
USER: Unsupervised Structural Entropy-Based Robust Graph Neural Network

Yifei Wang1, Yupan Wang1, Zeyu Zhang1, Song Yang1, Kaiqi Zhao1, Jiamou Liu 1*

1 School of Computer Science, The University of Auckland, New Zealand
{wany107, ywan980, zzha669, syan382}@aucklanduni.ac.nz, {kaiqi.zhao, jiamou.liu}@auckland.ac.nz

Abstract

Unsupervised/self-supervised graph neural networks (GNN)
are susceptible to the inherent randomness in the input graph
data, which adversely affects the model’s performance in
downstream tasks. In this paper, we propose USER, an un-
supervised and robust version of GNN based on structural
entropy, to alleviate the interference of graph perturbations
and learn appropriate representations of nodes without label
information. To mitigate the effects of undesirable perturba-
tions, we analyze the property of intrinsic connectivity and
define the intrinsic connectivity graph. We also identify the
rank of the adjacency matrix as a crucial factor in revealing
a graph that provides the same embeddings as the intrinsic
connectivity graph. To capture such a graph, we introduce
structural entropy in the objective function. Extensive exper-
iments conducted on clustering and link prediction tasks un-
der random-perturbation and meta-attack over three datasets
show that USER outperforms benchmarks and is robust to
heavier perturbations. 1

Introduction
Neural-based methods have become crucial for processing
complex graph data in various application areas such as so-
cial media mining, recommender systems, biological data
analysis, and traffic prediction. Graph representation learn-
ing (GRL) plays a central role in these methods by pro-
viding vectorized graph encodings that are essential for
downstream tasks like community detection, link predic-
tion, node classification, and network visualization (Hamil-
ton, Ying, and Leskovec 2017a). Among the many GRL
methods that have emerged in recent years, graph neural net-
works (GNNs) (Hamilton, Ying, and Leskovec 2017b; Kipf
and Welling 2017; Veličković et al. 2018) provide a power-
ful paradigm that extracts graph encodings through a recur-
sive aggregation scheme (Kipf and Welling 2017). This ag-
gregation scheme learns a node’s embedding using both the
node’s feature and the aggregated feature of its neighbors,
capturing the structural information of the graph. The out-
standing performance of GNN-based models on many tasks

*Corresponding author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Full proof, experimental details, and code of our work are
available at https://github.com/wangyifeibeijing/USER.

(Kipf and Welling 2016; Wang et al. 2017; Pan et al. 2018;
Gao and Huang 2018; Veličković et al. 2019; Zhang et al.
2019; Wang et al. 2019a; Pan et al. 2019; Cui et al. 2020;
Mavromatis and Karypis 2021) attests to the advantage of
these models. Despite the successes above, the performance
of a GNN-based model hinges on reliable input graph data
(Jin et al. 2020b; Chen et al. 2020; Luo et al. 2021). Even
small perturbations in the input graph can lead to drastically
different encodings after the recursive aggregation scheme
.However, as (Wang et al. 2019b) discussed, the random-
ness of input graph is inevitable. The edges in the graph are
formed randomly, following an underlying intrinsic connec-
tivity distribution of nodes. This distribution is highly inho-
mogeneous, with edges concentrated within some conglom-
erates of nodes, resulting in a community structure, as as-
serted by (Fortunato 2010). Each of these conglomerates is
called a community, and they have dense inner-connections
but sparse inter-connections. The community structure of a
network can be interpreted probabilistically as a fixed but
unknown edge distribution between any pair of nodes that
determines the community structure, yet we only observe a
sample from this distribution. This inherent randomness is
responsible for perturbations in the input graph that can in-
terfere with the recursive aggregation scheme. To develop a
robust GNN that captures the intrinsic connectivity graph,
we need to overcome the challenges posed by the inher-
ent randomness of the input graph. The first challenge is
to define an operational criterion that can alleviate the inter-
ference of graph randomness, specifically perturbations in
the edges. To address this challenge, we need to identify the
properties of a graph that can help us mitigate the effects
of undesirable perturbations. One approach to achieving this
is to generate a graph that reflects the underlying intrinsic
connectivity in the dataset, even in the absence of ground
truth labels. The second challenge involves developing an
unsupervised approach for learning a model that can gener-
ate such a graph. To do this, we need to define an objective
function that guides the model to reveal the intrinsic con-
nectivity graph based on its properties. By addressing these
challenges, we can create an unsupervised/self-supervised
GNN that is robust to perturbations and can capture the in-
trinsic connectivity graph. For the first challenge, we will
address in Section that multiple “innocuous graphs” exist,
for which GNN can produce the same embeddings as the de-

