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Abstract

Multi-instance learning (MIL) is a supervised learning where
each example is a labeled bag with many instances. The typi-
cal MIL strategies are to train an instance-level feature extrac-
tor followed by aggregating instances features as bag-level
representation with labeled information. However, learning
such a bag-level representation highly depends on a large
number of labeled datasets, which are difficult to get in real-
world scenarios. In this paper, we make the first attempt to
propose a robust Self-supervised Multi-Instance LEarning ar-
chitecture with Structure awareness (SMILES) that learns un-
supervised bag representation. Our proposed approach is: 1)
permutation invariant to the order of instances in bag; 2)
structure-aware to encode the topological structures among
the instances; and 3) robust against instances noise or per-
mutation. Specifically, to yield robust MIL model without
label information, we augment the multi-instance bag and
train the representation encoder to maximize the agreement
between the representations of the same bag in its different
augmented forms. Moreover, to capture topological structures
from nearby instances in bags, our framework learns optimal
graph structures for the bags and these graphs are optimized
together with message passing layers and ordered weighted
averaging operator towards contrastive loss. Our main theo-
rem characterizes the permutation invariance of the bag rep-
resentation. Compared with state-of-the-art supervised MIL
baselines, SMILES achieves average improvement of 4.9%,
4.4% in classification accuracy on 5 benchmark datasets and
20 newsgroups datasets, respectively. In addition, we show
that the model is robust to the input corruption.

Introduction
Multi-instance learning (MIL) is a form of supervised learn-
ing where training instances are arranged in sets, namely
bags, and each bag is assigned a binary label (Yuan et al.
2021; Pal et al. 2022; Huang et al. 2022). The standard MIL
assumption is that a bag is positive if it contains at least one
positive instance, and negative otherwise.

In the past decades, much research effort has been de-
voted to improve the performance of MIL by learning the
bag-level representation, which implicitly utilizes bag-to-
bag similarity or explicitly trains a bag classifier (Feng et al.
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2021; Wang et al. 2018). For large-scale MIL scenarios like
drug activity prediction, where each molecule can be rep-
resented as a bag and the instances correspond to differ-
ent conformations (molecular structures) of that compound,
these methods often implement the bag-level MIL models
by a two-stage strategy: first training an instance-level fea-
ture extractor, and then aggregating features as bag-level
representations with label information (Ilse, Tomczak, and
Welling 2018). However, it may be difficult to collect a
multi-instance learning datasets composed of fully labeled
bags in real-world applications, due to the significant la-
beling costs. For example, high-quality molecule data with
human labeling could be costly and it is difficult, if not
impossible to create fully labeled datasets with millions of
molecules (Rong et al. 2020; Zhang et al. 2021). To tackle
this challenge, in this paper, we make an attempt to learn the
representation of bag in a self-supervised manner without
the requirement of any label information.

A robust self-supervised MIL learning for bag representa-
tion should fulfil below important properties. First, it should
generate the bag representation that is invariant to the per-
mutation of the set of instances. The example (i.e. a bag)
in MIL is described by a set of feature instances. The order
independence of set can be used to design models with im-
proved efficiency and generalization (Wagstaff et al. 2022;
Maron et al. 2019). Second, it should have the capability
of capturing the topological structure information on tasks
where the objects have inherent interactions. Previous stud-
ies on multi-instance learning typically treated instances in
the bags as independently and identically distributed (Huang
et al. 2022; Feng et al. 2021; Ilse, Tomczak, and Welling
2018). However, the local structures and the proximity infor-
mation from nearby instances are important in MIL model
(Zhang 2021). Third, it should be able to handle the bag
noise. It is inevitable that the provided multi-instance bags
are incomplete and noisy in real-world scenarios (Cheva-
leyre and Zucker 2000; Luengo et al. 2021). Hence, develop-
ing robust multi-instance learning models to resist unnotice-
able perturbation (e.g., missing or error instances in bags) is
of significant importance.

In this paper, we provide a full characterization of multi-
instance learning and present a robust Self-supervised Multi-
Instance LEarning architecture with Structure awareness
(SMILES) to capture all the above properties. Specifically,
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to yield robust MIL model without using labels, we aug-
ment the multi-instance bag and train the representation en-
coder to maximize the correspondence between the repre-
sentations of the same bag in its different augmented forms.
Through maximizing their consistency, our model is robust
with respect to noise/perturbation of data. To capture the ge-
ometric structures of instances in bags, we generate learn-
able graph adjacency matrices for the bags, which well re-
spects the node proximity conveyed by the original feature
instances, and these graphs are optimized together with mes-
sage passing layers and the ordered weighted averaging op-
erator towards contrastive loss, where informative hidden
connections can be discovered. Our main theorem character-
izes the permutation invariance of the representation of node
and bag. In summary, our core contributions are three-fold:
• We propose an unsupervised learning paradigm SMILES

for multi-instance learning, which is more practical and
challenging than the existing supervised counterpart. To
the best of our knowledge, this is the first attempt to learn
the bag representation in an unsupervised setting.

• Our self-supervised model provides approaches to aug-
ment the bag to offer noise robustness when the MIL data
have possibly noise. Together with the graph generation
for the multiple instances, the bag representation can be
associated with structure awareness, while be invariant to
permutations of its constituent instances.

• Extensive experiments show that SMILES, the self-
supervised model significantly outperforms state-of-the-
art supervised MIL models, and is robust against com-
mon injected noise/permutation.

