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Abstract

Knowledge Tracing (KT) is a crucial task in the field of on-
line education, since it aims to predict students’ performance
on exercises based on their learning history. One typical solu-
tion for knowledge tracing is to combine the classic models in
educational psychology, such as Item Response Theory (IRT)
and Cognitive Diagnosis (CD), with Deep Neural Networks
(DNN) technologies. In this solution, a student and related
exercises are mapped into feature vectors based on the stu-
dent’s performance at the current time step, however, it does
not consider the impact of historical behavior sequences, and
the relationships between historical sequences and students.
In this paper, we develop DAKTN, a novel model which as-
similates the historical sequences to tackle this challenge for
better knowledge tracing. To be specific, we apply a pool-
ing layer to incorporate the student behavior sequence in the
embedding layer. After that, we further design a local acti-
vation unit, which can adaptively calculate the representation
vectors by taking the relevance of historical sequences into
consideration with respect to candidate student and exercises.
Through experimental results on three real-world datasets,
DAKTN significantly outperforms state-of-the-art baseline
models. We also present the reasonableness of DAKTN by
ablation testing.

Introduction

With the development of the online education system,
knowledge tracing (KT), has become an important task in
educational psychology, where it aims to predict whether a
student can answer an exercise correctly according to his (or
her) learning history [VanLehn 1988]. The results of knowl-
edge tracing can enable a number of applications such as ex-
ercise recommendation [Tang et al. 2019; Zhou et al. 2018c]
and adaptive learning [Liu et al. 2019].

Approaches have been proposed for knowledge tracing
can be categorized as traditional methods, RNN-based meth-
ods and DNN-based methods. The traditional methods, such
as IRT [Embretson and Reise 2004] and KTM [Vie and
Kashima 2019], rely on a designed interaction function and
statistical methods (e.g., maximum likelihood estimation).
However, these methods often require professional expertise
and manual labelling.
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Therefore, RNN-based methods, such as DKT [Piech
et al. 2015], are explored to solve the problem of knowl-
edge tracing more automatically without excessive manual
effort. However, similar to applying RNN in recommenda-
tion problems [Zhou et al. 2018a], it still exists some limi-
tations for knowledge tracing problems. Different from the
text sequence in the NLP task, the historical behavior se-
quences of students are not strictly continuous (e.g., a stu-
dent may do some exercises online, and then complete the
school assignments in private), which leads to the potential
discontinuous behavior in the input sequence.

DNN-based methods, such as NCDM [Wang et al. 2020]
and CDGK [Wang et al. 2021], are then designed for knowl-
edge tracing. In these models, a student and related exer-
cises are mapped into feature vectors based on the student’s
performance at the current time step. However, these mod-
els have two limitations: (1) Since the DNN model is not as
easy to handle sequence type data as the RNN model, the ex-
isted DNN-based methods do not consider the impact of the
historical sequence of students and exercises on the predic-
tion results. (2) Although the historical sequence is critical
in knowledge tracing, the exercises that students have com-
pleted may involve some knowledge concepts, not all knowl-
edge concepts. Therefore, the past behavior will make differ-
ent contributions to predict the current exercise. As shown in
Figure 1, the knowledge tracing model predicts the answer
of current exercise according to the historical sequence and
attention intensity.

In this paper, we present a novel model DAKTN for
knowledge tracing with consideration of the effort of histori-
cal behavior sequences. DAKTN applies a designed pooling
layer, which can map the historical behavior sequence into
a fixed-length feature vector. Also, considering the second
limitation mentioned above, DAKTN adaptively calculates
the feature vector according to the candidate student and re-
lated exercise, by introducing an activation unit to pay atten-
tion on the historical sequence. In summary, our key contri-
butions are listed as follows.

* We point out the limit of DNN-based methods for knowl-
edge tracing without historical behavior sequences and
design a novel Deep Attentive Model for Knowledge
Tracing (DAKTN). DAKTN applies a designed pooling
layer, which can consider the historical behavior infor-
mation in the knowledge tracing model.
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Figure 1: Illustration of knowledge tracing. The student chooses some exercises to answer and gets the scores. KT can predict
the score of the new exercise by combining the student behavior sequences and the knowledge concepts.

* To better understand the historical information, and adap-
tively learn the representation of students and exercises
from historical behavior sequences, we introduce an ac-
tivation unit which can learn corresponding weights ac-
cording to the current students and exercises.