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

10235

sired intrinsic connectivity graph. We refer to these graphs as
GNN-indistinguishable to the intrinsic connectivity graph.
Therefore, any of these innocuous graphs can help GNN al-
leviate the interference of randomness. As many datasets
have a known number of groups in the intrinsic connec-
tivity graph (the number of communities c), we can make
two assertions about the innocuous graphs: First, the rank
of the corresponding adjacency matrix of innocuous graphs
is no less than the number of groups in the intrinsic con-
nectivity graph. Second, if we group the innocuous graphs
into sets with high concentrations of edges inside each set,
and low concentrations of edges between them, the fea-
tures of two nodes that belong to the same group should
be relatively similar. These assertions guide us in our pur-
suit of innocuous graphs. For the second challenge, we
propose a tool to learn a graph that satisfies the aforemen-
tioned conditions. In Section , we leverage structural infor-
mation theory (Li and Pan 2016; Li et al. 2016; Liu et al.
2021) and introduce a class of structural entropy measures
that can capture the intrinsic information contained within a
graph structure. These measures have been increasingly ap-
plied to graph learning. Specifically, we connect the notion
of network partition structural information (NPSI), a type
of structural entropy, with the rank of the adjacency ma-
trix and demonstrate that minimizing the structural entropy
and the widely-used Davies-Bouldin index (DBI) (Davies
and Bouldin 1979) would facilitate the search for an in-
nocuous graph. By combining the tools developed above, we
introduce a novel framework, named USER (Unsupervised
Structural Entropy-based Robust graph neural network),
which supports GNNs with a trainable matrix to learn the
adjacency matrix of an innocuous graph, as detailed in Sec-
tion . This method enables the simultaneous learning of the
innocuous graph structure and node embeddings. As the em-
beddings are derived from the innocuous graph, instead of
the input graph, they become resilient to randomness. We
conducted a series of experiments to validate the effective-
ness of our USER framework. The results demonstrate that
even the traditional GAE model outperforms state-of-the-art
baselines on both clustering and link prediction tasks when
supported by USER. To test the robustness of our approach
to graph randomness, we injected 50% random noise into
the graph. Our experiments show that on the well-known
Cora dataset, USER achieves up to a 14.14% improvement
in clustering accuracy and a 13.12% improvement in link
prediction accuracy over the state-of-the-art baseline. Addi-
tionally, our approach exhibits a significant advantage in the
presence of adversarial attacks. When subjected to a 20%
meta-attack (Zügner and Günnemann 2019), USER’s im-
provements over the state-of-the-art are up to 190.01% for
clustering on the Citeseer dataset. Our contributions can be
summarized as follows:

• we introduce the notion of innocuous graphs and utilize
them to mitigate the interference of graph randomness;

• we propose a structural entropy-based objective function
that is suitable for learning the innocuous graph; and

• we conduct extensive experiments that demonstrate the
effectiveness of USER in confronting randomness.

Related Work
GRL and GNN. Graph representation learning (GRL) gen-
erates vectorized encoding from graph data. Nowadays GRL
is instrumental in many tasks that involves the analysis of
graphs (Hamilton, Ying, and Leskovec 2017a). As a main-
stream GRL paradigm, graph neural network (GNN) cap-
tures a node’s structural information and node features by re-
cursively aggregating its neighborhood information using an
information aggregation scheme. Based on this idea, Graph
Autoendoer (GAE) and Variational GAE (VGAE) (Kipf and
Welling 2016) are developed to use GCN (Kipf and Welling
2017) as an encoder to learn node embeddings, and an in-
ner product decoder to reconstruct the graph structure. As
a variant of GAE, ARGA (Pan et al. 2018) trains an ad-
versarial network to learn more robust node embeddings.
To alleviate the high-frequency randomness in the node fea-
tures, Adaptive Graph Encoder (AGE) (Cui et al. 2020) uti-
lizes a Laplacian smoothing filter to prepossess the node
features. Different from reconstructing the graph structure,
maximizing the mutual information (MI) (Hjelm et al. 2018)
is another well-studied approach for GRL. For example, the
model DGI (Veličković et al. 2019) employs GNN to learn
node embeddings and a graph-level embedding, then maxi-
mize MI between them to improve the representations’ qual-
ity. The model GIC (Mavromatis and Karypis 2020) follows
this idea and seeks to additionally capture community-level
information of the graph structure. Despite their outstanding
performance, GNNs have been shown to be vulnerable to
small perturbations on the input graph, which can be partic-
ularly challenging for unsupervised models (Li et al. 2018;
Zhu et al. 2021a; Wan and Kokel 2021; Wu et al. 2019b).
To address this issue, new learning paradigms have been
proposed to enhance the robustness of GNNs. For example,
the Cross-graph model (Wang et al. 2020) uses two autoen-
coders, where each encoder learns node embeddings and re-
constructs the adjacency matrix to be passed to the peer-
autoencoder as the input for the next iteration. Graph con-
trastive learning (G-CL) models, such as GCA (Zhu et al.
2021b), improve the robustness of GNNs by constructing
data augmentation and negative pairs through modifications
of the input graph structure. However, none of these ap-
proaches explains how these perturbations arise. In this pa-
per, we introduce the notion of an innocuous graph, inspired
by previous works (Wang et al. 2019b; Fortunato 2010;
Zhang et al. 2019; Wu et al. 2019a; Zhu and Koniusz 2020),
to learn embeddings that are equivalent to those correspond-
ing to the intrinsic connectivity graph. This approach helps
GNN models mitigate the impact of randomness.
Structural entropy. In our paper, we utilize structural en-
tropy as a key tool. The search for an entropy measure
that can analyze the intrinsic information contained in struc-
tures has been a long-standing challenge in computer sci-
ence (Brooks Jr 2003). A number of classical entropy mea-
sures have been developed for this purpose (Dehmer 2008;
Anand and Bianconi 2009). One notable example is infomap
(Rosvall, Axelsson, and Bergstrom 2009), which uses a form
of entropy defined on random walks to analyze graphs. More
recently, in (Li and Pan 2016; Li et al. 2016), the authors
introduced a hierarchy of structural entropy measures to an-

10236

alyze networks. These measures have since been applied in
several works, such as (Liu et al. 2019, 2022; Chen and Liu
2019), for adversarial graph learning. However, to the best
of our knowledge, no previous study has explored the inte-
gration of structural entropy to enhance GNN’s resilience to
randomness in graph data.