Related Studies and Preliminaries
In this section, we briefly review related studies and intro-
duce preliminary knowledge.
Multi-Instance Learning. In traditional supervised learn-
ing, each learning example consists of a fixed number of
values (i.e., an instance) with a label. However, in many ap-
plications, only a bag of instances is given a label, which is
referred as multi-instance learning (MIL) (Dietterich, Lath-
rop, and Lozano-Pérez 1997). In this paper, we follow the
notation of (Gärtner et al. 2002). X ⊂ Rdin denotes the
instance space, Ω is the set of labels y. In MIL, the label
is assumed to be binary, so Ω = {>,⊥}. A multi-instance
concept is a map νmi : 2X → Ω defined as

νmi(X)⇔ ∃x ∈ X : c(x) (1)

where c ∈ C is a concept from a concept space C, and
X ⊆ X is a set of instances. Supervised MIL problem aims
to predict labels of new bags based on the labeled training
dataset D = {(X, y)} (Lin et al. 2022; Chu et al. 2020).

In this work, we are interested in learning multi-instance
with no supervision. Self-supervised learning (SSL), emerg-
ing as a learning paradigm that can enable training on mas-
sive unlabeled data, recently has received considerable at-
tention (Von Kügelgen et al. 2021; Reed et al. 2022). How-
ever, as far as we know, there is no work explored self-
supervised learning for multi-instance problem. Formally,
self-supervised multi-instance learning should learn bag

representation by a function frep : 2X → Rdout that trans-
forms the multi-instance of a bag X into a dout-dimensional
instance space frep(X) = (a1, ..., adout) without label.
Multi-instance Noise. Obtaining multi-instance model that
are robust to perturbation/noise has been an active topic of
research (Chevaleyre and Zucker 2000; Luengo et al. 2021).
In this paper, we study the set of training perturbations:
Up(Λ) =

{
δ ∈ Rdin : ‖δ‖p ≤ Λ

}
, where δ denotes the mea-

surement error, p is the `p-norm and Λ controls the ampli-
tude of the perturbations. Formally, the generation of noise is
a black-box feedback mechanism which, when called at in-
stance x, returns a random vector g(x; δ) with δ drawn from
some (complete) probability space (Up(Λ),F ,P), which is
independent of the value of x. Therefore, the oracle draws
an i.i.d. sample δ ∈ Up(Λ) and returns an observed instance:
g(x; δ) = x+δ. In supervised setting, the simplest and most
straightforward way to defend against such noise is to mini-
mize the loss of measurement error examples

argmin
θ

E(X,y)∼D,δ∈Up(Λ) Lce(θ, {g(x; δ)|x ∈ X}, y) (2)

where Lce is the cross-entropy loss, and θ is parameters.
Multi-instance Structure. Multi-instance structure learn-
ing targets jointly learning graph structure and correspond-
ing representation to improving the expressiveness of MIL
models (Pal et al. 2022; Zhao et al. 2021). It aims to learn
functions of sets of n instances X into graph with n nodes.
Let G = (V, E , X ′) be an undirected graph with respect
to X , where V = {v1, . . . , vn} is a set of vertices and
suppose that every vertex vi corresponds to a d′-dimension
vector x′i ∈ X ′, and E is a similarity matrix of vertexes,
the element ei,j denotes the weight of edge. Another way
to see graph with features is to see the graph as tensors of
order 2: G ∈ (Fn,Fn2

), where F denotes arbitrary finite-
dimensional space of the form Rq (for various values of q)
typically representing the feature space. Here, X ′ ∈ Fn and
E ∈ Fn2

. Multi-instance structure learning considers learn-
ing a function fsl : 2X → (Fn,Fn2

) maps the input space
2X to the graph space. Intuitively, if xi and xj are nearest
neighbors on X ∈ 2X with a high degree of similarity, the
corresponding vertexes should be close to one another.
Permutation Invariance. In multi-instance learning tasks
the representation of bag that we want to learn should be
invariant to any permutation of the instances in bag. In ad-
dition, for the learned multi-instance structure (i.e. graph), it
is importance to ensure that the model remains permutation
invariant to the structure (Zhang et al. 2022; Zaheer et al.
2017; Wagstaff et al. 2019).

For a multi-instance bag, an instance permutation action
π ∈ SB is a left action φ : SB × 2X → 2X with the element
π on a sorted sequence of n instances represented as X =
(x1, . . . , xn) of a bag to output a corresponding permuted
sequence of instances i.e., φ(π,X) = (xπ(1), . . . , xπ(n)). A
map f : 2X → Rdout satisfying f ◦ φ(π,X) = f(X) for
all π ∈ SB and X ∈ 2X is called permutation invariant. For
the graph generated from bag, a vertex permutation action
π ∈ SG is defined in similar way: φ : SG × V → V , and
φ(π, V ) = (vπ(1), . . . , vπ(n)). The permutation action π ∈
SG also acts on any vector defined over the nodes V , i.e.,
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(xi) ∈ Fn, and output an equivalent vector with the order
of the nodes permuted i.e., (xπi) ∈ Fn. A function f acting
on a graph G given by f : (Fn,Fn2

)→ Rdout is G-invariant
whenever it is invariant to any vertex permutation action π ∈
SG in the (Fn,Fn2

) graph space i.e., f ◦ φ(π, V ) = f(V )
and all isomorphic graphs obtain the same representation.

Methodology
In this section, we will present a robust self-supervised
multi-instance learning method with structual awareness,
named SMILES. Given an input bag, SMILES aims to learn
the self-supervised representation of the bag through maxi-
mizing the consistency between two augmented views of the
input bag via contrastive loss in the latent space. To capture
the structural relations among instances we generate multi-
instance graph in a learnable manner. The bag representation
is obtained by encoding the graph with message passing lay-
ers and the ordered weighted averaging operator, where per-
mutation invariant of unified representaion encoder for the
bag is theoretical guaranteed. We summarize all the steps of
our framework in Algorithm 1.