We provide empirical evidence of DAKTN by ex-
periments on three real-world datasets, to show our
method significantly outperforms the state-of-the-art re-
lated models by improving 5.37% on average with AUC.
We also conduct experiments about ablation testing and
sensitivity analysis, which can show the reasonableness
of our model.

The rest of this paper is organized as follows. We show the
related work in Section 2, and present the problem formula-
tion in Section 3. After describing our method in Section 4,
we provide the experimental results in Section 5, and con-
clude in Section 6.

Related Work

Generally, previous knowledge tracing methods can be cat-
egorized into three types: traditional methods, RNN-based
methods and DNN-based methods. The traditional methods
design the interaction function according to classic theories
in educational psychology. The most typical methods in-
clude Deterministic Inputs, Noisy and Gate Model (DINA)
[de la Torre 2009], which considers that the student can an-
swer the exercise correctly only if he (or she) has mastered
all necessary knowledge concepts for one exercise, and Item
Response Theory (IRT) [Embretson and Reise 2004], which
designs an interaction function to capture the relationships
among the students, exercises and knowledge concepts. An
improved IRT model is MIRT [Adams, Wilson, and chung
Wang 1997], which is the multidimensional case of IRT.
With the development of deep learning [Hunt et al. 1992;
Silver and Huang 2016], RNN-based methods have been
proposed to solve KT more automatically by applying a re-
current neural network or LSTM. For example, DKT [Piech
et al. 2015] represents the learning process of students with
the hidden states of RNN. DHKT [Wang, Ma, and Gao
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2019] extends DKT by considering both the knowledge con-
cepts and the exercises, and DKVMN [Zhang et al. 2017]
applies a key-value memory network to store the represen-
tation of knowledge concepts. Another way to extend DKT
is to train a pre-training embedding as the prior experience
for the model. For example, PEBG [Liu et al. 2020] uses
pre-training question embeddings to exploit the information
between exercises and knowledge concepts.

Different from the text sequence in the NLP task, the his-
torical behavior sequences of students are not strictly con-
tinuous in KT, which leads to the potential discontinuous be-
havior in the input sequence. Therefore, DNN-based meth-
ods redesign the model structure by applying the deep neural
network. The typical methods include NCDM [Wang et al.
2020], which incorporates DNN to learn the exercising in-
teractions, and CDGK [Wang et al. 2021], which considers
the knowledge concept aggregation to extend the NCDM.
However, DNN-based methods do not consider the impact
of the historical sequence of students and exercises on the
prediction results. In this way, the representation vector will
be a bottleneck to express the traits of students and exercises
correctly.

Problem Formulation

A learning system £ [Anderson et al. 2014] consists of sev-
eral behavior sequences. Each sequence represents a stu-
dent’s past exercising interactions, where one interaction
contains an exercise and the score the student left on the
exercise. Besides, each exercise also contains several knowl-
edge concepts. Formally, £ is defined as follows.

Definition 1 (Learning System) Let S be the set of all dis-

tinct students and E be the set of all distinct exercises,

where S = {s1,892,...,8m} and E = {ej,eq,...,en}.

A learning System L = Uf\il L; is a set of behavior se-

quences of student s;, which can be explicitly expressed as
T

Li =U,_, (es,1¢); where

* R= Urle {r:} is a set of scores, where 4 is correspond-
ing to the score on the time step t, and can be formulated



as:
| 1,if exercise is answered correctly,
"t =\ 0, otherwise.
o Let K = {ki,ko,...,kx} be the set of all distinct

knowledge concepts. So the matrix denotes the relation-
ship between the exercises and the knowledge concepts
can be expressed as Q = {Qi;} y . jc- Similar to the re-
sponse 4, Q;; can be expressed as:

{

Knowledge tracing is a model to measure students’ mas-
tery on knowledge concepts according to the student be-
havior sequences. As shown in Figure 1, after the student
practiced some exercises, knowledge tracing can predict the
student’s performance on exercises that have not been prac-
ticed. We now define the knowledge tracing problem.

1, if exercise e; contains knowledge concept k;
0, otherwise.

Qij

Problem 1 Given a learning system L, which can be ex-
pressed as L = Uﬁl U;l (er,7¢); the goal of our
knowledge tracing problem is to predict the probability
p(rry1 = 1| erqq, L) that student s; will correctly answer
the exercise e on the next time step.

Method

Effective knowledge tracing models involve extracting tar-
geted information from historical student behaviors. Fea-
tures that depict students and exercises are the basic ele-
ments in the KT modeling of learning systems. In this sec-
tion, we will present our Deep Attentive Knowledge Tracing
Network (DAKTN) which can mine information from these
features.

