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Abstract

Hierarchical reinforcement learning (HRL) proposes to solve
difficult tasks by performing decision-making and control
at successively higher levels of temporal abstraction. How-
ever, off-policy HRL often suffers from the problem of a
non-stationary high-level policy since the low-level policy is
constantly changing. In this paper, we propose a novel HRL
approach for mitigating the non-stationarity by adversarially
enforcing the high-level policy to generate subgoals compat-
ible with the current instantiation of the low-level policy. In
practice, the adversarial learning is implemented by training a
simple state conditioned discriminator network concurrently
with the high-level policy which determines the compatibility
level of subgoals. Comparison to state-of-the-art algorithms
shows that our approach improves both learning efficiency and
performance in challenging continuous control tasks.

Introduction

Hierarchical reinforcement learning (HRL), in which hierar-
chical policies learn to perform decision-making at succes-
sively higher levels of temporal and behavioral abstraction,
has long held the promise to tackle complex problems with
long-term credit assignment and sparse rewards. Among the
prevailing HRL paradigms, the goal-conditioned HRL frame-
works (Dayan and Hinton 1992; Schmidhuber and Wahn-
siedler 1993; Kulkarni et al. 2016; Vezhnevets et al. 2017;
Nachum et al. 2018; Levy et al. 2019; Zhang et al. 2020;
Li et al. 2021) have achieved remarkable success. In goal-
conditioned HRL, a high-level policy breaks the original task
into a series of subgoals that a low-level policy is incentivized
to reach. The effectiveness and efficiency of goal-conditioned
HRL relies on reasonable and semantically meaningful sub-
goals providing a strong supervision signal to the low-level
policy.

Nonetheless, off-policy training of a hierarchy of policies
remains a key challenge due to the non-stationary state tran-
sitions induced by the hierarchical structure. Specifically,
the same high-level action taken under the same state in
the past may result in significantly different low-level state
transitions due to the constantly changing low-level policy
which renders the experience invalid for training. When all
policies within the hierarchy are trained simultaneously, the
high-level transition will constantly change as long as the
low-level policy continues to be updated. However, learning
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hierarchical policies in parallel is still feasible as long as
the high-level policy is able to efficiently adapt itself to the
updated versions of low-level policy, and the hierarchical pol-
icy stabilizes once the low-level policy has converged to an
optimal or near optimal policy. HIRO (Nachum et al. 2018)
and HAC (Levy et al. 2019) have made attempts to address
this problem by relabeling an experience in the past with a
high-level action, i.e., subgoal, to maximize the probability
of the past lower-level actions. In other words, the high-level
action which induced a low-level behavior in the past may be
relabeled to a subgoal which is likely to induce the same low-
level behavior with the current low-level policy. However, the
relabeling approach does not facilitate efficient training of
the high-level policy to comply with the update of low-level
policy, which consistently generates incompatible subgoals
and deteriorates the non-stationarity issue. Such unfit state
transitions in off-policy training lead to improper learning of
the high-level value function, therefore negatively affecting
high-level policy exploration.

In this paper, we present a novel approach for mitigating
the non-stationarity in goal-conditioned HRL. We aim to sig-
nificantly improve the high-level policy’s knowledge of the
low-level’s ability, thus improving the overall learning effi-
ciency and stability. Concretely, we introduce an adversarial
learning paradigm for HRL which enforces the high-level
policy to learn to generate subgoals compatible with the cur-
rent instantiation of the low-level policy. This is motivated
by the assumption that the relabeled subgoals are sampled
from a distribution which is asymptotically approximating
an optimal high-level policy under stationary data distribu-
tion. Consequently the increasing divergence between the
distribution of current subgoals and relabeled subgoals is the
key indication of the non-stationarity. This suggests a con-
jecture that once this distribution divergence is mitigated the
high-level policy naturally achieves stationarity.

To this end, we propose a discriminator network to dis-
tinguish a generated subgoal that may not be reachable by
the low level policy from a relabeled subgoal that we know
is reachable by the low level policy. The high-level policy
plays the role of the generator network that learns to generate
subgoals following a distribution compatible with the current
low level policy.