Bag Augmentation
A way of inducing inductive bias for multi-instance learn-
ing is data augmentation, which we use in the bag data and
which plays a prominent role in robustness learning overall.
DefineA : 2X → 2X as the function class of augmentations
andFrep as the class of representation encoders. For fa ∈ A
and any X ∈ 2X , we define

fa(X) =
{
x̃
∣∣∣ x̃ = g(x; δ), x ∈ X, δ ∈ Up(Λ)

}
(3)

Suppose that there is f ∈ Frep satisfies f(fa(X)) = f(X)
for X . The noise perturbation can provide contrastive infor-
mation in various magnitude for the encoder to learn the rep-
resentations. Thus, the self-supervised noise-against multi-
instance learning objective for an instance-wise perturba-
tion, following the supervised formulation of Eq.(2), could
be given as follows

argmin
θ

E(X)∼D Lθ
(
X, {fa(X)},

{
X−
})

(4)

where {X−} are the negative bags for X , which are bags of
other examples, and the contrastive loss Lθ can be defined

Lθ
(
X,
{
X+
}
,
{
X−
})

:= − log

∑
{z+} exp (cos (z, z+) /τ)∑

z◦∈{z+,z−} exp (cos (z, z◦) /τ)

(5)

where τ is a temperature, cos(u, v) = uT v/‖u‖‖v‖ de-
notes cosine similarity, z, {z+} and {z−} are correspond-
ing latent vectors obtained by the representation encoder
z = frep(X), {z+} and {z−}, respectively.

Bag Structure Awareness
The construction of a meaningful graph topology plays a
crucial role in the effective representation and analysis of

multi-instance data. However, a natural choice of the graph
is not readily available from bag and it is thus desirable to
infer or learn a graph topology from the instances in the bag.

We generate the feature similarity matrix E ∈ Fn2

for
determining the possibility of an edge between two nodes
based on node features. Specifically, for each node vi with
feature vector xi ∈ X , we adopt a non-linear feature map-
ping layer fnl : Rdin → F to project the feature xi to a
d′-dimension latent feature

x′i = fnl(xi) := σ (xi ·Wnl + bnl) (6)

where σ(·) denotes a non-linear activation function, Wnl ∈
Rdin×d′ and bnl ∈ R1×d′ denote the mapping matrix and the
bias vector, respectively. Then, we perform metric learning
on the latent features and obtain the learned feature similar-
ity graph E ∈ Fn2

where the edge between nodes vi and vj
is obtained by

E [i, j] = s
(
x′i, x

′
j

)
× Js

(
x′i, x

′
j

)
≥ εK (7)

where J·K is the Iverson bracket, i.e., 1 whenever a condi-
tion in the bracket is satisfied, and 0 otherwise. ε ∈ [0, 1] is
the threshold that controls the sparsity of feature similarity
graph, and larger ε implies a more sparse feature similarity
graph. s is a K-head weighted cosine similarity function

s
(
x′i, x

′
j

)
=

1

K

K∑
k

cos
(
wk � x′i, wk � x′j

)
(8)

where� denotes the Hadamard product, and Wkh = [wk] is
the learnable parameter matrix of s that weights the impor-
tance of different dimensions of the lantern feature vectors.
By performing metric learning as in Eq.(7) and ruling out
edges with little feature similarity by threshold ε, we learn
the candidate feature similarity graph (X ′, E) = fsl(X).

Bag Representation
Given a graphG = (V, E , X ′) generated above, to learn ver-
tex representations for every vertex v ∈ V , in this work, we
use a message passing framework on the generated graph,
which preserves adjacency information between nodes as
follows. Let h`i ∈ F` denotes the feature at layer ` associ-
ated with node i, the updated feature h`+1

i is obtained as:
h`+1
i = fupd(h

`
i , {{h`j |j ∈ Ni}}), where j ∈ Ni means that

nodes j and i are neighbors in the graph G, i.e. (i, j) ∈ E ,
and the function fupd : 2F` → F`+1 is a learnable func-
tion taking as input the feature vector of the center vertex
h`i and the multiset of features of the neighboring vertices
{{h`j |j ∈ Ni}}. Indeed, for any such function fupd can be
approximated by a layer of the form

h`+1
i = σ

(
W ` ·

(
h`i ⊗ f `

(
h`i , {{h`j | j ∈ Ni}}

)))
(9)

where f ` : 2F` → F`+1 is injective set funcitons in the `-
th layer, ⊗ denotes vector concatenation, W ` is learnable
weight matrix and σ is an element-wise activation function.
We get the `-th message passing layer f `mp : F` → F`+1

(note that fmp depends implicitly on the graph/edge). Then,
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by the composition of f `mp, we obtain the novel representa-
tion of each instance in bag

x′′i = fLmp ◦ . . . f2
mp ◦ f1

mp(x
′
i) (10)

where L denotes the total number of layers used.
Theorem 1 (Node Representation). For a node-featured
graph G = (V,X ′, E) ∈ Fn × Fn2

and a vertex represen-
tation function ψ(v, V, E , X ′) : V × (Fn,Fn2

) → Rdout on
v ∈ V given by Eq.(10). Then, for all permutation actions
∀π ∈ SG ,

ψ(v, V, E , X ′) = ψ(φ(π, v), φ(π, V ), E , φ(π,X ′)).

