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Abstract

Machine learning models are often used to inform real world
risk assessment tasks: predicting consumer default risk, pre-
dicting whether a person suffers from a serious illness, or
predicting a person’s risk to appear in court. Given multiple
models that perform almost equally well for a prediction task,
to what extent do predictions vary across these models? If
predictions are relatively consistent for similar models, then
the standard approach of choosing the model that optimizes
a penalized loss suffices. But what if predictions vary signifi-
cantly for similar models? In machine learning, this is referred
to as predictive multiplicity i.e. the prevalence of conflicting
predictions assigned by near-optimal competing models. In
this paper, we present a framework for measuring predictive
multiplicity in probabilistic classification (predicting the prob-
ability of a positive outcome). We introduce measures that
capture the variation in risk estimates over the set of com-
peting models, and develop optimization-based methods to
compute these measures efficiently and reliably for convex
empirical risk minimization problems. We demonstrate the in-
cidence and prevalence of predictive multiplicity in real-world
tasks. Further, we provide insight into how predictive multi-
plicity arises by analyzing the relationship between predictive
multiplicity and data set characteristics (outliers, separability,
and majority-minority structure). Our results emphasize the
need to report predictive multiplicity more widely.

1 Introduction

Probabilistic classification is often incorporated into real-
world risk assessment tasks to inform decisions. For instance,
probabilistic classifiers that predict consumer default risk are
used by lenders to underwrite loans (Bekhet and Eletter 2014;
Attigeri, Pai, and Pai 2017). Similarly in clinical applications,
physicians make treatment decisions using models that pre-
dict whether a person suffers from a serious illness (Than
et al. 2014; Khand et al. 2017; Chen et al. 2021). In criminal
justice, judges often make parole and sentencing decisions
guided by models that predict the probability that a person
will fail to appear in court (Austin, Ocker, and Bhati 2010;
Latessa et al. 2010; Christin, Rosenblat, and Boyd 2015;
Zeng, Ustun, and Rudin 2017).

The standard approach to selecting a probabilistic clas-
sifier often involves optimizing a loss function via empiri-
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cal risk minimization. But for a given prediction task, there
may exist multiple models that perform almost equally well,
which is referred to in machine learning as model multiplic-
ity (Breiman 2001). These near-optimal, competing models,
have similar performance but characteristic differences - e.g.
their interpretability (Semenova and Rudin 2019), explain-
ability (Fisher, Rudin, and Dominici 2019; Dong and Rudin
2020), counterfactual invariance (D’ Amour et al. 2022), or
fairness (Coston, Rambachan, and Chouldechova 2021; Black
and Fredrikson 2021; Ali, Lahoti, and Gummadi 2021). These
differences can drastically change how we develop, choose,
and use models (Black, Raghavan, and Barocas 2022).

We investigate how predictions change across competing
models by studying predictive multiplicity: the prevalence
of conflicting predictions over competing models (Marx,
Du Pin Calmon, and Ustun 2020). To understand our mo-
tivation, consider the significance of competing models as-
signing vastly different predictions in practice. In mortality
prediction, a conflicting risk prediction would alter treat-
ment decisions and health outcomes (Moreno et al. 2005).
In drug discovery, a conflicting risk prediction could switch
the compounds chosen for confirmatory experiments (Stokes
et al. 2020). By measuring and reporting the prevalence of
conflicts, we can improve how we choose and use machine
learning models. If end-users know that an individual risk
estimate conflicts over the set of competing models, they
could abstain from prediction (Black, Leino, and Fredrikson
2022; Hamid et al. 2017) or defer a decision to a human ex-
pert (Mozannar and Sontag 2020; Kompa, Snoek, and Beam
2021a). If model developers know that many risk estimates
conflict when compared across competing models, they might
reconsider deployment and dedicate time to contend with
multiplicity. These implications underline the importance of
measuring and reporting predictive multiplicity more widely.

Our main contributions are:

. We introduce measures of predictive multiplicity in our
setting. The Viable Prediction Range examines how mul-
tiplicity affects predictions. Ambiguity and discrepancy
reflect the proportion of individuals assigned conflicting
risk estimates by competing models.