Feature Representation

To solve the knowledge tracing problem, we use three kinds
of features, which can be classified as basic student features,
basic exercise features and attribute features. The details are
listed as follows.

Basic student features. Each student can be normally
characterized with high-dimensional sparse binary features
through encoding. Mathematically, the encoding vector of -

th student is formularized as s; € {0,1}". M denotes the
dimensionality of the student features, which is equal to the
number of distinct students.

Basic exercise features. Each exercise can be similarly
represented as e_; € {0, 1}N through one-hot encoding. N
denotes the dimensionality of the exercise features, which is
equal to the number of distinct exercises.

Attribute features. Besides the basic student features and
basic exercise features, data in knowledge tracing tasks also
contain features related to the other information in the learn-
ing system, such as the average time of students answering
questions, the attempt count, the school id and so on. The at-
tribute features can be concatenated as x = [t1,ta,. .., ts],
where the element t; can be divided into the following two
situations:
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* t; can be transformed into one-hot encoding if the i-th
feature is categorical (e.g., school id).

* t; can be represented as a scalar value if the i-th feature
is numerical (e.g., the average time of students answering
questions).

Base Model

Firstly, we introduce a base model, which combines the IRT
theory in educational psychology and DNN, and also em-
ployed in [Wang et al. 2020, 2021]. It shares an Embedding
Layer and Multilayer Perceptron (MLP) paradigm, as shown
in Figure 2. To be specific, it consists of the following sev-
eral parts:

Embedding layer. According to the Item Response The-
ory (IRT) [Embretson and Reise 2004] in educational psy-
chology, the core knowledge tracing vector for the student
s; and the exercise e; can be expressed as:

N — — —
Zij :Qjo(Mi_Dj> X aj, 9]

where o is element-wise product, ); indicates the knowl-
—

edge concepts contained in the exercise e;, M; represents
—

the student’s mastery on each knowledge concept, D; rep-
resents the difficulty of each knowledge concept in the exer-
cise, and «; indicates the discrimination of the exercise.

As the inputs, student feature 5; and exercise feature e_;»,
are represented as one-hot encoding, then the base model
applies the embedding layer to transform them into the IRT-
related features mentioned above. Explicitly, the IRT-related
features can be expressed as:

N
Q; = ¢; xQ, @)
— —
M,=o (si ><A) , 3)
where the matrix Q is pre-labelled by experts, A € RM*K

is a trainable matrix, and o represents the sigmoid activation
—
function. Similarly, the difficulty vector D; can be expressed

—

asDj =0 e? xB ), where B € RV*X ig a trainable ma-
trix, and the discrimination value «; can be expressed as
o =0 (ej xC), where C € RV*1 is also a trainable ma-
trix.

Positive Multilayer Perceptron (PMLP). Given the IRT-
related dense representation vector 277, the base model com-
bines monotonicity assumption [Reckase 2009; Samek et al.
2017] and fully connected layers to output the probability

pi; that student s; answers the exercise e; correctly. The de-
tails are listed as follows

* A single layer feedforward neural network is used to out-
put the result, which can be formulated as:

pi=f([Wxa+ella), @

—
where f is the non-linear activation function, W and §
are trainable parameters, and a;; is the concatenation of
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Figure 2: Illustration of the base model. The base model combines the IRT theory in educational psychology and Deep Neural

Network by sharing an Embedding and MLP paradigm.

the attribute features. The number of layers of the fully
connected layer can be adjusted according to the situa-
tion.

The monotonicity assumption holds that the probability
of a student answering the exercise correctly increases
monotonically with the student’s mastery of the knowl-
edge concepts. The base model restricts each element of
‘W to be positive to satisfy the monotonicity assumption,
so that the gradient can be positive during the process of
training.

The Structure of Deep Attentive Knowledge
Tracing Network

The base model obtains a representation vector of IRT-
related features by mapping from one-hot encoding of stu-

- =
dents and exercises to the trait vectors M;, D; and «; re-
spectively, as shown in Equation (3). These representations
only consider the current student and exercise, in regardless
of the student behavior sequence. In this way, the IRT-related
vector will be a bottleneck to express student and exercise
traits truly. Indeed, the exercises that have been answered
correctly by which students in the past can help construct
the difficulty vector of the exercises. Similarly, the student
has mastered which exercises in the past can also help build
the student’s mastery vector on knowledge concepts.