The proposed adversarial learning thus reduces the shift
and consequently the divergence in data distribution from re-
labeled experience to the current high-level policy behaviour
and encourages the high level policy to generate reasonable
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(a) The non-stationarity problem

(b) Overview of SAGA

Figure 1: (a) The emergence of the non-stationarity problem: since the low-level policy has changed from m;(-|s, g) to 7, (-|s, g),
a subgoal g; generated by a certain high-level policy in the past may not yield the same low-level behavior given the current
low-level policy and consequently renders the experience invalid for training. (b) Overview of SAGA: the high-level policy
generates high-level actions i.e., subgoals every k time steps to guide the low-level policy which interacts with the environment.
Off-policy adversarial learning is performed for high-level policy to improve its stability and sample efficiency with relabeled

subgoals.

subgoals. Fitting to state transitions with compatible high-
level actions effectively improves the accuracy of the high-
level value function and enhances its subsequent exploration
underpinning a stationary hierarchical model.

Preliminaries

In reinforcement learning, the interaction between agent
and environment is modeled as a Markov Decision Process
(MDP) M =< S, A,P,R,~ >, where S is a state space, A
is an action set, P : § x A x § — [0, 1] is a state transition
function, R : § x A — R is a reward function, and y € [0,1)
is a discount factor. A stochastic policy 7(a|s) maps a given
state s to a probability distribution over actions 7 : S — A.
The objective of the agent is to maximize the expected cu-
mulative discounted reward E[>"7° ) v'7¢], where ; is the
obtained reward at the discrete time step .

Two-Layer HRL Framework: We adopt a continuous
control RL setting, modeled as a finite-horizon, goal-
conditioned MDP M =< §,G, A, P, R,y >, where G is
a goal set. We consider a HRL framework comprising two
hierarchies following (Nachum et al. 2018) with a high-level
policy m,,(g|s) and a low-level policy 7;(a|s, ¢g). High-level
policy operates at a coarser layer and generates a high-level
action, i.e., subgoal g; ~ m,(-|s;) € G, every k timesteps
when ¢ = 0 (mod k). A pre-defined goal transition function
gt = f(gt—1,St—1, S¢) is utilized when ¢ # 0 (mod k). The
high level modulates the behavior of the low-level policy
by intrinsic rewards for reaching these subgoals. Following
prior work (Andrychowicz et al. 2017; Nachum et al. 2018;
Zhang et al. 2020), the goal set G corresponds to a subset of
state space, i.e., G C S, and the goal transition function is de-
fined as f(g¢—1, St—1, St) = St—1+gi—1 — S¢. The high-level
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policy aims to maximize the extrinsic reward 7, defined as:

t+k—1

Z vt =0

i=t

h

rh = 1,2,

7 ) )

(D

where r{™ is the reward from the environment.

The low-level policy aims to maximize the intrinsic reward
provided by the high-level policy. It takes the high-level ac-
tion or subgoal g as input, and interacts with the environment
every timestep by taking an action a; ~ m(+|s¢, g;) € A.
To encourage the low-level policy to reach the subgoal g,
an intrinsic reward function measuring the subgoal-reaching
performance is adopted r! = —||s; + g1 — s¢41]|2-

The above goal-conditioned HRL framework allows the
low-level policy to receive learning signals even before
achieving a certain goal-reaching capability and enables
concurrent end-to-end training of the high-level and low-
level policies. However, off-policy training of the above
HRL framework suffers from the non-stationarity problem
of the high-level policy as mentioned in Section 1. HIRO
(Nachum et al. 2018) proposes to relabel the high-level tran-
sition (s¢, gt, fif -1 r$™, s¢41) with a different subgoal §;
to make the actual observed low-level action sequence more
likely to have happened with respect to the current low-level
policy by maximizing T (at:t+k71 ‘St:t+k713 gt:t+k71)~

State-Conditioned Adversarial Subgoal
Generation

In this section, we present our State-conditioned Adversar-
ial subGoal generAtion for hierarchical learning (SAGA),
an adversarial learning approach guiding the high-level pol-
icy generating more reachable subgoals for low-level policy.
The non-stationarity in the previous HRL methods leads to
unstable and inefficient high-level policy training. In this



section, we introduce our adversarial learning approach to
significantly improve the sample efficiency and overall per-
formance of off-policy training of the high-level policy.