Criteria to Mitigate Randomness
To clarify our notation, we use x⃗, y⃗, . . . to denote vectors
where xi denotes the ith entry of x⃗. We use capital let-
ters X,Y,A, . . . to denote real-valued matrices. For any ma-
trix M , Mi denotes the ith row vector and Mij denotes
the (i, j)th entry of M . In this paper, we focus on undi-
rected, unweighted graphs where every node is associated
with a d-dimensional feature vector. Formally, such a graph
can be denoted by G = (V, E , X) where V is a set of
n nodes {v1, . . . , vn}, E is a set of edges {vi, vj}, and
X ∈ Mn,d(R) denotes the feature matrix where Xi is the
feature vector of node vi. The pair (V, E) is represented by
an adjacent matrix A ∈ Mn({0, 1}), where Aij = 1 if
{vi, vj} ∈ E . Here we assume the graph does not contain
any isolated node. Indeed, most studies on GNN omit iso-
lated nodes before training (Kipf and Welling 2016; Mavro-
matis and Karypis 2021). At last, we use C0, C1, . . . Cc−1 to
denote c sets of nodes. If they satisfy: k ̸= m ⇒ Ck ∩ Cm =
∅ and ∀k < c : Ck ̸= ∅ , we call them partitions.

Taking input graph G, a graph neural network (GNN) is a
function denoted by:

GNN
(
A,X,

{
W (ℓ)

})
= H(t) (1)

with H(0) = X and H(ℓ) = σ(agg(AH(ℓ−1)W (ℓ))) for
all ℓ ∈ (0, t], H(ℓ) ∈ Rn×dℓ

, W (ℓ) ∈ Rd(ℓ−1)×d(ℓ)

, and
d(0) = d. where, σ(·) is the activation function; the func-
tion agg(·) is responsible for aggregating information from
neighboring nodes. The input to this function is typically of
the form AH(ℓ−1)W (ℓ), where H(ℓ−1) is the feature matrix
of the neighboring nodes (H(0) = X , taking the original fea-
tures as the input to the 1st layer;), W (ℓ) is the weight matrix
for the ℓ-th layer, and A is the adjacency matrix that encodes
the graph structure. The function agg(·) then processes this
input to produce a new feature vector for each node. This
new feature vector includes information from the central
node’s own features and its neighbors’ features. The pre-
cise way in which agg(·) combines these features depends
on the specific GNN architecture being used. According to
(Xu et al. 2019), GNN models that use non-injective σ(·)
and agg(·) functions can be inefficient when learning graph
structures. Therefore, we will focus only on GNN models
that use injective versions of these functions. As shown in
Equation (1), the vector representation of a node in GNN
models is computed recursively by aggregating not only its
own features but also the features of its neighboring nodes.

As previously mentioned, input graph datasets in the real
world are inherently random and unstable (Jin et al. 2020b).
However, these datasets reflect certain hidden but stable un-
derlying distribution of intrinsic connectivity (Wang et al.
2019b; Fortunato 2010). According to (Fortunato 2010), in-
trinsic connectivity for a dataset that can be naturally divided

into c partitions (or classes in a node classification task) dic-
tates that nodes within the same partition are more likely to
be connected than nodes in different partitions. We formal-
ize this notion with the following definition.
Definition 1 (Intrinsic connectivity graph). For a dataset
that contains c partitions, suppose GI = (V, EI) satisfies:
For any two nodes vi and vj , there exists an edge (vi, vj) ∈
EI iff vi and vj belong to the same partition. We call GI the
intrinsic connectivity graph.

Let Rank(M) denote the rank of a matrix M .
Theorem 1 (Rank of GI ’s adjacency matrix AI). For a
dataset that contains c partitions, we have Rank(AI) = c
where AI is GI ’s adjacency matrix.

Our goal is to extract a new graph from a real-world
dataset to mitigate the interference of graph randomness.
Finding the intrinsic connectivity graph without a ground
truth label is impractical. However, we observe that GNN
can learn the same embeddings from different input graphs:
Definition 2 (GNN-indistinguishability). Let G0 =
(V, E0, X) and G1 = (V, E1, X) be two graphs with the
same set of nodes and adjacency matrices A0 and A1, re-
spectively. We say that G1 is GNN-indistinguishable from
G0 if, for any feature matrix X , for any weight matrices
W

(1)
0 , . . . ,W

(L)
0 , there exist W (1)

1 , . . . ,W
(L)
1 such that the

GNNs ran on G0 and G1 with these weight matrices have the
same activations in each layer, i.e., for all 1 ≤ ℓ ≤ L, we
have: σ(agg(A0H

(ℓ−1)W
(ℓ)
0)) = σ(agg(A1H

(ℓ−1)W
(ℓ)
1)),

where, H(ℓ) denotes node representations in the ℓth layer.
According to Definition 2, if G1 is GNN-indistinguishable

from G0, then a GNN with G1 as input can learn the same
embeddings as if G0 were the input. Therefore, using graphs
that are GNN-indistinguishable from the intrinsic connectiv-
ity graph GI allows the GNN to learn the same embeddings
as if GI were the input. We refer to such graphs as innocu-
ous.
Definition 3 (innocuous graph). Suppose GI is the intrinsic
connectivity graph for a dataset. An innocuous graph G′ is a
graph that is GNN-indistinguishable from GI .

Next, we introduce the necessary condition for a graph to
be GNN-indistinguishable from a specific graph:
Theorem 2 (necessary condition for being GNN-indis-
tinguishable). G1 is GNN-indistinguishable to G0 only if
Rank(A1) ≥ Rank(A0).