We design a novel model named Deep Attentive Knowl-
edge Tracing Network (DAKTN) to incorporate the student
behavior sequence in the embedding layer. Also, consid-
ering that although the student behavior sequence is criti-
cal in knowledge tracing, the exercises that students have
completed may involve several knowledge concepts, not all
knowledge concepts. Therefore, the past behavior will make
different contributions to predict the current exercise, as
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shown in Figure 1. Naturally, we introduce an activation
unit, with which the representation of IRT-related features
can vary adaptively according to different candidate students
and exercises, as shown in Figure 3. Details are introduced
as below.

Pooling layer. As to the first limitation mentioned in Sec-
tion 1, we design a pooling layer to incorporate the historical
sequence in our model. Notice that different students have
different numbers of behaviors, and different exercises have
been answered by different numbers of students, which will
generate a list of embedding vectors with different lengths.
As positive multilayer perceptrons can only handle fixed-
length IRT-related vectors, we transform the list of embed-
ding vectors via a pooling layer to get a fixed-length vector
inspired by the practice in recommender system [Coving-
ton, Adams, and Sargin 2016], which can be expressed as
the following equations:

— . — — —
M; = pooling <Mi17 M, ..., MiN) ) %)
— . — — —
Dj = pOO]ll’lg (Djl7 D‘7‘27 e ;DjN) 5 (6)

where N represents the length of the historical sequence.
Sum pooling and average pooling are two kinds of pool-
ing layers which are most commonly used. Sum pooling ap-
plies element-wise sum operations to the list of embedding
vectors, while average pooling applies element-wise average
operations.

Weighted Sum Pooling. For the second limitation of dif-
ferent effects from different historical sequences, we extend
the pooling layer with weighted sum pooling. The pooling
layer can incorporate the student behavior sequence in the
embedding layer. Instead of expressing all historical behav-
ior with the same vector, our model adaptively calculates
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Figure 3: Description of knowledge tracing by DAKTN. Compared with the base model, it incorporates the student behavior
sequence in the embedding layer. DAKTN also introduces an activation unit, with which the representation of IRT-related
features varies adaptively according to different candidate students and exercises.

the representation vector of IRT-related features by taking
the relevance of historical sequences into consideration with
respect to candidate student and candidate exercise.

Figure 3 illustrates the architecture of our model DAKTN.
Specifically, DAKTN introduces a local activation unit to
conduct a weighted sum pooling, which can adaptively cal-
culate the IRT-related vectors:

—

Vi=g (pCopt 208 )
N
— = = — — =
g(pC7p17p27"'7pN) :Zwk'pk7 (8)
k=1
v =h([pe—pellpclim] xE),  ©

5
where || is a concatenation operator, V; can correspond to
— —

D; and M; according to exercise sequence and student se-

quence respectively, {pi , pz, ey p?v} is the list of embed-

ding vectors of behavior sequence with length of N, p_é is the
embedding vector of the candidate student or the candidate
exercise, h (+) is a feedforward network which outputs the
activation weight. Different from traditional attention mech-
anisms, we concat the element-wise difference vectors and
two input embedding vectors to reduce the loss of informa-
tion, which is inspired by DIN [Zhou et al. 2018b].

We train DAKTN using cross entropy between the real
score 1, and the predicted probability y;;. The loss function
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can be expressed as:

=3 (rilogyij + (1 —re)log (1 —yiy)) . (10)
i

Experiments
In this section, we conduct experiments to evaluate the
performance of our model DAKTN on knowledge tracing.
Specifically, we answer the following three research ques-
tions.

RQ1: How do DAKTN and other baselines perform on
real-world datasets?
RQ2: How do each module of DAKTN contribute to the
model performance?

RQ3: How do the sensitivity of different hyperparameters
affect the prediction results?

We describe the datasets and baselines in Section 5.1 and
5.2 respectively. After that, we introduce some implemen-
tation details of the experiments in Section 5.3, and present
the explanations to answer the above research questions in
Section 5.4 ~ 5.6 respectively.

Datasets

In our experiments, we use the following three real-world
datasets. The basic statistics of the datasets are summarized
in Table 1.