. We develop optimization-based methods to compute
our measures for convex empirical risk minimization
problems. This includes employing mixed-integer non-



linear programming and outer-approximation algorithms.
Whereas previous work defines competing models over a
single performance metric, our methods enable developers
to examine additional near-optimal metrics.

. We offer insights into why predictive multiplicity arises
via systematic experiments on synthetic data. We find that
predictive multiplicity is more prevalent for examples that
are both outliers and close to the discriminant boundary,
for datasets that are less separable, and for minority groups
when a dataset has a majority-minority structure.

4. We present an empirical study on seven real-world risk
assessment tasks. We show that probabilistic classifica-
tion tasks can in fact admit competing models that as-
sign substantially different risk estimates. Our results also
demonstrate how multiplicity can disproportionately im-
pact marginalized individuals.

Related Work. Our work is positioned alongside research
on model multiplicity. This effect has been referenced in
the statistics literature. For example, Chatfield (1995) calls
for performing a sensitivity analysis over competing mod-
els, while Breiman (2001) cites multiplicity as a reason to
avoid explaining a single model to draw conclusions about
the broader data-generating process. Recent advances in com-
putation make multiplicity analysis possible, leading to a
stream of research on how competing models differ (Fisher,
Rudin, and Dominici 2019; Dong and Rudin 2020; Semenova
and Rudin 2019; D’ Amour et al. 2022; Veitch et al. 2021;
Pawelczyk, Broelemann, and Kasneci 2020; Coston, Ram-
bachan, and Chouldechova 2021; Black and Fredrikson 2021;
Ali, Lahoti, and Gummadi 2021)

Our work is distinctly focused on how multiplicity affects
prediction. Our approach builds on Marx, Du Pin Calmon,
and Ustun (2020), who study this effect in classification
tasks with yes-or-no predictions. As shown in Figure 1, their
measures and methods do not extend to our setting. Measur-
ing multiplicity in probabilistic classification is complicated
by the need to clarify the meaning of “conflicting”. In ef-
fect, what constitutes a conflicting risk prediction can change
across applications (e.g., predictions that vary by 5% or 30%).
Likewise, what constitutes a “competing” model can change
across applications. The present work addresses both of these
problems by introducing methods that allow users to spec-
ify what is “competing” (near-optimal metric) and what is
“conflicting” (deviation threshold). Also, previous work has
yet to examine why predictive multiplicity arises, which we
contribute to.

One way we compute predictive multiplicity is by con-
structing a range of individual risk predictions as a way to
quantify pointwise uncertainty resulting from an underspec-
ified empirical risk minimization problem. This relates to
methods for evaluating predictive uncertainty such as confor-
mal prediction (Shafer and Vovk 2008; Romano et al. 2020)
as well as Bayesian approaches (see e.g., Dusenberry et al.
2020; Lum, Dunson, and Johndrow 2022). However, con-
formal prediction focuses on uncertainty that arises due to
non-conformity between historical data and new data, which
is orthogonal to our goal. We focus on a non-Bayesian ap-
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Figure 1: Classification models that make the same yes-or-no
predictions can still assign conflicting risk predictions. Here,
we show a 2D classification task with n™ = 200 positive
examples (blue) and n~ = 200 negative examples (orange).
We plot the decision boundary of a baseline model g (black;
log-loss/AUC/calibration = 0.41/0.88/17%) and a compet-
ing model that performs almost equally well g(x;) (green;
log-loss/AUC/calibration = 0.42/0.89/16%). As shown, both
classifiers make the same yes-or-no predictions, but assign
conflicting risk estimates to individual examples e.g., exam-
ple x; is assigned a risk estimate of go(x;) = 9.3% by the
baseline model but g(x;) = 40.0% by the competing model.

proach, recognizing that non-Bayesian methods are very typi-
cal in applied machine learning. Our goals relate also to a line
of work that aims to quantify and communicate uncertainty
in machine learning (Hofman, Goldstein, and Hullman 2020;
Kale, Kay, and Hullman 2020; McGrath et al. 2020; Soyer
and Hogarth 2012; Kompa, Snoek, and Beam 2021b; Wei
et al. 2022) and calibrate trust among stakeholders (Joslyn
and LeClerc 2013). Other complementary work seeks inter-
ventions to resolve multiplicity (Ali, Lahoti, and Gummadi
2021) or ensembling (Black, Leino, and Fredrikson 2022).