Corollary 1 (necessary condition of innocuous graph). G′

is a innocuous graph only if Rank(A′) ≥ Rank(AI).
From Theorem 1 and Corollary 1, it follows that A′ of an

innocuous graph G′ must satisfy Rank(A′) ≥ c.
In addition to the property mentioned above, another com-

monly used assumption in the literature (Wu et al. 2019b;
Jin et al. 2020b) is that in a graph where a GNN can ex-
tract semantically useful node embeddings, adjacent nodes
are likely to have similar features compared to non-adjacent
nodes. However, this formulation only considers informa-
tion aggregation of GNN along a single edge. To extend fea-
ture smoothness to the group level, we introduce a function

10237

Learnt embeddings H

LS

Learnt innocuous graph
Indicator matrix Y

Node features X

LN

Original adjacency matrix A

Learnable matrix A'

GNN encoder
Supported model

Observed graph structure

Unobserved intrinsic connectivity

Learnt adjacency matrix

Structural-entropy
based loss

Loss function of
supported model

Softmax

Figure 1: The USER framework.

f(x⃗, y⃗) that evaluates the similarity between learned node
embeddings, where a smaller f(x⃗, y⃗) indicates a higher sim-
ilarity between the two embedding vectors x⃗ and y⃗. We then
formulate the group-level feature smoothness:

Assumption 1 (group-level feature smoothness). Suppose
k ̸= m. Then for any three nodes va, vb, vc that satisfy
va ∈ Ck, vb ∈ Ck and vc ∈ Cm, we have f(Xa, Xb) ≤
f(Xa, Xc).

We present a criterion for identifying an innocuous graph,
which combines a necessary condition (Corollary 1) with an
additional assumption (Assumptions 1).

Learning An Innocuous Graph
To obtain an innocuous graph that satisfies the necessary
conditions (Corollary 1) and the auxiliary assumption (As-
sumption 1), we formulate an optimization problem in this
section. We interpret Corollary 1 in the context of structural
information theory and use the Davies-Bouldin index (DBI)
to achieve Assumption 1.

Drawing on recent advances in structural information the-
ory (Li and Pan 2016), we introduce the concept of net-
work partition structural information (NPSI), which has
not been utilized in GNN models previously. To explain
NPSI, we first introduce the following notations: P (G) =
{C0, C1, . . . Cr−1} is a partition of G. Then, P (G) can be de-
noted by a matrix Y ∈ {0, 1}n×r, where Yik = 1 if vi ∈ Ck
otherwise Yik = 0. We call Y the indicator matrix. Since
Ck ̸= ∅, (Y TY)kk > 0, and since ∀k ̸= m, Ck ∩ Vm = ∅,
if k ̸= m, (Y TY)km = 0. For a graph G and partition P (G),
let volk be the number of edges with at least one node in Ck
and gk be the number of edges with only one node in Ck.
Then by (Liu et al. 2019), NPSI is:

NPSIGP (G) =
∑
k<r

(
volk − gk

2|E| log2
volk
2|E|

)
(2)

To utilize NPSI in GNN models, we represent it in a ma-
trix form. Note that volk − gk is the number of edges with
both nodes in Ck, which equals the k-th diagonal element in
Y TAY , while the k-th value in the sum of column in (AY)
equals to volk and can be computed by the k-th diagonal el-

ement in {1}r×nAY . Let trace(·) be trace of input matrix,
NPSI(A, Y) = NPSIGP (G)

=
∑
k<r

(
volk − gk

2|E| log2
volk
2|E|

)

=
∑
k<r

(
(Y TAY)kk
2sum(A)

× log2

(
({1}r×nAY)kk

2sum(A)

))

=trace

(
Y TAY

2sum(A)
⊗ log2

(
{1}r×nAY

2sum(A)

))
We can incorporate NPSI(A, Y) into GNN using the def-
inition above. To understand the relation between NPSI and
the learned graph, we need to understand the relationship
between the rank of the adjacency matrix and the structure:
Lemma 1 (Rank and connected components). Suppose G
is a graph without isolated nodes. If there are r connected
components in G, the corresponding adjacency matrix A sat-
isfies Rank(A) ≥ r.

Then we find that with a fixed Y ∈ {0, 1}n×r which sat-
isfies (Y TY)kk > 0 and (Y TY)km = 0 for k ̸= m, we
can learn a graph G′ with corresponding adjacency matrix
A′ satisfying Rank(A′) ≥ r:
Theorem 3 (minimize NPSI with learnable A′).

Suppose A′ =argmin
A′

(NPSI(A′, Y)) ,

s.t.A′
ij ≥ 0 and A′ = A′T ,

(3)

A′ satisfies: Rank(A′) ≥ r

Therefore, based on NPSI, if we set r = c, we construct
an objective function to learn an adjacency A′ which meets
the necessary condition Corollary 1. Simultaneously, with
the partition indicator Y , we utilize the well-known Davies-
Bouldin index (DBI) to analyze the similarity of node fea-
tures inside the same partition (Davies and Bouldin 1979):

DBI(X,Y) =
1

r

∑
k<r

DIk

where: DIk = maxm ̸=k(Rkm) , Rkm =
Sk + Sm

Mkm

Sk = (
1

|Ck|
∑

Yik=1

(|Xi −Xk|2))
1
2 ,

Mkm = (|Xk −Xm|2)
1
2 , Xk =

∑
Yik=1 Xi

|Ck|
.

(4)

10238

An adjacency matrix A′ satisfies Assumptions 1 would
make DBI(X,Y) small. Based on the necessary conditions
(Corollary 1) and assumptions (Assumptions 1) for obtain-
ing an innocuous graph, we construct an objective function
using the network partition structural information (NPSI)
and Davies-Bouldin index (DBI) to learn an adjacency ma-
trix A that meets these conditions. Let β be a hyperparame-
ter. The objective function is:

LN = NPSI(A′, Y) + βDBI(X,Y)

s.t. A′
ij ≥ 0, A′ = A′T ,

Y ∈ {0, 1}n×c, Ykm

{
> 0 if k = m,
= 0 otherwise.