This implies that the map ψ is a G-invariant for any node.

Proof. For any two different vertex permutation actions
π, π′ ∈ SG supposed they are satisfied ψ(φ(π, v), φ(π, V ),
E , φ(π,X ′)) 6= ψ(φ(π′, v), φ(π′, V ), E , φ(π′, X ′)). This
indicates that for different order of the nodes in graph the
same vertex may get different representations. For each layer
f `mp on the vertex v there is a corresponding map f `mp,v :

Rd` → Rd`+1 . Let ` = 1, expanding f `mp,v for vertex permu-
tation actions and applying the cancellation law of groups,
since h0

v = x′v is identical for these two permutations, it
means the h1

v is equivalent as well. However, according to
the previous assumption this is not possible. By induction
on ` ≥ 2, if the contradiction holds for some `, it holds for
`+ 1 as well, which conclude our proof.

However, the above process generates only representa-
tions of instances in bag, hence aggregation operation is re-
quired, which tries to summarize those representations into
a single element. To do this, the representation of any bag
are obtained using the ordered weighted averaging (OWA)
operator (Yager 1988) fowa : FnL+1 → Rdout as

z = fowa ({x′′i | i ∈ [n]} ; ζ) =
n∑
i=1

ζix
′′
(i) (11)

where x′′(i) is the i-th largest element in the set {x′′i | i ∈ [n]},
and ζ = [ζ1 . . . ζn] is a parameter vector associated with
fowa, such that ζi is nonnegative and

∑n
i=1 ζi = 1. The

OWA operator can be seen as a generalization of any aggre-
gation operation that can be made over a set of values. For
example, the maximum operator over a set of values can be
modeled with the weight vector 〈1, 0, . . . , 0〉. In this work
we choose 〈1/n, . . . , 1/n〉 for averaging aggregation. Based
on the Theorem 1 and the permutation invariance of OWA
operator, we can easily get following result.
Theorem 2 (Bag Representation). The representation en-
coder frep(X) = fowa({fLmp ◦ . . . f2

mp ◦ f1
mp ◦ fsl ◦

g(xi; δ) |xi ∈ X}) is permutation invariant for bag X .
We further introduce several practical data transforma-

tions to approximate the perturbation distribution in Eq.(3).
Remark (Bag Augmentation). For the model frep, ran-
domly dropping, masking, replacing, or randomizing in-
stances in bags are all special cases of bag augmentation
in Eq.(3), where dropping randomly removes certain ratio

Algorithm 1: SMILES.

1: input: unlabeled training data X ⊆ X , batch size N ,
temperature τ , augmentation ratio c, encoder network
frep, pre-train head network g.

2: for sampled mini-batch {Xi}Ni=1 ⊆ X do
3: for i ∈ [N ], X̌i = fa(Xi), X̃i = fa(Xi).

# generate corrupted views.
4: let (X̌ ′i, Ěi)=fsl(X̌i), (X̃ ′i, Ẽi)=fsl(X̃i), ∀i ∈ [N ].

# generate multi-instance graph.
5: let ž′i = g(frep(X̌

′
i)), z̃′i = g(frep(X̃

′
i)), ∀i ∈ [N ].

# embeddings for views.
6: let ti,j = ž′

>

i z̃
′
i/
(
‖ž′i‖2 · ‖z̃′j‖2

)
, ∀i, j ∈ [N ].
# pairwise similarity.

7: define Lθ := 1
N

∑N
i=1− log

(
exp(ti,i/τ)

1
N

∑N
k=1 exp(ti,k/τ)

)
.

8: update networks frep and g to minimize Lθ by SGD.
9: end for

10: return encoder network frep.

of instances, masking randomly set certain ratio of instance
elements as zero, replacing randomly replaces certain ratio
of elements of an instance with the corresponding elements
of another randomly choosing instance in bag, randomiz-
ing randomly assigns random vectors to certain ratio of in-
stances.
Architecture. Based on above analysis, we propose SMILES
framework (Algorithm 1) as following:
(i) Bag data augmentation. The given bag X undergoes
bag augmentations to obtain two correlated views X̌, X̃ :=
fa(X), as a positive pair. In practice, according to Ramark,
in our work, view augmentation methods include instance
dropping, adding, randomizing, or masking.
(ii) Bag structure awareness. The multi-instance graph is
generated by (X ′, E) = fsl(X) according to Eq.(6) and (7)
for the augmented bags, which capture the structural inter-
actions between instances in the bags.
(iii) Encoder. A representation encoder frep(·) extracts bag-
level representation vectors ž, z̃ for the augmented bags us-
ing the above graphs X̌ ′, X̃ ′. The message passing layers in
two encoders share parameters in the pre-training.
(iv) Projection head. A non-linear function g(·) named pro-
jection head maps representations to another latent space
where the contrastive loss is calculated. In our work, a two-
layer perceptron is applied to obtain ž′ = g(ž), z̃′ = g(z̃).
(v) Contrastive loss. A contrastive loss function Lθ(·) (in
Eq.(5)) is defined to enforce maximizing the consistency be-
tween positive pairs ž′, z̃′ compared with negative pairs.

Experiments
We empirically evaluate SMILES against state-of-the-art su-
pervised multi-instance learning algorithms on five popular
benchmark datasets, twenty text datasets from the 20News-
groups corpus and three datasets for the task of biocreative
text categorization (see the Appendix for detail).

