-MB 83.58˘0.97 76.03˘1.32 68.95˘1.95 56.12˘2.81 46.80˘3.84 1.15

CCMB 84.04˘0.75 78.09˘1.63 70.25˘2.25 59.18˘3.74 50.68˘4.81 1.26
SRMB 83.97˘0.76 77.37˘1.68 68.94˘2.25 59.54˘3.81 51.13˘4.90 1.24

SLL 81.69˘1.25 77.45˘2.70 72.10˘3.81 68.43˘4.94 62.77˘5.73 3.88
S2TMB 82.04˘1.27 78.09˘2.81 71.16˘3.94 65.79˘5.03 60.15˘6.25 3.23
KMB´ 92.18˘3.01 90.09˘3.14 86.12˘3.62 83.97˘3.65 80.59˘3.93 1.37
KMB 96.84˘0.61 96.39˘0.67 96.02˘0.79 95.25˘0.83 94.47˘0.81 1.66

Table 1: Average F1 score (ˆ10´2) of discovered MB with respect to the proportion of nonlinear relationships.

pn pc pc “ 0.00 pc “ 0.25 pc “ 0.50 pc “ 0.75 pc “ 1.00 lgptq

pn “ 0.00

IAMB 83.74˘0.98 82.37˘1.03 81.06˘0.99 79.25˘1.10 77.12˘1.14 0.37
HITON-MB 90.74˘0.74 89.25˘0.76 87.31˘0.87 84.97˘0.83 83.58˘0.97 1.40

CCMB 93.06˘0.69 91.12˘0.69 88.95˘0.74 86.43˘0.81 84.04˘0.75 1.55
SRMB 92.94˘0.71 90.93˘0.70 88.19˘0.75 86.52˘0.73 83.97˘0.76 1.56

SLL 92.98˘1.02 90.15˘1.04 87.03˘1.15 84.97˘1.12 81.69˘1.25 5.22
S2TMB 91.72˘1.14 90.06˘1.19 87.99˘1.21 85.42˘1.16 82.04˘1.27 4.93
KMB´ 93.12˘2.06 93.14˘2.57 92.85˘2.31 92.67˘2.65 92.18˘3.01 1.36
KMB 96.74˘0.57 96.37˘0.37 96.62˘0.54 96.45˘0.59 96.84˘0.61 1.61

pn “ 1.00

IAMB 56.37˘3.93 55.20˘3.99 51.58˘4.52 47.11˘4.58 43.06˘4.73 0.39
HITON-MB 61.39˘2.58 58.12˘2.76 54.97˘3.02 50.01˘3.47 46.80˘3.84 1.41

CCMB 63.31˘3.79 60.25˘3.96 56.09˘4.53 52.98˘4.62 50.68˘4.81 1.54
SRMB 62.02˘4.04 60.04˘4.27 57.19˘4.57 54.31˘4.73 51.13˘4.90 1.58

SLL 73.10˘5.02 71.77˘5.31 68.25˘5.54 65.43˘5.60 62.77˘5.73 5.24
S2TMB 69.98˘5.31 67.62˘5.98 65.14˘5.84 62.03˘5.92 60.15˘6.25 4.99
KMB´ 82.73˘3.05 82.56˘3.58 82.09˘3.29 81.25˘3.56 80.59˘3.93 1.38
KMB 95.10˘0.63 95.13˘0.67 94.39˘0.64 94.66˘0.71 94.47˘0.81 1.63

Table 2: Average F1 score (ˆ10´2) of discovered MB with respect to the proportion of the continuous variables.

and the performance of these algorithms under nonlinear re-
lationships is not stable enough. The scoring process can
better account for multivariate relationships than CI tests.
Nevertheless, since the MB algorithm considers each vari-
able in sequence and most scoring techniques assume lin-
ear relationships, score-based methods still fail to identify
most of the nonlinear relations even though they have ad-
vantages over constraint-based methods in identifying mul-
tivariate relations. In addition, KMB efficaciously reduces
the search space by ranking the candidate variables with the
assistance of the CCO, thus being more efficient than score-
based methods. This advantage is also reflected in the com-
parison with KMB´. Although KMB´ can handle nonlin-
ear multivariate relations well through the CCO, its perfor-
mance is not as good as KMB due to the estimation error of
CCO. Because of this, the performance variance of KMB´
is large and its performance is not stable.

Performance comparison with varied MB scale: We
further validate the performance of KMB on fully mixed da-
ta. We observe changes in the performance of these algo-
rithms by adjusting the average size of MBs and controlling
the other experimental settings to be the same in the simulat-
ed data. It is observed from Figure 4 that KMB consistent-
ly outperforms other comparing algorithms on mixed data.
With the expansion of the MB scale, the performance of al-
l algorithms tends to decline due to the more dense DAG.
The accuracy of the CI tests in the constraint-based method
is limited by the size of the conditioning set, and the score-
based methods are affected by the complexity of the model,
leading to performance degradation. KMB uses a more gen-
eral strategy to learn MB, which can maintain its superiority
in mixed data with high complexity.

Influence of Parameter k in KMB: A hyper-parameter
k is used to speed up KMB by only traversing the first k
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Figure 6: Classification accuracy of variable subsets selected by KMB, KMB´, and other state-of-the-art comparing algorithms
on ten real-world datasets. The performance before feature selection is demonstrated via a black dotted line.

variables after a pre-sorting procedure. The choice of the
value of k determines how KMB trades off efficiency and
accuracy. We plot the performance of KMB for different k
values on the aforementioned mixed data in Figure 5. The
value of k is adjusted according to the MB scale since k
should not be less than the actual size of MB to ensure that
all MB variables are traversed to be possible. As can be seen
from Figure 5, the accuracy of KMB gradually increases and
tends to be stable as the k increases. When the sample is in-
sufficient, the k value will also fluctuate around the optimal
performance. According to the experimental results in Fig-
ure 5, when the k value is selected to be 1.5-2 times the size
of MB, the ideal performance can be achieved, which can be
used as a reference in practice.