(5)

Then our overall criterion for finding an innocuous graph is
formulated into an optimization problem of minimizing LN

in (5), where Y and A′ are elements to be optimized.

Unsupervised Structural Entropy-based
Robust Graph Neural Network

In this section, we propose a novel framework that enables
GNN models to learn embeddings and innocuous graphs si-
multaneously, achieving robust learning by optimizing the
loss in Equation (5). Our framework supports various GNN
models, and we take the classical GAE (Kipf and Welling
2016) as an example. There are two key components in our
framework that distinguish it from previous work:
Learned Matrices. Let A denote the adjacency matrix of
the original input graph. To remove the effect of random-
ness, we construct an innocuous graph and use it as the in-
put of the supported model instead of the original graph. We
thus construct a learnable matrix A′ ∈ Rn×n, and use it as
the input of the supported GNN model:

H = GNN
(
A′, X,

{
W (1),W (2)

})
(6)

H is the learnt node embeddings. Besides the node em-
beddings, an indicator matrix Y that divide the graph into
partitions with high inner-connectivity and sparse inter-
connectivity is desired (Li and Pan 2016):

Ck ={vi|Yik ̸= 0} where,

Y =argmin
Y

(NPSI(A′, Y))

s.t. Y ∈ {0, 1}n×r, (Y TY)km

{
> 0 if k = m,
= 0 otherwise.

To learn such an indicator matrix Y , we add a softmax layer
with learnable parameter matrix WY ∈ Rd(2)×c:

Y = softmax(HWY) (7)

Overall Optimization. Let LS be the loss function of the
supported model, e.g., for GAE:

LS =||Â−A||2F , (8)

where Â is reconstructed from learnt node embeddings by
Â = sigmoid(HHT). Besides LS , LN in (5) is employed

to alleviate the interference of randomness. Thus, let α be
hyper-parameter, model is trained by minimizing L:

L = LN + αLS . (9)
Although unsupervised, with structural entropy based LN ,
this framework mitigates randomness-interference, making
the supported model more capable. We call it an Unsuper-
vised Structural Entropy-based Robust Graph Neural Net-
work (USER). The detailed structure is shown in Figure 1.

Dataset # Nodes # Edges # Features # Classes
Cora 2,708 5,429 1,433 7
Citeseer 3,327 4,732 3,703 6
Wiki 2,405 17,981 4,973 17

Table 1: Dataset statistics.

Figure 2: Parameter analysis on Wiki (α).

Figure 3: Parameter analysis on Wiki (β).

Experimental Results
Experiments

In this section, we compare USER-supported GAE (USER)
with state-of-the-art methods and conduct some analyses.

10239

Dataset Ptb deepwalk GAE VGAE ARGA AGE DGI GIC GCA G CG A CG USER
0 39.58 44.32 43.42 44.12 56.4 57.32 52.16 32.76 44.3 45.18 56.24

0.1 35.2 41.28 39.65 40.05 42.23 53.45 50.24 35.1 42.47 43.11 54.38
0.2 28.61 33.0 35.16 34.6 35.1 50.47 48.54 32.18 38.31 37.96 52.17

cora 0.3 26.55 29.07 32.31 29.49 36.05 48.22 44.75 32.93 35.19 36.59 52.39
0.4 21.21 27.08 27.35 26.86 32.68 44.02 40.97 33.4 33.47 34.46 46.7
0.5 21.5 25.03 24.99 23.71 36.79 43.22 40.73 31.81 31.93 31.53 49.33
0 13.89 21.66 20.84 20.72 35.82 44.02 43.56 28.1 21.3 19.75 35.52

0.1 11.58 18.3 17.52 17.94 29.47 41.31 41.29 10.75 20.41 18.26 37.04
0.2 8.77 16.16 15.07 15.6 21.65 36.66 36.72 7.0 16.84 16.93 34.42

citeseer 0.3 7.58 12.86 13.59 13.01 18.06 33.39 33.58 6.16 15.17 14.41 34.5
0.4 6.85 9.81 10.34 10.03 15.57 32.26 31.91 4.22 12.71 12.03 34.58
0.5 5.49 10.41 10.33 9.63 14.13 29.58 30.96 2.98 12.59 13.66 34.5
0 35.85 23.52 24.49 22.8 51.2 43.14 27.45 37.54 22.72 23.04 48.99

0.1 33.15 22.57 16.59 18.01 48.85 40.13 24.65 30.77 19.69 19.63 48.97
0.2 30.74 13.66 14.22 14.05 46.92 36.15 22.9 30.74 11.62 16.54 48.71

wiki 0.3 27.79 14.7 15.97 15.1 47.43 34.84 38.29 31.42 16.5 10.66 48.55
0.4 26.56 8.26 9.8 15.0 46.7 31.28 36.33 32.38 9.99 11.41 48.54
0.5 25.52 9.52 7.4 12.01 46.83 29.29 33.26 34.24 9.26 6.6 48.68