2 Framework

We consider a probabilistic classification task with a dataset
of n examples D = {(x;,y;)}!,. Each example consists
of a feature vector &; = [1,2;1,...,754) € X C RIF!
and a label y; € ¥ = {—1,+1}, where y; = +1 is an
event of interest (e.g., default on a loan). With the dataset,
we train a probabilistic classifier g : X — [0,1] —ie., a
model that assigns a risk estimate to example x; as: g(x;) :
Pr(y; +1|x;). We refer to this model as the baseline
model, g, because it is the optimal solution to an empirical
risk minimization (ERM) problem of the form:

in L(g: D
min (9:D),

ey

where H is a family of probabilistic classifiers, and L( - ;D)
is a loss function evaluated on the dataset D. In what follows,
we write L(g) instead of L(g; D) for conciseness. We evalu-
ate the performance of a model in terms of L(g), as well as
the following metrics:

1. Risk Calibration: A risk-calibrated model assigns risk pre-
dictions that match observed frequencies (Naeini, Cooper,
and Hauskrecht 2015). We measure risk calibration in



terms of expected calibration error:
B
Ny, . _
ECE(g) = > —1o(g) = pul.
b=1
Here: I}, is the index set of ny, examples in bin b € [B]; and
~ 1 — 1
po(g) = ey Zigb g(w;) and p, = e Ziejb 1y, =
+1] are the mean predicted risk and mean observed risk
of examples in bin b € [B], respectively.

2

. Rank Accuracy: A rank-accurate model outputs risk pre-
dictions that can be used to correctly order examples in
terms of true risk. We assess rank accuracy using the area
under the ROC curve:

AUC(g) =

7 1g(zi) > g,
e
+1}andn~ = |{i:y;, = —1}|.

In what follows, we let M (g; D) € R, denote the perfor-
mance of g € H over a dataset D in regards to performance
metric M (g), where the convention is that lower values of
M (g) are better; when working with AUC, we measure the
AUC error: M(g) = 1 — AUC(g).

3

ntn

where nt = [{i : y;

2.1 Competing Models

Competing models are classifiers with near-optimal perfor-
mance compared to the baseline model. A competing model
is any model g € H whose performance is within € of the
baseline model gg.

Definition 1 (¢-Level Set) Given a baseline model g, met-
ric M, and error tolerance ¢ > 0, the set of competing
models (e-level set) is the set:

He(go):={g € H: M(g) < M(go) + €}-

Our methods consider multiplicity over a range of ¢ values.
In practice, a suitable choice of € should reflect the epistemic
uncertainty in the performance of the baseline model. For
instance, one could employ bootstrap re-sampling to measure
the model uncertainty due to sample variation or consider
worst-case uncertainty through generalization bounds.

2.2 Measuring Viable Risk Predictions

To examine how multiplicity affects predictions, we define a
range of viable risk estimates that can be assigned by com-
peting models.

Definition 2 (Viable Prediction Range) The viable predic-
tion range is the smallest and largest risk estimate assigned
to example 1 over competing models in the e-level set:

Ve(x;) : min x;), max x;)|.
(z:) [ge%(go)g( ) o g9(x)]

= “
For a prediction task, computing the viable prediction
ranges over a sample illuminates the extent to which com-
peting models assign different risk estimates to individuals.
Although we express the prediction range over an e-level set
using [-, -] interval notation, not all predictions between the
min and the max may be attainable by a competing model.
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2.3

We say that a risk estimate is conflicting if it differs from the
baseline risk estimate by at least some deviation threshold,
0 € (0,1). The appropriate value of  will depend on the
application; i.e. a conflicting risk prediction in a clinical
decision support task may differ from that which constitutes
a conflicting risk prediction in recidivism prediction.

Ambiguity and discrepancy reflect the proportion of exam-
ples in a sample .S assigned conflicting risk estimates by com-
peting models. These definitions follow Marx, Du Pin Cal-
mon, and Ustun (2020), who give analogous definitions for
the problem of multiplicity with binary predictions (see Fig-
ure 1 for an illustration of the difference between this problem
and the multiplicity of risk estimates).