Since there is no unsupervised MIL algorithm at present,
to evaluate the proposed SMILES, we use three categories of

10221



Algorithm Average MUSK1 MUSK2 FOX TIGER ELEPHANT
mi-SVM 77.9±N/A 87.4±N/A 83.6±N/A 58.2±N/A 78.4±N/A 82.2±N/A
MI-SVM 77.7±N/A 77.9±N/A 84.3±N/A 57.8±N/A 84.2±N/A 84.3±N/A
MI-Kernel 81.2±2.0 88.0±3.1 89.3±1.5 60.3±2.8 84.2±1.0 84.3±1.6
EM-DD 76.5±4.4 84.9±4.4 86.9±4.8 60.9±4.5 73.0±4.3 77.1±4.3
mi-Graph 82.8±3.7 88.9±3.3 90.3±3.9 62.0±4.4 86.0±3.7 86.9±3.5
MI-VLAD 80.4±4.0 87.1±4.3 87.2±4.2 62.0±4.4 81.1±3.9 85.0±3.6
mi-FV 81.5±4.1 90.9±4.2 88.4±4.2 62.1±4.9 81.3±3.7 85.2±3.6
MI-SDB 87.4±3.7 93.1±4.0 91.2±4.1 78.9±3.4 86.5±4.2 87.5±3.0
BDR 84.5±3.5 92.4±2.7 90.3±5.2 62.8±3.4 86.9±3.6 90.2±2.9

mi-Net 80.8±3.8 88.9±3.9 85.8±4.9 61.3±3.5 82.4±3.4 85.8±3.7
MI-Net 81.2±3.8 88.7±4.1 85.9±4.6 62.2±3.8 83.0±3.2 86.2±3.4
MI-Net (DS) 82.3±3.8 89.4±4.2 87.4±4.3 63.0±3.7 84.5±3.9 87.2±3.2
MI-Net (RC) 81.6±4.2 89.8±4.3 87.3±4.4 61.9±4.7 83.6±3.7 85.7±4.0
Attention 81.4±3.5 89.2±4.0 85.8±4.8 61.5±4.3 83.9±2.2 86.8±2.2
Gated-Attention 81.3±3.3 90.0±5.0 86.3±4.2 60.3±2.9 84.5±1.8 85.7±2.7
B-Graph 82.2±3.0 89.7±3.7 87.1±2.8 64.0±4.1 82.9±2.2 87.5±2.4

SMILES 92.9±2.1 92.7±1.2 96.2±1.6 85.5±4.3 92.0±1.5 98.2±2.0

Table 1: Mean and standard error (when available) of classification accuracy (in %) for benchmark MIL datasets. The best
results in each column are shown in bold. Higher accuracies are better.

supervised baselines: (i) the instance space approaches in-
clude mi-SVM and MI-SVM (Andrews, Tsochantaridis, and
Hofmann 2002), EM-DD (Zhang and Goldman 2001), MI-
VLAD and mi-FV (Wei, Wu, and Zhou 2017); (ii) the bag
space methods include MI-Kernel (Gärtner et al. 2002), mi-
Graph (Zhou, Sun, and Li 2009), BDR (Huang et al. 2022)
and MI-SDB (Feng et al. 2021); (iii) we also compare with
the embedding space methods mi-Net and MI-Net (Wang
et al. 2018), Attention Neural Network and Gated Attention
Neural Network (Ilse, Tomczak, and Welling 2018), and B-
Graph (Pal et al. 2022), these methods use neural networks
or attention to learn embeddings of the bags.

For the baselines, we set the hyper-parameters as sug-
gested by their authors. For SMILES, we report the mean
10-fold cross validation accuracy after 5 runs followed by a
linear SVM. The linear SVM is trained by applying cross
validation on training data folds and the best mean ac-
curacy is reported. We conduct experiment with the val-
ues of the number of message passing layers, the num-
ber of epochs, batch size, the parameter C of SVM, the
threshold ε, augmentation ratio c and temperature τ in
the sets {2, 4, 8, 12}, {10, 20, 40, 100}, {32, 64, 128, 256},
{10−3, . . . , 102, 103}, {0.1, . . . , 0.5}, {10%, . . . , 50%} and
{0.05, 0.1, 0.2, 0.5, 1.0, 2.0} respectively. The hidden di-
mension of layer is set to 128. Based on the Remark, the
augmentation strategies include dropping, masking, replac-
ing, and randomizing instances.

MIL Benchmark Datasets
We first evaluate our proposed framework on the bench-
mark datasets MUSK1, MUSK2 (Dietterich, Lathrop, and
Lozano-Pérez 1997) for drug activity prediction, and FOX,
TIGER, and ELEPHANT (Andrews, Tsochantaridis, and
Hofmann 2002) for image classification. Table 1 shows the
MIL result of each algorithm. It is observed that all the deep

learning approaches are not well suited for these datasets as
they are composed of precomputed features and the size of
the bags are relatively small. But surprisingly, SMILES not
only outperforms all deep supervised models, but achieves
the state-of-the-art results with respect to the traditional su-
pervised MIL algorithms on these small datasets. For ex-
ample, the accuracy of SMILES is 25.5% higher than B-
Graph, the best deep baseline, and 6.6% higher than MI-
SDB, the best traditional algorithm, in data FOX. Tabel 1
lists the average accuracy of 5 benchmark datasets, from
which SMILES achieves the best performance as well.

20 NewsGroups
In this section, we conduct the experiment on corpus data
20 NewsGroups (Zhou, Sun, and Li 2009). It contains posts
from newsgroups on 20 subjects. When one of the subjects
is selected as the positive class, all 19 other subjects are used
as the negative class. The bags are collections of posts from
different subjects. The classification accuracy with compar-
ison to supervised models is summarized in Table 2.