Table 2: Node clustering performance (NMI) under random-noises

Dataset Ptb deepwalk GAE VGAE ARGA AGE DGI GIC GCA G CG A CG USER
0.05 41.73 43.37 43.06 43.33 48.6 50.33 46.89 38.12 43.64 43.0 50.64
0.10 37.68 34.1 33.6 34.5 39.35 37.73 36.58 34.07 35.47 35.94 41.71

cora 0.15 21.99 19.96 19.56 20.04 25.39 23.13 23.19 21.54 22.59 22.92 29.27
0.20 7.31 7.26 7.22 7.88 9.65 10.17 10.96 9.97 10.34 10.31 18.82
0.05 16.97 22.5 22.73 20.85 34.06 40.22 39.91 20.78 22.67 21.69 35.72
0.10 23.52 22.25 22.59 22.02 25.13 29.71 29.45 18.92 22.6 22.06 31.86

citeseer 0.15 17.33 13.73 13.6 13.94 15.71 17.68 17.81 13.61 15.6 15.61 27.77
0.20 8.3 5.64 5.71 5.63 9.11 9.11 9.08 7.08 7.68 7.61 26.42
0.05 34.06 19.59 19.22 20.8 41.76 32.94 35.03 27.24 18.24 16.27 48.44
0.10 22.96 13.09 11.14 12.48 38.72 22.59 23.64 25.86 13.34 10.98 47.71

wiki 0.15 14.35 4.59 4.99 6.82 40.9 12.27 15.19 20.14 4.62 7.04 47.54
0.20 9.3 2.22 1.52 3.61 42.71 8.85 9.24 15.39 3.1 2.49 47.48

Table 3: Node clustering performance (NMI) under meta-attack

Dataset Ptb GAE ARGA G CG A CG USER
0 94.09 94.87 94.08 94.0 95.38

0.1 94.09 94.25 93.96 94.04 95.59
0.2 94.12 93.69 94.01 94.05 94.99

citeseer 0.3 91.72 92.31 93.15 93.27 95.15
0.4 90.29 90.81 93.07 92.89 94.41
0.5 90.05 90.91 91.85 91.6 94.54
0 86.75 82.14 83.25 79.81 88.72

0.1 80.12 83.66 68.04 77.24 88.07
0.2 79.5 80.86 70.62 74.57 87.82

wiki 0.3 73.02 80.06 66.27 68.97 87.41
0.4 78.37 79.44 61.58 64.06 87.45
0.5 67.78 76.79 64.48 71.51 86.87

Table 4: Link prediction (AUC) under random-noises

Experimental Settings

Datasets. We evaluate all models on three benchmark
datasets: Cora, Citeseer, Wiki (Kipf and Welling 2017; Yang
et al. 2015; Jin et al. 2020b). They have different structures
and node features. Dataset statistics are in Table 1.

Dataset Ptb GAE ARGA G CG A CG USER
0 94.22 94.89 94.5 94.14 95.84

0.1 94.08 94.47 94.21 94.38 95.98
0.2 94.57 94.05 94.5 94.42 95.46

citeseer 0.3 92.13 92.77 93.83 93.94 95.66
0.4 90.95 91.38 93.62 93.58 94.92
0.5 90.81 91.66 92.73 92.44 95.05
0 88.18 83.38 85.65 83.01 89.9

0.1 81.95 86.02 69.8 80.78 89.48
0.2 82.62 82.44 73.09 77.22 89.07

wiki 0.3 76.89 82.98 69.06 72.13 88.9
0.4 81.53 82.22 63.15 65.91 88.61
0.5 70.36 80.29 67.09 73.6 88.28

Table 5: Link prediction (AP) under random-noises

Randomness. We inject noises into the original graph to
promote graph randomness. In particular, we develop two
types of noises: random noise and meta-attack (Zügner and
Günnemann 2019). Random noise “randomly flips” the state
of a pair of nodes (i.e., if there is an edge between them, we

10240

Dataset USER w.o. NPSI w.o. DBI Fix A′

cora 54.38 14.82 52.54 40.11
citeseer 37.04 28.95 12.82 30.94
wiki 48.97 48.44 37.28 39.77

Table 6: NMI of USER’s variants with 10% random-noise

(a) Original (b) Poisoned (c) USER

Figure 4: Case study: the graph heat maps of Cora

remove it; otherwise we add an edge between them). Ran-
dom noises are not very effective, so we create several poi-
soned graphs with a noise ratio from 0% to 50% with a step
of 10%. Meta-attack can promote randomness significantly
(Zügner and Günnemann 2019; Jin et al. 2020a). Even for
supervised models, meta-attack is hardly applied with a per-
turbation rate higher than 20% (Jin et al. 2020a). Thus, we
create several poisoned graphs with meta-attack ratio from
0% to 20% with a step of 5%.
Baselines. For USER, the classical GAE (Kipf and Welling
2016) is utilized as supported model. We compare it with
10 baselines retaining the default parameter settings in their
original papers. DeepWalk (Perozzi, Al-Rfou, and Skiena
2014) utilizes random walks to learn embeddings. GAE and
VGAE (Kipf and Welling 2016) firstly leverage GCN (Kipf
and Welling 2017)for GRL. ARGA (Pan et al. 2018) is
an adversarial GNN model. AGE (Cui et al. 2020) applies
Laplacian smoothing to GNN. DGI (Veličković et al. 2019)
trains GNN with MI. GIC (Mavromatis and Karypis 2020)
captures cluster-level information. GCA (Zhu et al. 2021b)
is a Graph Contrastive learning GNN. G CG and A CG are
Cross-Graph (Wang et al. 2020) models. G CG is the GAE
version while A CG maintains ARGA encoders.
Parameter Settings We train USER for 400 epochs us-
ing Adam optimizer with a learning rate η. The two hyper-
parameters α and β, are selected through a grid search. A
detailed analysis could be found in Parameter Analysis. The
dimension d(1), learning rate η, α and β are selected accord-
ingly based on the parameter analysis.
Evaluation Metrics For node clustering, we employ popu-
lar normalized mutual information (NMI) and clustering ac-
curacy (ACC) (Aggarwal and Reddy 2014). For link predic-
tion, we report area under the ROC (AUC) (Bradley 1997),
and average precision (AP) (Su, Yuan, and Zhu 2015).