Measuring Predictive Multiplicity

Definition 3 (Ambiguity) The (¢, d)-ambiguity of a proba-
bilistic classification task over a sample S is the proportion
of examples in S whose baseline risk estimate changes by at
least § over the e-level set:

1
Ase(g0; 5) == 5] Z 1]
icS

max
g€H(go

l9(z:) — go(@i)| > d].
)
Relative to the baseline model, ambiguity makes a statement
about the proportion of individuals whose risk estimate is
uncertain by at least §. High ambiguity means more uncer-
tainty in risk predictions. Users may also consult the viable
prediction range to guide decisions using the baseline model.

Definition 4 (Discrepancy) The (e, d)-discrepancy of a
probabilistic classification task over a sample S is the maxi-
mum proportion of examples in S whose risk estimates could
change by at least 6 by switching the baseline model with a
competing model in the e-level set:

Ds.(g0; 5) = 15 2 ot — aofa)| > ).
€S

max
gEH. (90)

Relative to the baseline model, discrepancy reflects the
maximum the number of conflicting risk estimates as a result
of replacing baseline model with a competing model in the
e-level set.

Ambiguity and discrepancy differ in the stance they take
in regard to the worst case. Discrepancy measures the worst-
case number of predictions that will change by switching the
baseline model with a competing model. In contrast, ambigu-
ity focuses on the worst case for prediction variation over the
set of competing models. If we were to abstain from predic-
tion on points that are assigned a conflicting prediction by a
competing model (using e.g., selective classification methods
Black, Leino, and Fredrikson 2022), then ambiguity would
reflect the abstention rate.

Computing Ambiguity with Viable Prediction Ranges.
As shown in Figure 2, we can use the viable prediction ranges
of all points in a sample to compute ambiguity. Given the
viable prediction range for each example, we can calculate
the maximum difference between the baseline risk and that
assigned by competing models. We can then compute ambi-
guity by measuring the proportion of examples where this
difference exceeds the deviation threshold.
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Figure 2: An illustration of how viable prediction ranges relate to ambiguity. Left, we plot the width of the viable prediction
ranges |V (x;)| on the y-axis for each example on the z-axis. Note that widths shifted to start from zero and examples shown in

increasing order. The plot also shows the individual baseline risk estimates for each example in red go(;) —

minge?-[e(go) g(x;)

(shifted similarly). To interpret, the first example from the left has a width of &~ 15% with a baseline risk estimate on the lower
side of the range. The last example has a width of ~ 80% with a baseline risk estimate closer to the higher side of the range.
Using the viable prediction ranges V. (x;) directly, we can extract the maximum difference from the baseline. On the right, we
plot the maximum deviation from the baseline, max |g(x;) — go(x;)| for each example on the z-axis (increasing order). To
interpret, consider a deviation threshold 6 = 20%, all examples with max deviation above that threshold are highlighted in yellow

giving us ambiguity, As (go; S).

3 Methodology

In this section, we detail the procedure for computing mea-
sures of predictive multiplicity. This methodology can be
applied to any convex loss function L(-), and together with
a training problem that employs a convex regularization
term. We illustrate the methodology on the classification
task described in §2 by training a probabilistic classifier via

logistic regression, with g(x;) = m , where

w = [wg,wi,...,wg] € RIT!is a coefficient vector.
We train this baseline model by solving Eq. (1) to min-
imize normalized logistic loss: L(w) = 1Y log(1 +
exp(—(w, yi@;))).

3.1 Measuring Ambiguity

We first present a method for computing ambiguity for differ-
ent choices of € and 6. The method also gives a conservative
approximation of the viable prediction range for each exam-
ple. We construct a pool of candidate models that assign a
specific risk estimate to each example. From these models,
we select those with performance within € of the baseline
model as the set of competing models.

Definition 5 (Candidate Model) Given a baseline model
go, a finite set of user-specified threshold probabilities P C
[0, 1], then for each p € P a candidate model for example x;
is an optimal solution to the following constrained ERM:

min  L(w)
weRI+H!

g(xi) < p, ifp < go(x;) &)

9(@i) = p. ifp> go(w:)
For each threshold probability p € P, we train a candidate
model g such that the probability assigned to the example

is constrained to the threshold p. In this way, by training for
each example and threshold probability p € P, we obtain

S.t.
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the set of candidate models G := {g : i € S,p € P}. We
choose to solve the instances in order of increasing values
of threshold probability p, which allows us to warm-start the
optimization using previous solutions.