ASSIST09 and ASSIST12 are both collected by the AS-
SISTments online tutoring system [Feng, Heffernan, and
Koedinger 2009]. ASSIST09 provides 190 thousand scores



Dataset ASSIST09  ASSIST12 EdNet
Students 4,163 24,432 5000
Exercises 17,746 46, 394 13,169
Knowledge Concepts 123 265 188
Answers 190, 320 1,867,167 222,141
KC per Exercise 1.19 1.02 2.28
Positive Label Rate 63.80 % 69.60 % 59.69 %

Table 1: Dataset summary.

answered by 4 thousand students on 17 thousand exercises
with 123 knowledge concepts. ASSIST12 contains 24 thou-
sand students, 46 thousand exercises with 265 knowledge
concepts, and 1.8 million records.

EdNet [Choi et al. 2020] is an open dataset collected by
a multi-platform Al tutoring service Santa. We use EdNet-
KT1 dataset in our experiments, which contains 5 thousand
students, 13 thousand exercises with 188 knowledge con-
cepts, and 222 thousand records.

Baselines

All of the baselines and DAKTN use the same datasets in
our experiments which have been described in Section 5.1.
The compared models can be classified into the following
three groups.

Traditional methods. These methods predict the stu-
dents’ scores according to the theory of educational psychol-
ogy. We evaluate the following methods:

e IRT [Embretson and Reise 2004] uses parameter estima-
tion to learn the traits which affect students’ scores.

e KTM [Vie and Kashima 2019] applies the factorization
machine to predict students’ scores.

RNN-based methods. Considering that the data for
knowledge tracing are consisted of sequences, these meth-
ods apply Recurrent Neural Network (RNN) to predict the
results.

e DKT [Piech et al. 2015] uses recurrent neural network to
model students’ mastery on knowledge concepts.

e DHKT [Wang, Ma, and Gao 2019] is an extension model
of DKT, which considers both the knowledge concepts
and the exercises.

* PEBG [Liu et al. 2020] uses pre-training question em-
beddings to improve DKT.

DNN-based methods. These methods apply Deep Neural
Network to capture non-linear interactions between exercise
features, student traits and knowledge concepts. But the his-
torical sequences are not addressed in these methods.

* NCDM [Wang et al. 2020] uses artificial neural network
to make prediction.

* CDGK [Wang et al. 2021] is an extension model of
NCDM, which considers the aggregation of knowledge
concepts to improve the performance.
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Implementation Details

In the step of data preprocessing, we first filter students who
have answered fewer than 5 exercises to ensure each student
with enough learning data. Then each dataset is divided into
three parts, namely, 70%, 10% and 20% for training, vali-
dating and testing respectively. Note that different datasets
have different attribute features. Thus, for ASSIST09 and
ASSISTI12 datasets, we select the teacher id, school id and
average response time as attribute features. For the EdNet
dataset, we only select the average response time as an at-
tribute feature.

As to the implementation parameters, we initialize the pa-
rameters with batch normalization [Ioffe and Szegedy 2015],
and use the Adam algorithm [Kingma and Ba 2015] to opti-
mize our model. The dimensions of the positive full connec-
tion layers in Equation (4) are 256, 256, 1 respectively. We
set the learning rate as 0.001, and use dropout with p = 0.4
to alleviate overfitting. We repeat the experiment five times
on each model, and evaluate the performance through the
average test accuracy, RMSE and AUC.

All models are implemented by Tensorflow 2.3 using
Python 3.7, and all experiments are executed on a Cen-
tOS Linux server with the main configuration of GPU RTX
2080Ti, CPU@3.30GHz, 8GB RAM, and 1TB SSD Disk.

Performance Prediction

Table 2 shows the experimental results of our model
DAKTN and other baseline models with three evaluation
metrics including accuracy, RMSE (root mean square error)
and AUC (area under the curve) [Bradley 1997]. The thresh-
olds of accuracy are set based on the maximum value of F1-
score.

From Table 2, we can observe that our model DAKTN
works best. Detailedly, DAKTN achieves an AUC of 0.8466
on the ASSISTO09 dataset, which outperforms the runner-
up result by 4.34%. On the ASSIST12 dataset, DAKTN
achieves an AUC of 0.7908, which improves the perfor-
mance by 6.46% compared with the runner-up result. As
for the EdNet dataset, DAKTN also improves the runner-
up result by 5.30% with the AUC result of 0.8123. Besides,
our model also outperforms other baselines in accuracy and
RMSE. Thus, we answer RQ1.

We also observe that the RNN-based methods, which con-
sider the historical sequence in the model, achieve an aver-
age better performance than the DNN-based methods on all
metrics including AUC, RMSE and accuracy. This observa-
tion can also illustrate the importance of historical perfor-
mance sequences in knowledge tracing task, and prove that
classical RNN structure cannot handle such non-strictly con-
tinuous sequences with a good performance.