Clustering. Performance of all models are listed in Ta-
ble 2 and Table 3. From Table 2 and Table 3, we observe
that: When the input graph is the original graph, the USER’s
improvement from GAE is significant. The performances of
USER are always close to the best. When graph randomness

is promoted by random noises, USER outperforms others.
Even under large Ptb e.g., 50%, the performance of USER
only drops 12%, 3%, 0.6% on Cora, Citeseer and Wiki.
Meta-attack makes the effect of baselines drop rapidly. How-
ever, USER is still effective.
Link prediction. To compare the performances on link pre-
diction tasks, all the experiments are run 10 times and we
report the AUC and AP in Table 4 and Table 5. The best per-
formance is in bold. From the results, we observe that for
link prediction, USER also outperforms other models. Clas-
sical models are rather unstable towards promoted random-
ness. Even robust model Cross-graph’s performance drop
drastically under large ratio noises (e.g. the A CG dropped
3.617% and 10.400% on citeseer and wiki when noise rate
is 50%). USER demonstrates stability w.r.t. different noise
levels (only 0.881% and 2.085% drop with 50% noise).
Case Study To show the graph learned by USER. We illus-
trate the normalized adjacency matrix of Cora dataset in Fig-
ure 4(a). It is clearly observable that most edges are in one
of seven groups with few edges between them. However, the
adjacency matrix with 50%-ratio random-noises of Cora (as
shown in Figure 4(b)) have more inter-group edges and the
boundaries of classes get visibly blurred. The learned graph
structure by USER is shown in Figure 4(c). We observe that
the group boundaries are much clearer. This demonstrates
that USER can capture ideal innocuous graphs.
Ablation Study To understand the importance of different
components, we conduct ablation studies with 10% random
noise. From Table 6, USER without NPSI component loses
its effectiveness on all three datasets. The performance after
removing DBI drops slightly on Cora but it is significantly
affected on Wiki and Citeseer. This implies for these two
datasets, feature information is more important. If we fix A′

the same as the original, the model tends to be disturbed by
the graph randomness. By incorporating all these compo-
nents, USER can explore for innocuous graphs.
Parameter Analysis We explore the sensitivity of the two
hyperparameters. α controls the influence of the objective
from the supported model and β is used to adjust the influ-
ence of Assumption 1. We report the experimental results
on Wiki with 10% random-noise in Figure 2 and Figure 3 as
similar observations are made in other settings. USER’s per-
formance can be boosted when choosing appropriate values
for all the hyper-parameters, but performance under other
values drops slightly. This is consistent with our analysis.

Conclusion

We aim to mitigate the impact of graph randomness and
learn accurate node representations without label informa-
tion by proposing USER, an unsupervised robust frame-
work. During its development, we discovered that GNNs can
learn suitable embeddings with multiple innocuous graphs
and that the adjacency matrix’s rank plays a critical role in
identifying such graphs. We introduced structural entropy as
a tool to construct objective functions for capturing innocu-
ous graphs. In the future, we plan to explore the intrinsic
connectivities of graph data further.

10241

Acknowledgements
This research was supported by NSFC (Grant No.
61932002) and Marsden Fund (21-UOA-219). The first au-
thor and third authors are supported by a PhD scholarship
from China Scholarship Council.

References
Aggarwal, C. C.; and Reddy, C. K. 2014. Data cluster-
ing. Algorithms and applications. Chapman&Hall/CRC
Data mining and Knowledge Discovery series, Londra.
Anand, K.; and Bianconi, G. 2009. Entropy measures for
networks: Toward an information theory of complex topolo-
gies. Physical Review E.
Bradley, A. P. 1997. The use of the area under the ROC curve
in the evaluation of machine learning algorithms. Pattern
recognition.
Brooks Jr, F. P. 2003. Three great challenges for half-
century-old computer science. JACM.
Chen, L.; Li, J.; Peng, J.; Xie, T.; Cao, Z.; Xu, K.; He, X.;
and Zheng, Z. 2020. A survey of adversarial learning on
graphs. CoRR,abs:2003.05730.
Chen, Y.; and Liu, J. 2019. Distributed community detection
over blockchain networks based on structural entropy. In
Proceedings of the 2019 ACM International Symposium on
Blockchain and Secure Critical Infrastructure, 3–12.
Cui, G.; Zhou, J.; Yang, C.; and Liu, Z. 2020. Adaptive
graph encoder for attributed graph embedding. In KDD.
Davies, D. L.; and Bouldin, D. W. 1979. A cluster sepa-
ration measure. IEEE transactions on pattern analysis and
machine intelligence.
Dehmer, M. 2008. Information processing in complex net-
works: Graph entropy and information functionals. Applied
Mathematics and Computation.
Fortunato, S. 2010. Community detection in graphs. Physics
reports, 486(3-5): 75–174.
Gao, H.; and Huang, H. 2018. Deep Attributed Network
Embedding. In IJCAI.
Hamilton, W. L.; Ying, R.; and Leskovec, J. 2017a. Rep-
resentation learning on graphs: Methods and applications.
arXiv preprint arXiv:1709.05584.
Hamilton, W. L.; Ying, Z.; and Leskovec, J. 2017b. Induc-
tive Representation Learning on Large Graphs. In NIPS.
Hjelm, R. D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal,
K.; Bachman, P.; Trischler, A.; and Bengio, Y. 2018. Learn-
ing deep representations by mutual information estimation
and maximization. In ICLR.
Jin, W.; Li, Y.; Xu, H.; Wang, Y.; Ji, S.; Aggarwal, C.;
and Tang, J. 2020a. Adversarial Attacks and Defenses on
Graphs: A Review, A Tool and Empirical Studies. KDD Ex-
plorations.
Jin, W.; Ma, Y.; Liu, X.; Tang, X.; Wang, S.; and Tang, J.
2020b. Graph structure learning for robust graph neural net-
works. In KDD.
Kipf, T. N.; and Welling, M. 2016. Variational Graph Auto-
Encoders. CoRR.

Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Clas-
sification with Graph Convolutional Networks. In ICLR
(Poster).
Li, A.; Hu, Q.; Liu, J.; and Pan, Y. 2016. Resistance and Se-
curity Index of Networks: Structural Information Perspec-
tive of Network Security. Scientific Reports.
Li, A.; and Pan, Y. 2016. Structural information and dynam-
ical complexity of networks. IEEE Trans. Inf. Theory.
Li, R.; Wang, S.; Zhu, F.; and Huang, J. 2018. Adaptive
graph convolutional neural networks. In AAAI, volume 32.
Liu, W.; Liu, J.; Zhang, Z.; Liu, Y.; and Zhu, L. 2022.
Residual Entropy-based Graph Generative Algorithms. In
Proceedings of the 21st International Conference on Au-
tonomous Agents and Multiagent Systems, 816–824.
Liu, Y.; Liu, J.; Wan, K.; Qin, Z.; Zhang, Z.; Khoussainov,
B.; and Zhu, L. 2021. From local to global norm emer-
gence: dissolving self-reinforcing substructures with incre-
mental social instruments. In International Conference on
Machine Learning, 6871–6881. PMLR.
Liu, Y.; Liu, J.; Zhang, Z.; Zhu, L.; and Li, A. 2019. REM:
From Structural Entropy To Community Structure Decep-
tion. In NeurIPS.
Luo, D.; Cheng, W.; Yu, W.; Zong, B.; Ni, J.; Chen, H.; and
Zhang, X. 2021. Learning to drop: Robust graph neural net-
work via topological denoising. In Proceedings of the 14th
ACM international conference on web search and data min-
ing, 779–787.
Mavromatis, C.; and Karypis, G. 2020. Graph InfoClust:
Leveraging cluster-level node information for unsupervised
graph representation learning. PA-KDD.
Mavromatis, C.; and Karypis, G. 2021. Graph InfoClust:
Maximizing Coarse-Grain Mutual Information in Graphs. In
KDD.
Pan, S.; Hu, R.; Fung, S.-f.; Long, G.; Jiang, J.; and Zhang,
C. 2019. Learning graph embedding with adversarial train-
ing methods. IEEE transactions on cybernetics.
Pan, S.; Hu, R.; Long, G.; Jiang, J.; Yao, L.; and Zhang,
C. 2018. Adversarially Regularized Graph Autoencoder for
Graph Embedding. In IJCAI.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In KDD.
Rosvall, M.; Axelsson, D.; and Bergstrom, C. T. 2009. The
map equation. The European Physical Journal Special Top-
ics.
Su, W.; Yuan, Y.; and Zhu, M. 2015. A relationship between
the average precision and the area under the ROC curve. In
ICTIR.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph Attention Networks. In ICLR
(Poster).
Veličković, P.; Fedus, W.; Hamilton, W. L.; Liò, P.; Bengio,
Y.; and Hjelm, R. D. 2019. Deep Graph Infomax. ICLR
(Poster).
Wan, G.; and Kokel, H. 2021. Graph Sparsification via
Meta-Learning. DLG@ AAAI.

10242

Wang, C.; Han, B.; Pan, S.; Jiang, J.; Niu, G.; and Long, G.
2020. Cross-Graph: Robust and Unsupervised Embedding
for Attributed Graphs with Corrupted Structure. In ICDM.
Wang, C.; Pan, S.; Hu, R.; Long, G.; Jiang, J.; and Zhang,
C. 2019a. Attributed Graph Clustering: A Deep Attentional
Embedding Approach. In IJCAI.
Wang, C.; Pan, S.; Long, G.; Zhu, X.; and Jiang, J. 2017.
MGAE: Marginalized Graph Autoencoder for Graph Clus-
tering. In CIKM.
Wang, H.; Wang, J.; Wang, J.; Zhao, M.; Zhang, W.; Zhang,
F.; Li, W.; Xie, X.; and Guo, M. 2019b. Learning graph rep-
resentation with generative adversarial nets. IEEE Trans-
actions on Knowledge and Data Engineering, 33(8): 3090–
3103.
Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; and Wein-
berger, K. 2019a. Simplifying graph convolutional net-
works. In International conference on machine learning,
6861–6871. PMLR.
Wu, H.; Wang, C.; Tyshetskiy, Y.; Docherty, A.; Lu, K.; and
Zhu, L. 2019b. Adversarial examples on graph data: Deep
insights into attack and defense. IJCAI.
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2019. How
Powerful are Graph Neural Networks? In ICLR.
Yang, C.; Liu, Z.; Zhao, D.; Sun, M.; and Chang, E. 2015.
Network representation learning with rich text information.
In IJCAI.
Zhang, X.; Liu, H.; Li, Q.; and Wu, X. M. 2019. Attributed
graph clustering via adaptive graph convolution. In IJCAI.
Zhu, H.; and Koniusz, P. 2020. Simple spectral graph con-
volution. In International Conference on Learning Repre-
sentations.
Zhu, Y.; Xu, W.; Zhang, J.; Liu, Q.; Wu, S.; and Wang, L.
2021a. Deep Graph Structure Learning for Robust Repre-
sentations: A Survey. arXiv preprint arXiv:2103.03036.
Zhu, Y.; Xu, Y.; Yu, F.; Liu, Q.; Wu, S.; and Wang, L. 2021b.
Graph contrastive learning with adaptive augmentation. In
WWW.
Zügner, D.; and Günnemann, S. 2019. Adversarial attacks
on graph neural networks via meta learning. ICLR.

10243