Given the set of candidate models, we define a candidate
e-level set as

He(go)={9 € G: M(g) <M (go)+e}. (©)
We use the candidate e-level set to compute measures of
predictive multiplicity. This method is exact for ambiguity
defined in terms of near-optimal loss when the grid of thresh-
old probabilities P C [0, 1] aligns with go(x;) + d (i.e., is
selected as appropriate to the baseline prediction for an exam-
ple and the value of ¢). For other metrics, such as AUC, this
approach to compute ambiguity gives a conservative estimate
(i.e., lower bound)—the training of a candidate model does
not directly optimize for AUC, but we can retain only those
candidate models that are competitive for the appropriate
e-level set definition. Since H.(go) C H.(go). the candidate-
model approach also provides a conservative estimate of the
viable prediction range (Eq. (4)) for an example.

3.2 Measuring Discrepancy

Discrepancy is the maximum proportion of examples as-
signed conflicting risk estimates by a single competing model,
g € He(go). Recall that a conflicting risk estimate differs
from the baseline risk estimate go(x;) by at least some de-
viation threshold, § > 0. Therefore, measuring discrepancy
with respect to a baseline model corresponds to solving the
following maximization problem:
> lg(@:) — go(:)| > 4. 7)
i€s

Given a sample .S, the baseline loss L, error tolerance
¢, and deviation threshold §, we can formulate Eq. (7) as a

max
g€H(90)



mixed-integer non-linear program (MINLP):

VL
s.t. Lw)<Lop+e (8a)
di =V;,8 + 24,8 VieS (Sb)
M271(1 — Zi’g) > <’LU, $Z> — Uiﬁ Yie S (SC)
Mvﬂ'(l — Ui,g) > —(w, 331> + Bi)(; VieS (8d)

di, 2,65 Vi.6 S {0, 1} Vie S

The MINLP in (8) fits the parameters of a linear classifier
that maximizes discrepancy . Here, the objective maximizes
number of examples assigned a conflicting risk estimate us-
ing the indicator variables d; := 1[|g(x;) — go(x;)| > I].
Each d; is set to z;5 = 1[g(z;) < (go(z;) —9)] (or
vis = 1g(z;) > (go(x;)+ d)]) when the model as-
signs a risk estimate to example i that exceeds d on the
low-side (or high-side) of the baseline risk estimate, re-
spectively. We ensure the indicator behavior of z; s and
v; s through the “Big-M” constraints (8d) and (8c), which
flag deviations in score space. The Big-M parameters can
be set as M,, = —U;s + maxy,(w,xz;) and M, ; :=
B, s — min,, (w, x;), where U, 5 := logit(go(x;) — J), and
B s :=logit(go(x;) + ). When the values of U; 5 and B; 5
lie outside of the [0, 1] domain of the logit, we can drop the
relevant indicator variable from the formulation. We provide
additional details in the Appendix.

Outer-Approximation Algorithm. The challenge in solv-
ing (8) is that constraint (8a) is non-linear. We construct a
linear approximation of the loss (see e.g., Franc and Sonnen-
burg 2008; Joachims, Finley, and Yu 2009) using an iterative,
outer-approximation method (see e.g., Ustun and Rudin 2017;
Bertsimas et al. 2016; Bertsimas and King 2017) to solve. The
algorithm recovers a globally optimal solution to the MINLP
in (8), and can be implemented using a mixed-integer pro-
gramming solver with callback functions (see e.g., Ustun
and Rudin 2017; Bertsimas et al. 2016; Bertsimas and King
2017). The procedure builds a branch-and-bound tree to dis-
cover integer-feasible solutions that obey all constraints other
than (8a). For each feasible solution identified, the procedure
computes its loss to determine if it is feasible with respect
to constraint (8a). If feasible, the procedure retains the solu-
tion. Otherwise, it updates the loss function approximation
by adding a new linear constraint.

This method is exact for computing discrepancy in terms
of near-optimal loss. For other metrics, we can again treat the
intermediate solutions to the outer-approximation algorithm
as candidate models and use these candidates to recover a
lower bound similar to the method used in § 3.1.