Feature Selection on Real-world Data
To demonstrate the performance in the feature selection task,
six traditional feature selection algorithms (CIFE (Lin and

Tang 2006), DISR (Meyer, Schretter, and Bontempi 2008),
MRMR (Peng, Long, and Ding 2005), FS (Duda, Hart, and
Stork 2012), TRC (Nie et al. 2008), RFS (Nie et al. 2010))
and six causal (MB discovery-based) feature selection algo-
rithms (same as previous experiments) are compared on ten
datasets from diverse application domains with different s-
cales. Table 3 provides their domains and standard statistics,
including the number of features, training samples, and test
samples. We employ KMB as well as other algorithms to
select features first and then train the classifier SVM with
these selected features, where SVM is simple and effective
with few parameters, and can demonstrate the strengths of
these feature subsets more clearly. Figure 6 shows the vari-
ation curves of average accuracy with respect to the per-
centage of selected features, where “BestMB” denotes the
best performance among all the MB discovery algorithm-
s involved in the comparison and “ALL” denotes the per-
formance achieved with all features (without feature selec-
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Dataset Domain #Features #Training #Test
Connect4 Game 42 1600 400

Spamebase Spame Email 57 1600 400
Splice Bioinformatics 60 1600 400
Sonar Physical 60 160 40

Bankruptcy Economic 147 1500 300
Madelon Artificial 500 1600 400
Coil20 Face Image 1024 500 100

Basehock Text 4862 1000 200
Gisette Digit Recognition 5000 5000 1000
Arcene Mass Spectrometry 10000 100 100

Table 3: Details of the real-world datasets.

tion). Figure 6 in the main text shows the variation curves
of average classification accuracy with respect to the per-
centage of selected features, where “BestMB” denotes the
best performance among all the MB discovery algorithms
involved in the comparison and “ALL” denotes the perfor-
mance achieved with all features (without feature selection).
From Figure 6 in the main text, it can be seen that KMB
consistently outperforms other algorithms under the same
number of selected features. Moreover, the best performance
achieved by the classifier after feature selection is better than
the performance without feature selection in all datasets, al-
though the advantage brought by feature selection is not sig-
nificant enough on datasets with sufficient instances (e.g.,
Spamebase and Gisette datasets).

We can also conclude that KMB shows significant su-
periority in datasets of various scales, such as small-
scale Spamebase, medium-scale Bankruptcy, and large-scale
Arcene. In these three datasets, the features selected by KM-
B achieve better accuracy even compared to the best per-
formance achieved by each algorithm. On the small-scale
datasets, KMB could achieve the best or very competitive
results, which demonstrates the effectiveness of KMB in the
feature selection task. Note that the accuracy of “BestMB”
on the Splice dataset is not plotted, this is because the best
performing algorithm, SRMB, chose 38 features, accounting
for 60 ´ 70% of the total feature size, which does not meet
the goal of feature selection algorithm that selecting fewer
features. We also note that the predictability of features se-
lected by KMB is slightly worse than the features selected
by FS (with 20 features) on the Gisette dataset, KMB´ on
the Sonar dataset, and RFS (160, 180, 200 features) on the
Coil20 dataset, respectively. Nonetheless, KMB has chosen
far fewer features than these algorithms.

On large-scale datasets, we noticed that the existing MB
discovery algorithms always select a small number of fea-
tures, resulting in performance degradation. This is main-
ly because CI tests cannot handle situations with the large-
scale conditioning set. While KMB overcomes this short-
coming and does not need to use a CI test, thus can achieve
practical performance on large-scale real-world data. Due
to the huge solution space of KMB´, the performance of
KMB´ is not stable enough, and it tends to select as many
features as possible on large-scale datasets. Compared with
KMB´, KMB avoids this risk well and still maintains good

performance on large-scale data. Furthermore, on the Gisette
dataset, most of the traditional feature selection methods are
not illustrated because they did not complete the experi-
ments within three days in the experimental environment.
This also exposes the disadvantage of traditional feature s-
election algorithms on large-scale data, that is, they cannot
determine the number of selected features by themselves,
which leads to the time-consuming try for the optimal fea-
ture size. MB discovery algorithms, represented by KMB,
can automatically determine the number of selected features,
although they may be slightly slower than traditional feature
selection algorithms in a single run, they can save trial time
for parameter tuning in real-world applications.

Conclusion
Although MB discovery algorithms possess a theoretical
guarantee for optimal feature selection, they often fail to i-
dentify some critical features in real-world data due to the
strict assumptions about data distribution, variable types, or
correctness of criteria. To facilitate and promote the real-
world applications of MB, this paper theoretically proves
the equivalence between MB and the minimal CCO, based
on which we propose a more practical MB learning strat-
egy KMB. KMB evaluates the predictability of the map-
ping MB variables in the RKHS, without extra assumptions.
KMB could consider nonlinear multivariate dependence in
the RKHS, and can maintain feasibility and effectiveness in
real-world data where variables can be numerical or cate-
gorical with linear or nonlinear, pairwise or multivariate re-
lationships. Extensive experiments demonstrate the efficacy
of these contributions. We believe that some research could
benefit from this work, which is presented below to promp-
t possible future work: (1) The application of the KMB in
both real-world feature selection and causal learning tasks;
(2) Extension of the KMB for the big data analytic; (3) Im-
provement of the KMB to address the MB learning in low-
quality data such as data with noise or missing value.
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