From Table 2 we observe that all neural network based
models outperform the classical MIL models on average
in this task. This result suggests that using neural network
can get better performance on these corpus data. In Ta-
ble 2, we can find that our method significantly outper-
forms all the baselines for all the cases except for the
misc.forsale, sci.electronics and rec.motorcycles. For exam-
ple, SMILES outperforms the second best algorithm 13.4%
on talk.politics.mideast, 11.4% on sci.crypt, 11.2% on
rec.autos, 10.0% on sci.space, 10.4% on talk.politics.guns,
and 10.8% on talk.politics.misc. And the average classifi-
cation accuracy of all 20 multi-instance datasets indicate
that our method outperforms others baselines, including MI-
Kernel, mi-Graph, miFV, MI-SDB, mi-Net, MI-Net and its
variants, and B-graph, with about 12.5% improvement in
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Algorithm SMILES
MI-

Kernel
mi-

Graph
mi-
FV

MI-
SDB

mi-
Net

MI-
Net

MI-
Net (DS)

MI-
Net (RC)

B-
Graph

alt.atheism 89.1±2.4 60.2±3.9 65.5±4.0 84.5±1.4 85.7±1.2 83.1±2.3 84.7±1.8 84.4±2.0 83.6±1.5 88.5±2.2
comp.graphics 90.3±1.3 47.0±3.3 77.8±1.6 59.6±5.8 74.6±1.1 81.7±0.6 82.0±1.5 81.9±0.5 81.5±0.9 80.1±3.2
comp.os.ms-windows.misc 72.5±3.7 51.0±5.2 63.1±1.5 61.3±1.2 67.1±3.2 70.4±1.7 70.7±1.1 70.9±1.1 70.7±1.4 71.9±3.6
comp.sys.ibm.pc.hardware 80.0±2.7 46.9±3.6 59.5±2.7 65.9±3.4 67.8±2.8 79.0±1.8 78.6±1.0 78.3±1.3 78.5±1.0 75.5±3.4
comp.sys.mac.hardware 85.0±1.1 44.5±3.2 61.7±4.8 65.9±2.4 65.7±2.3 79.4±1.6 79.1±1.5 79.7±1.1 79.2±1.9 79.2±3.1
comp.windows.x 91.2±2.4 50.8±4.3 69.8±2.1 76.9±3.5 79.0±1.9 79.9±1.8 80.9±1.9 80.1±1.1 81.2±2.7 86.1±2.7
misc.forsale 68.4±3.6 51.8±2.5 55.2±2.7 56.6±2.7 57.2±2.4 67.1±0.9 66.7±1.2 66.0±1.6 67.2±1.2 75.8±3.5
rec.autos 90.1±2.7 52.9±3.3 72.0±3.7 66.7±5.4 77.5±2.3 76.5±1.2 76.9±1.6 76.4±1.6 76.1±1.6 78.9±3.3
rec.motorcycles 72.5±2.7 50.6±3.5 64.0±2.8 80.0±1.6 85.8±1.9 83.4±1.1 84.2±1.0 83.5±1.5 83.3±1.3 85.5±2.4
rec.sport.baseball 95.0±3.6 51.7±2.8 64.7±3.1 78.0±2.7 82.1±2.5 86.0±1.6 86.7±1.7 85.7±2.5 87.1±1.4 83.5±3.1
rec.sport.hockey 93.4±2.6 51.3±3.4 85.0±2.5 82.4±4.2 90.8±1.8 89.0±1.7 90.2±1.4 91.1±1.6 89.8±1.1 90.0±2.3
sci.crypt 93.3±3.1 56.3±3.6 69.6±2.1 76.1±3.0 78.6±2.1 79.5±1.4 77.9±1.5 77.8±2.6 78.6±2.3 81.9±3.7
sci.electronics 87.5±3.1 50.6±2.0 87.1±1.7 55.5±1.4 90.1±2.2 92.1±0.8 93.2±0.4 92.7±0.5 93.1±0.7 91.4±2.9
sci.med 90.5±2.4 50.6±1.9 62.1±3.9 78.4±1.8 78.2±2.7 85.5±0.9 84.2±0.7 84.7±1.3 83.8±1.4 79.8±3.2
sci.space 98.9±2.9 54.7±2.5 75.7±3.4 81.7±1.5 83.9±1.5 79.8±1.3 79.5±2.8 80.1±2.6 80.3±2.6 88.9±2.6
soc.religion.christian 87.5±3.4 49.2±3.4 59.0±4.7 81.5±2.2 81.4±2.0 79.9±1.5 80.7±1.7 80.1±1.4 80.5±2.0 79.6±3.6
talk.politics.guns 88.6±2.8 47.7±3.8 58.5±6.0 74.7±1.9 75.8±3.5 76.1±1.9 78.2±1.8 77.0±2.4 77.3±1.0 77.7±4.9
talk.politics.mideast 97.4±3.9 55.9±2.8 73.6±2.6 79.9±3.4 80.6±2.0 83.9±1.0 84.0±1.2 83.8±1.0 83.3±2.0 82.0±3.4
talk.politics.misc 88.8±4.5 51.5±3.7 70.4±3.6 69.9±2.1 72.3±2.8 76.5±1.5 75.8±2.3 76.8±2.2 75.6±1.9 78.0±5.0
talk.religion.misc 82.5±2.2 55.4±4.3 63.3±3.5 74.0±3.8 73.9±2.6 74.4±1.5 76.2±1.7 76.2±1.5 74.3±1.2 80.1±3.6

Average 87.2±2.8 51.5±3.3 67.9±3.1 72.5±2.7 77.4±2.2 80.1±1.4 80.5±1.5 80.3±1.5 80.2±1.5 81.7±3.2

Table 2: Mean and std. error of classification accuracy (in %) along with average accuracy of the algorithms for the 20 News-
groups datasets. The best results in each row are shown in bold. Higher accuracies are better.