4 Numerical Experiments

In this section, we present experiments on synthetic and real-
world data. Our goals are to: (1) reveal dataset characteristics
that impact predictive multiplicity; and (2) determine the
extent to which real risk assessment tasks exhibit predictive
multiplicity in practice.

4.1 Synthetic Datasets

Linear Separability. To demonstrate how separability in-
forms predictive multiplicity, we compute ambiguity while
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varying the degree of separability and show results in Fig-
ure 3 column (A). We set § = 20% and € = 5% and control
separability by increasing the variance of the data from o = 4
(top) to o0 = 10 (bottom). A clear trend is that ambiguity in-
creases as the data becomes less separable from 1% to 21%.
Notice, also that the ambiguous examples tend to be those
near the discriminant boundary and outliers.

Outliers and Margin Distance. We examine how predic-
tive multiplicity relates to outlier distance from the discrim-
inant boundary. We position outliers near and far from the
discriminant boundary and compute ambiguity. As shown in
Figure 3 column (B), a clear trend is that examples that are
outliers but far from the discriminant boundary (high margin)
are less susceptible to predictive multiplicity.

Majority-Minority Structure. We consider the effect of
systematically varying the majority-minority structure of data.
For this, we generate a majority class that has a different sta-
tistical pattern of features than a minority class. Given the two
groups, the model is faced with a tradeoff between correctly
predicting one group or the other. In Figure 3 column (C), we
vary the ratio in a majority-minority structure revealing that
the minority group is more prone to predictive multiplicity.
The ambiguity of the minority group at 10:1 is substantially
larger than for the majority group. This shows the importance
of evaluating multiplicity across subgroups.

4.2 Real-World Datasets

In this section, we evaluate predictive multiplicity in risk
prediction tasks from medicine, lending, and criminal jus-
tice.! Altogether, we consider seven datasets that exhibit
variations in sample size, number of features, and class im-
balance (see Table 1 in the Appendix). For each dataset,
we compute viable prediction ranges, ambiguity and dis-
crepancy using the methods outlined in §3. When training
candidate models, we adopt a grid of target predictions:
P = {0.01,0.1,0.2,...,0.9,0.99}. We compute discrep-
ancy by solving the MINLP Eq. (7) with CPLEX v20.1 (Di-
amond and Boyd 2016) on a single CPU with 16GB RAM.
Our results are shown in Figure 4, and additional results are
in the Appendix.

Viable Prediction Ranges. Our results show that compet-
ing models can assign risk estimates that vary substantially.
Viable prediction ranges are plotted in rows (A) and (B) of
Figure 4, and we see non-zero viable prediction ranges for all
examples across all datasets. The viable ranges for apnea and
mammo appear much larger compared to compas_arrest. In
terms of near-optimal loss, apnea has the most variation,
while mammo has the most variation in terms of AUC. This
points to the value in varying near-optimal metric.

Ambiguity and Discrepancy. Ambiguity and discrep-
ancy are shown in rows (C) and (D) of Figure 4, re-
spectively. For e = 1% and 6 = 20%, we see ambigu-
ity values at 35.3% (mammo), 95.8% (apnea), and 51.4%

'This is not an endorsement of current usage of risk assessment
tools in criminal justice. The use of prediction software raises seri-
ous concerns in this domain. We do not condone building models
on arrest data to inform or justify increased policing.
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Figure 3: Experiments on synthetic data. In (A), we vary separability and find that ambiguity increases as separability decreases.
In (B), we position outliers near and away from the discriminant boundary finding that outliers closer to the boundary are more
prone to ambiguity. In (C), we vary the ratio in a majority-minority structured dataset: magenta shading- majority group (circles),
grey shading- minority group (squares) revealing that the minority group is more prone to ambiguity. In the figures, ¥ = +1
examples are blue, Y = —1 examples are orange, and ambiguous examples are highlighted red and we set § = 20% and € = 5%.

(compas_arrest). This means that 35.3% of breast cancer
risk estimates vary by at least 20% over near-optimal models.
We see discrepancy values at 3.6% (mammo), 1.2% (apnea),
and 5.4% (compas_arrest) for e = 1% and § = 20%.
compas_arrest is the worst in terms of discrepancy, while
apnea has the most severe ambiguity. Thus, ambiguity and
discrepancy are not always coupled.