Adversarial Learning of High-Level Policy: SAGA inte-
grates adversarial learning and policy training in a two-player
game similarly to Generative Adversarial Networks (GANs)
(Goodfellow et al. 2014), which primarily comprises a sub-
goal generator network G(s;6,) : s — g and a subgoal
discriminator network D(g|s; 64) — {0,1}. As opposed to
the generator defined in GAN which samples from a noise
distribution, our subgoal generator network G(s; 6,) maps
from state space to subgoal space; our subgoal discriminator
network is conditioned on state s reminiscent of conditional
GAN (Mirza and Osindero 2014) where, in contrast, both its
generator and discriminator are conditioned on class labels.
In order to mitigate the non-stationary issue, we aim to reduce
the divergence between the data distribution of the relabeled
experience and the current high-level policy behaviour, with
the assumption that subgoals in the relabeled experience are
“optimal” in learning a stationary hierarchical model. To this
end, the subgoal discriminator tries to distinguish the gener-
ated subgoals from relabeled subgoals of the replay buffer. In
practice, we let the subgoal generator G(s; 6,) be a surrogate
of the high-level actor network.

Although our approach is applicable to general actor-critic
based HRL algorithms, we adopt the TD3 (Fujimoto, Hoof,
and Meger 2018) algorithm for each level in the HRL struc-
ture following HIRO (Nachum et al. 2018) and HRAC (Zhang
et al. 2020). Thus the first objective of the subgoal generator
is to maximize the expected return induced by a deterministic
policy:

@

where D is the replay buffer with the high level action re-
labeled similarly to HIRO, i.e., relabeling g, of the high

level transition (s¢, g¢, Zf;}f -1 ™. seqr) with g; to maxi-
mize the probability of incurred low-level action sequence
(@t k—1|St:t4k—1, Gr:t+k—1), Which is approximated by

maximizing the log probability
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In order to learn the distribution of the subgoal gener-
ator G(s; 0,) over the relabeled subgoal g through adver-
sarial learning, we define a subgoal discriminator network
D(gls; 84) which outputs the probability that subgoal g is an
“optimal” subgoal, i.e., the relabeled subgoals rather than a
subgoal sampled from the generator’s distribution G(s). That
is, we train D(g|s; 04) to maximize the probability of distin-
guishing the data distribution of “optimal” and “sub-optimal”
subgoals. Simultaneously we train G(s; §,) to minimize the
probability that a generated subgoal is classified as a “sub-
optimal” subgoal by the discriminator network, that is, we
minimize log(1 — D(G(s)]s)):

Jodv = mgn max V(D,G) = Eg g~pllogD(gls)]+

Es~pllog(1 — D(G(s)]s))]. (4
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Combining terms defined in Eq. (2) and Eq. (4), the high-
level actor i.e., subgoal generator G(s; 8,) is learned by per-
forming gradient update on parameter 6,

Vo,J = Esup[Ve,G(s) Vg Qn(s, 8)lg=c(s)]
—taayEs~p[Vo,log(1 — D(G(s)[s)], (5)

where o,y is a hyperparameter to weigh the adversarial loss.
The subgoal discriminator is learned by updating 6; with
gradient

Voaav = Es gon[V0, [logD(gls) + log(1 — D(G(s)]s)]]-

Note that SAGA is not enforcing the high level to generate
the exact relabeled actions, but rather encourages the high-
level action to follow a similar data distribution with the one
which is compatible with the current instantiation of the low-
level policy regardless of its effectiveness. Consequently, the
approach attempts to stabilize the hierarchical learning with
minimum risk of hurting exploration.

Related Work

HRL (Dayan and Hinton 1992; Schmidhuber and Wahn-
siedler 1993; Kulkarni et al. 2016; Vezhnevets et al. 2017;
Nachum et al. 2018; Levy et al. 2019; Zhang et al. 2020; Li
et al. 2021) has long held the promise to tackle long-term
credit assignment and sparse reward problems, where the
high-level policy decomposes the task into subtasks whilst the
low-level policy learns how to efficiently solve these subtasks.
The specific way of this decomposition, i.e., how exactly the
high level communicates with the low level, varies in differ-
ent approaches. Various forms of signals from the high level
have been proposed, ranging from using discrete value for op-
tion (Bacon, Harb, and Precup 2017; Fox et al. 2017; Gregor,
Rezende, and Wierstra 2017) or skill (Konidaris and Barto
2009; Eysenbach et al. 2019; Sharma et al. 2020; Bagaria
and Konidaris 2019) selection, to forming a vector within a
learned embedding space as subgoal (Vezhnevets et al. 2017;
Li et al. 2021). However, majority of these approaches are
unable to benefit from advances of off-policy model-free RL.