Augmentation MUSK2 FOX TIGER ELEPHANT

NoAug 88.3±1.7 80.5±1.3 90.1±2.9 92.2±2.3
20% Drop 89.9±3.2 83.2±2.8 90.3±3.3 94.5±3.1
20% Mask 95.1±2.0 85.3±3.2 91.1±2.4 95.0±2.4
20% Replace 92.7±3.1 85.3±1.6 91.0±1.5 96.8±2.0
20% Random 91.6±3.8 81.4±2.2 90.7±3.0 93.9±1.5

Table 3: Ablation study of bag augmentations on 4 datasets.

Structure MUSK2 FOX TIGER ELEPHANT
NoGraph 80.2±1.4 65.8±2.1 62.1±4.2 69.2±3.6
WithGraph 95.5±2.1 85.1±1.3 91.2±1.2 97.5±1.5

Table 4: Ablation study of bag structure generation.

performance. For example, the average accuracy of SMILES
is better than B-Graph by 5.5%, MI-SDB by 9.8%, mi-
Graph by 19.3%, respectively.

Ablation Analysis
Here we want to prove that the augmentation selection pol-
icy and the intensity of augmentations really matter to the
final results. Note that we fixed one of the augmentation as
NoAug (i.e. X̌ = X) and all the other augmentation meth-
ods require a hyper-parameter “aug ratio” that controls the
portion of instances/elements that are selected for augmenta-
tion. The “aug ratio” is set to a constant in every experiment
(e.g., 20% by default). We perform an ablation study of dif-
ferent augmentation polices on four datasets MUSK2, FOX,
TIGER, and ELEPHANT and intensities on FOX as shown
in Table 3, Table 5 respectively. We conclude that: augment-
ing the bag data indeed boosts the performance of the pro-
posed algorithm; the choice of “aug ratio” has a considerable
effect on the final performance and the classification perfor-

Aug Ratio Drop Mask Replace Random
10% 83.0±1.3 84.5±2.1 81.3±3.2 82.1±1.7
20% 83.2±2.8 85.3±3.2 85.3±1.6 81.4±2.2
30% 82.5±2.0 85.0±4.1 85.5±1.6 82.0±0.3
40% 76.1±1.6 83.5±1.9 84.1±3.1 81.4±2.7
50% 73.7±1.4 81.3±1.6 82.8±2.0 79.5±1.8

Table 5: Ablation study of the aug ratio of bag augmenta-
tions on FOX dataset.

mance degenerates as the intensity of augmentation grows
overly high. It is inappropriate to apply the same “aug ratio”
to different augmentations.

In addition, we want to analyze the impact of using struc-
ture on learning high-quality bag representation in unsuper-
vised MIL. We conduct an additional ablation study over
SMILES with (named WithGraph) or without (named No-
Graph) bag structure awareness on four datasets MUSK2,
FOX, TIGER, and ELEPHANT, shown in Table 4. From the
Table 4, we observe that the accuracy of WithGraph is better
than NoGraph 15.3%, 19.3%, 29.1%, and 28.3% on these
datasets respectively, which demonstrates the importance of
using structure recognition in multi-instance learning.

Robustness with Injected Noise
We compare SMILES to other sota supervised MIL methods
with clean and injected noises in three datasets COMPO-
NENT, PROCESS, and FUNCTION for the task of biocre-
ative text categorization (Feng et al. 2021). To produce a
noisy setting close to the real world, for each bag in dataset,
there is η chance for it to be corrupted by noise. Specifi-
cally, all the instances x in the noise bag X is corrupted by
g(x; δ), where δ is drawn from Gaussian distributions. Ta-
ble 6 reports the classification accuracy of each method on
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Datasets Methods Clean (η = 0.0) Noise Rate (η)
0.1 0.2 0.3 0.4

COMPONENT

MI-Kernel 86.4 ± 1.1 86.1 ± 1.6 84.7 ± 2.6 83.4 ± 4.2 81.3 ± 2.4
mi-Graph 90.4 ± 2.6 89.7 ± 2.0 88.3 ± 2.4 89.0 ± 1.1 88.5 ± 2.6

mi-FV 91.0 ± 1.5 90.8 ± 2.1 89.1 ± 1.8 89.2 ± 2.7 88.9 ± 2.8
mi-Net 89.5 ± 2.4 89.0 ± 3.0 88.4 ± 2.3 87.6 ± 1.7 87.3 ± 3.4
MI-Net 89.8 ± 2.9 89.3 ± 2.7 88.8 ± 1.0 87.9 ± 2.5 87.3 ± 1.6

Attention 90.8 ± 1.4 90.1 ± 3.2 89.3 ± 2.9 89.1 ± 2.1 88.3 ± 1.9
Gated-Attention 91.1 ± 3.0 90.0 ± 1.6 89.3 ± 4.3 89.4 ± 2.4 88.5 ± 1.8

B-Graph 87.4 ± 2.9 87.1 ± 1.4 86.4 ± 2.1 86.3 ± 1.0 86.0 ± 3.5
MI-SDB 85.3 ± 4.0 84.6 ± 2.8 84.0 ± 3.6 82.6 ± 1.8 81.7 ± 2.9