On the Choice of Performance Metric. In settings where
we want a model that performs well in terms of AUC, we
should measure predictive multiplicity over a set of compet-
ing models with near-optimal AUC. In practice, it is often
convenient to measure predictive multiplicity over a set of
competing models that attain near-optimal loss (since the
loss can be encoded into an optimization problem). This is
a problem because small variations in loss can lead to large
variations in AUC — thus models with near-optimal loss may
not match models with near-optimal AUC. Our results show
that measures of predictive multiplicity vary considerably
based on the performance metric used to define the set of
competing models. In particular, we find that discrepancy and
ambiguity will vary when measured over competing models
that attain near-optimal loss, AUC, or ECE.

On Samples Prone to Ambiguity. Our results reveal a
relationship between ambiguity and individual uniqueness
(number of duplicates), class imbalance, and baseline risk
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estimate. For uniqueness, we find that across datasets, less
than 10% of examples with more than 20 duplicates are am-
biguous. That unique examples are more prone to ambiguity
is related to our findings on outliers (see §4.1).

In terms of class imbalance, we find datasets with class
imbalance skewed negative (adult, bank) often exhibit mul-
tiplicity on positive examples. In comparison, datasets that
are roughly balanced by class (e.g., mammo, compas_arrest)
have the same level of ambiguity for each class. This can be
interpreted in light of the majority-minority effect from §4.1.

In terms of the baseline risk estimate, we see high ambigu-
ity for examples with baseline risk near 50% on all datasets.
For instance, all examples with baseline risk between 45%
and 55% are ambiguous for the mammo dataset (¢ = 0.5%
AUC, § = 20%). There is no reason to believe that high
ambiguity is less problematic for these samples. Rather, the
importance of ambiguity will depend on the risk thresholds
that drive decisions in a particular domain.

On the Disparate Impact of Multiplicity. Our results
demonstrate how multiplicity can disproportionately impact
individuals from historically marginalized groups. For exam-
ple, when predicting the risk of rearrest, individuals who are
ethnically Hispanic are disproportionately affected by predic-
tive multiplicity: ambiguity is 39% for African Americans
and 49% for Caucasians, compared to 98% for Hispanics
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Figure 4: Predictive multiplicity in probabilistic classification on mammo, apnea and arrest. In rows (A) and (B) we show the
distribution of viable prediction ranges |V, (x;)| on the y-axis for each example on the x-axis (relative baseline estimates in red).
Notice, pointwise viable prediction ranges are plotted in increasing order from left to right. We plot viable prediction ranges
for competing models with near-optimal training AUC (A) and training loss (B). See illustration in Figure 2. We also show
ambiguity (C) and discrepancy (D) for competing models with respect to training loss. We include other datasets in Appendix E.

(e = 1% and 6 = 20%). Hence, reporting predictive multi-
plicity for subgroups can reveal important fairness considera-
tions when testing models deployed throughout society.

5 Concluding Remarks

We developed methods to evaluate the effect of slightly per-
turbing optimal model performance, revealing that similar
models do not always assign similar predictions. We studied
how competing models can assign conflicting predictions in
probabilistic classification tasks. The proposed optimization-
based methods compute our simple measures reliably. Com-
pared to previous work, our methods allow for flexibility in
choosing near-optimal metric and deviation threshold. Using
synthetic data, we also present the first study providing in-
sight into the kinds of data characteristics that give rise to
predictive multiplicity and show that separability, outliers
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and majority-minority structure are informative. Empirically,
we reveal concerning levels of predictive multiplicity in high-
stakes domains.

More research is needed to examine predictive multiplic-
ity for other loss functions and model classes (our methods
immediately generalize to linear models with convex loss
functions). Also, it will be important to study how to effec-
tively communicate these effects to practitioners and decision
makers. Also, when a practitioner encounters high predictive
multiplicity, more work is needed on response options and
mitigation strategies. Given predictive multiplicity metrics,
practitioners can make better decisions in model selection
while end-users can adjust their reliance on individual risk
predictions. Concisely, analyzing predictive multiplicity pro-
motes accountability and transparency in machine learning.
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