Improving the learning efficiency of HRL through off-
policy training has attracted a considerable amount of re-
search efforts in recent years. However, besides instability,
off-policy training also poses the non-stationary problem
which is characteristic to HRL. In (Nachum et al. 2018), they
proposed an off-policy method which relabels past experi-
ences to reduce the impact in training with invalid high-level
state transitions due to non-stationarity. Employing hindsight
techniques (Andrychowicz et al. 2017), (Levy et al. 2019)
proposed to train multi-level policies in parallel while penal-
izing the high-level for generating subgoals which are not
reachable in the low level. In (Zhang et al. 2020) the large
subgoal space issue was addressed by restricting the high-
level action space from the whole subgoal space using an
adjacency constraint. In (Wang et al. 2020) high-level policy
decision making is conditioned on the received low-level
policy representation as well as the state of the environment
to improve stationarity. Another solution is to add a slow-
ness objective to effectively learn the subgoal representation
so that the low-level reward function varies in a stationary
way (Li et al. 2021).

The general topic of goal generation in RL has also been
studied (Florensa et al. 2018; Nair et al. 2018; Ren et al. 2019;
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Figure 2: Learning curves of SAGA and baselines on all environments. Each curve and its shaded region represent average
episode reward (for Ant Gather) or average success rate (for the rest; see the appendix) and 95% confidence interval respectively,
averaged over 10 independent trials. We find that SAGA performs well across all tasks. It is worth noting that SAGA learns
rapidly; on the complex navigation tasks it normally requires only less than three million environment steps to achieve good

performance.

Campero et al. 2021). Goal GAN (Florensa et al. 2018) uses
a standard GAN to produce tasks at the appropriate level of
difficulty for training the policy. While Goal GAN is similar
in spirit with the proposed SAGA to some extent, there are
several key differences apart from if it is a hierarchical policy
or not. Goal GAN is using a standalone generator that does
not condition on the observation; its GAN and policy are
two modules that are independently and sequentially trained.
In contrast, SAGA’s generator is a surrogate of the original
actor network and SAGA directly updates its policy through
the incurred adversarial loss and policy loss concurrently.
Other related works are, for example, (Nair et al. 2018) that
proposes to combine unsupervised representation learning
and reinforcement learning of goal-conditioned policies. A
framework to generate hindsight goals which are easy for
an agent to achieve in the short term is proposed in (Ren
et al. 2019). In a recent work (Campero et al. 2021) a frame-
work where a teacher network learns to propose increasingly
challenging yet achievable goals is proposed; the teacher is
positively rewarded if the student achieves the goal with suit-
able effort, but penalized if the student either cannot achieve
the goal, or can do so too easily. The foremost difference
from SAGA is that these methods are developed for flat archi-
tectures and therefore cannot successfully solve tasks which
require complex high-level decision making.

Experiments

This section evaluates and compares our method against stan-
dard RL and prior HRL methods in challenging environments
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which require a combination of locomotion and object manip-
ulation. We also ablate the various components to understand
their importance. Our experiments are designed to answer
the following questions:

1. Can SAGA improve the sample efficiency and perfor-
mance of goal-conditioned HRL across various long-

horizon continuous control tasks?

. Can SAGA outperform alternative adversarial learning
approaches in the goal-conditioned HRL framework?

Environment Setup
We consider the following five environments for our analysis:

1. Ant Maze: A ‘D’-shaped maze poses a challenging navi-
gation task for a quadruped-Ant. The ant needs to reach
a target position starting from a random position in a
maze with dense rewards. A variant (labeled ‘Image’)
with low-resolution image observations is also adopted;
the observation is formed by zeroing out the x, y coor-
dinates and appending a 5x5x3 top-down view of the

environment, as described in (Nachum et al. 2019).

. Ant Maze Sparse: From a random start position, the ant
needs to reach a target position in a maze with sparse
rewards.

. Ant Gather: Starting from a fixed position, the ant col-
lects green apples and avoids red bombs.

. Ant Push: A challenging environment which requires
both task and motion planning. The ant needs to move to



Ant Maze | Ant Maze Sparse | Ant Gather Ant Push Ant Fall Ant Maze (Image)
SAGA 0.93+0.01 0.92+0.01 2.72+0.07 | 0.72+£0.02 | 0.47+£ 0.02 0.87+ 0.02
HRAC 0.8340.03 0.75£0.08 2.19+£0.34 | 0.06+0.06 | 0.11 £0.07 0.76 £0.03
HIRO 0.544+0.06 0.2940.10 0.02+£0.02 | 0.00£0.00 | 0.01£ 0.01 0.5340.06
LESSON 0.814+0.04 - - 0.62+ 0.02 | 0.384 0.01 0.744+ 0.06
TD3 0.040.0 0.01£0.0 0.040.0 0.010.0 0.040.0 -
w/o state for D 0.91+0.02 0.88+0.01 2.62+0.06 | 0.58+0.03 | 0.39+ 0.03 -
w/o state for D/G 0.040.0 0.19£0.01 0.040.0 0.040.0 0.040.0 -
SAGA-HIRO 0.5840.03 0.7240.04 0.18+0.15 0.04+0.0 0.11£ 0.07 -

Table 1: Final performance of the policy obtained after SM steps of training, averaged over 10 randomly seeded trials with

standard error.

the left of the maze so that it can move up and right to
push the block out of the way for reaching the target.