SMILES 91.1 ± 1.5 90.4 ± 2.4 89.4 ± 2.1 91.0 ± 3.0 89.1 ± 4.1

FUNCTION

MI-Kernel 91.5 ± 2.7 90.6 ± 3.2 89.7 ± 2.6 89.5 ± 1.7 87.4 ± 1.5
mi-Graph 92.3 ± 3.3 91.9 ± 1.7 91.6 ± 4.1 91.7 ± 2.6 90.9 ± 2.8

mi-FV 94.0 ± 2.1 93.8 ± 1.6 93.4 ± 1.4 93.7 ± 2.8 92.6 ± 2.5
MI-Net 91.6 ± 3.2 91.6 ± 1.6 91.3 ± 2.4 90.8 ± 1.9 89.9 ± 1.4
mi-Net 91.7 ± 2.1 91.6 ± 2.2 91.4 ± 4.0 91.0 ± 1.7 90.3 ± 2.8

Attention 94.3 ± 1.7 94.0 ± 1.2 93.6 ± 1.6 92.6 ± 1.6 92.3 ± 1.2
Gated-Attention 94.6 ± 4.0 94.1 ± 0.7 93.5 ± 1.2 92.9 ± 2.9 92.6 ± 2.5

B-Graph 91.9 ± 2.3 91.5 ± 2.6 91.4 ± 3.1 91.4 ± 2.9 91.0 ± 2.2
MI-SDB 81.7 ± 2.7 74.0 ± 2.3 72.1 ± 1.9 73.0 ± 3.5 71.1 ± 2.8

SMILES 94.7 ± 2.7 94.1 ± 2.1 93.7 ± 2.3 94.6 ± 3.2 92.7 ± 1.2

PROCESS

MI-Kernel 92.3 ± 2.1 92.1 ± 2.3 91.5 ± 1.6 91.9 ± 2.8 90.8 ± 1.5
mi-Graph 93.5 ± 2.7 93.1 ± 2.0 92.8 ± 1.4 91.0 ± 3.1 90.6 ± 2.1

mi-FV 94.3 ± 1.7 94.0 ± 2.3 92.9 ± 3.0 92.6 ± 2.2 91.7 ± 2.6
MI-Net 94.1 ± 1.5 93.8 ± 1.6 93.7 ± 2.5 93.5 ± 2.3 92.7 ± 1.9
mi-Net 94.7 ± 3.0 94.2 ± 2.9 93.5 ± 1.6 93.0 ± 2.0 92.8 ± 2.4

Attention 95.7 ± 2.7 95.5 ± 1.3 95.3 ± 2.2 94.9 ± 1.5 94.5 ± 2.3
Gated-Attention 95.9 ± 1.7 95.6 ± 3.4 95.5 ± 1.3 95.3 ± 2.8 94.2 ± 2.0

B-Graph 93.9 ± 2.9 93.5 ± 2.4 93.2 ± 3.2 92.4 ± 1.4 91.9 ± 2.7
MI-SDB 84.8 ± 2.0 84.0 ± 1.7 83.1 ± 1.9 82.5 ± 3.5 75.5 ± 2.6

SMILES 96.2 ± 3.6 96.2 ± 1.5 95.5 ± 2.1 95.9 ± 1.8 95.8 ± 2.2

Table 6: Test accuracies (%) of different methods on benchmark datasets with clean or noise (η ∈ [0.1, 0.2, 0.3, 0.4]). The
results (mean±std) are reported and the best results are boldfaced.

these three datasets. We can also observe that our proposed
unsupervised bag representation method is clearly superior
to other compared supervised MIL baselines.

In most cases, we produce a substantial improvement.
On COMPONENT and FUNCTION, light noise (e.g., 10%,
20% noise) does not lead to much drop in the classification
results. They are even comparable to other sota methods on
the clean datasets. On PROCESS, when there is 30% noise,
we improve the accuracy by the best sota baseline by nearly
0.6%, and when there is 40% noise, we improve the accuracy
by the best sota method by 1.3%. This indicates that when
the noise becomes more complex, the performance gap be-
tween the best supervised algorithm and SMILES further in-
crease. Therefore, contrastive-based bag augmentation is a
simple yet very effective trick to prevent noise. To summa-
rize, compared with supervised baselines, SMILES produce
improvements on the clean datasets. Moreover, when there
are noises in data, SMILES is more robust than these super-
vised counterparts.

Conclusion
Self-supervised learning has seen success in various do-
mains, but little progress has been made for the multi-
instance data. In this paper, we proposed a self-supervised
multi-instance learning method SMILES focused on learning
the representations of bags that are effective in downstream
classification tasks. SMILES provides a unified approach to
meet a number of fundamental postulates including permu-
tation invariance, structure-awareness and robustness, while
conducts theoretical analysis towards understanding of our
framework. Specifically, we augment the bags and train the
encoder to maximize the agreement of two jointly sampled
positive bag pairs to yield robust MIL model without label.
To capture topological structures of bags, our framework
learns graphs for the bags and these graphs are optimized
together with message passing layers and ordered weighted
averaging operator towards contrastive loss. Experiment re-
sults verify the state-of-the-art performance of our proposed
framework in both generalizability and robustness.
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Solving the multiple instance problem with axis-parallel
rectangles. Artificial Intelligence, 89(1): 31–71.
Feng, L.; Shu, S.; Cao, Y.; Tao, L.; Wei, H.; Xiang, T.; An,
B.; and Niu, G. 2021. Multiple-instance learning from sim-
ilar and dissimilar bags. In ACM SIGKDD Conference on
Knowledge Discovery & Data Mining, 374–382.
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