Ablation Study

To see how the historical performance sequences and
weighted sum pooling affect model performance, we run
DAKTN on three datasets to show our results of ablation
study. We set four ablation modules, and the results are pre-
sented in Table 3. The details of the four ablation modules
are listed below:



Category | Method | ASSIST09 ASSISTI12 EdNet
‘ ‘ Accuracy RMSE  AUC  Accuracy RMSE AUC  Accuracy RMSE  AUC
Traditional IRT 0.6502 0.4673 0.6744 0.6137 0.4855  0.6308 0.5981 0.5012  0.6022
KTM 0.7218 0.4463 0.7141 0.6911 0.4613  0.6882 0.6692 0.4679 0.6719
DKT 0.7179 0.4415 0.7252 0.6842 0.4602  0.6993 0.6889 0.4629 0.6810
RNN-based | DHKT 0.7339 0.4274  0.7458 0.7298 0.4308 0.7276 0.7126 0.4364 0.7219
PEBG 0.7992 0.4091 0.8032 0.7507 0.4211 0.7535 0.7538 0.4240 0.7593
NCDM 0.7208 0.4466  0.7192 0.6804 0.4606  0.6895 0.6728 0.4651 0.6704
DNN-based | CDGK 0.7281 0.4392 0.7344 0.7018 0.4454 0.7172 0.7012 0.4581  0.7006
DAKTN | 0.8387 03872 0.8466  0.8204  0.4030 0.8181  0.8080  0.4056 0.8123

Table 2: The average test accuracy, RMSE and AUC of student performance prediction on three datasets. Best results are in

bold, and runner-up results are underlined.

* RHS (Remove Historical Sequences) does not consider
both the historical exercise sequences and the historical
student sequences.

¢ RHES (Remove Historical Exercise Sequences) does not
consider the historical exercise sequences.

* RHSS (Remove Historical Student Sequences) does not

when the length reaches a certain level, the effect of the
model tends to be stable, which can explain the importance
of the pooling layer in the model component, and also prove
that DAKTN can adaptively handle sequence features with
weighted sum pooling. Thus, we answer RQ3.

consider the historical student sequences. 0850 11 o assisTO9
» RSPSP (Replace Weighted Sum Pooling with Sum Pool- 0825 { ASSIST12
ing) applies the sum pooling to generate the IRT-related o Edilet —
vectors. Y 0.800 1 /
Except for the settings mentioned above, other compo- % 0.775 1 /4’
nents of the model and experimental settings remain un- ® 0750 e
changed. g
Z 0725 /
Model \ ASSIST09 ASSIST12 EdNet 0.700 4
RHS 0.7192 0.6895 0.6704 0.675 1 /
RHES 0.7569 0.7421 0.7270 : ' ns n - nx
lss};’SSSP 8;?;; 8;323 8;?33 Length of the historical sequence
DAKTN ‘ 0.8466 0.8181 0.8123 Figure 4: Prediction performance with different lengths of

Table 3: Results of ablation testing on the average test AUC.

From Table 3, we can observe that each component re-
moved will cause a decrease in performance, which indi-
cates the effect of each component of the model. We can
also observe that the absence of the weighted sum pooling
hurts the precision worse, which indicates that our model
DAKTN is reasonable.

Sensitivity Analysis

To investigate the sensitivity of our model DAKTN, we
evaluate the impact of different lengths of the historical se-
quences on the prediction performance. For the case of in-
sufficient historical sequences, we set a null value in the ex-
periments. From Figure 4, we can observe that the average
AUC trends for different lengths of the historical sequences
differ greatly. When the sequence length of the historical se-
quence is small, the performance of the model is poor, but
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the historical sequences.

Conclusion

Knowledge tracing is a crucial task in the field of education
analysis and evaluation. The historical behavior sequences
which contain much learning information, are useful and
necessary to be analyzed. In this paper, we present a novel
model DAKTN, which combines DNN and historical behav-
ior sequences for better performance. By a designed pool-
ing layer, DAKTN can map the historical behavior sequence
into a fixed-length feature vector. Besides, it can adaptively
calculate the feature vector according to the candidate stu-
dent and exercise, by introducing an activation unit to pay
attention on the historical sequence. Experimental results of
DAKTN on real-world datasets show that our model signif-
icantly outperforms the state-of-the-art related models. We
also provide empirical evidence with ablation tests to prove
that the optimization is critical to the result of our model.
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