. Ant Fall: This environment extends the navigation to
three dimensions. The ant starts on a raised platform with
the target located directly in front of it but separated by
a chasm which it cannot cross by itself. The ant needs to
push the block forward, fill the gap, walk across and move
to the left in order to reach the target.

Implementation

For the hierarchical policy network, we employ the same
architecture as HRAC (Zhang et al. 2020) which adopts TD3
(Fujimoto, Hoof, and Meger 2018) as the underlying algo-
rithm for training both the high-level and low-level policy.
Specifically, we adopt two networks comprising three fully-
connected layers with ReLU nonlinearities as the actor and
critic networks of both low-level and high-level TD3 net-
works. The size of the hidden layers of both actor and critic
is 300. The output of the high-level actor is activated using
the tanh function and scaled according to the size of the
environments.

The subgoal generator network has the identical architec-
ture as the high-level actor. For the subgoal discriminator
network, we use a network consisting of 3 fully-connected
layers (size of 300, 300 and 1 respectively) with Leaky-ReLU
(negative slope 0.2) nonlinearities and sigmoid function in
all tasks. Adam optimizer is used for all networks.

Comparative Analysis

To test the performance of SAGA, we compare against the
following baseline methods:

1. HIRO (Nachum et al. 2018): an off-policy goal-
conditioned HRL algorithm proposes to address the non-
stationarity issue by relabeling high-level actions.
HRAC (Zhang et al. 2020): a state-of-the-art off-policy
goal-conditioned HRL algorithm introduces an adjacency
network to restrict the high-level action space to a k-step
adjacent region of the current state'
. LESSON (Li et al. 2021): a state-of-the-art off-policy
goal-conditioned HRL algorithm learns the subgoal repre-
sentation by posing a slowness objective.

"We use HRAC’s official implementation https://github.com/
trzhang0116/HRAC to evaluate both HRAC and HIRO since HRAC
is built on HIRO which provides fair comparisons using the same
HRL implementation.
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4. TD3 (Fujimoto, Hoof, and Meger 2018): a state-of-the-art
flat RL algorithm we compare to validate the need for
hierarchical policies.

For fair comparison, all the HRL baselines use the same hi-
erarchical structure and environment configuration as SAGA.
Table 1 shows the final performance of the policy after
training, and all baselines are significantly outperformed by
SAGA. The learning curves of SAGA and baselines across all
tasks are plotted in Fig. 2. In the gather task i.e., Ant Gather,
SAGA achieves considerably better performance and consis-
tently exceeds all baselines in gather task i.e., Ant Gather,
and all navigation tasks i.e., Ant Maze, Ant Maze (Image),
Ant Maze Sparse, Ant Push and Ant Fall?, in terms of sam-
ple efficiency and asymptotic performance. SAGA shows
consistently better training efficiency benefiting from the im-
proved learning stability of the hierarchical policies. This
suggests that the proposed adversarial learning approach ef-
fectively enforces the high-level policy to generate subgoals
compatible with the current instantiation of the low-level
policy during training which in turn significantly mitigates
the non-stationarity issue of off-policy training in HRL. It
is also observed that flat RL algorithm TD3 does not learn
in the complex environments used in the experiments which
further validate the need for hierarchical policies.

Ablative Analysis

We also compare SAGA with several variants to investigate
the importance of various design choices of SAGA. As we
employ HRAC as the base model for SAGA, we introduce a
variant of SAGA which is employing HIRO as base model
to understand the generalization of our proposed approach.
Fig. 2 also shows the learning curves of SAGA-HIRO and
HIRO. In the Ant Maze task with dense rewards, SAGA-
HIRO achieves slightly better performance with HIRO, while
SAGA-HIRO exceeds HIRO in other tasks. Table 1 shows
the consistent quantitative improvements by introducing the
proposed approach. We note that HIRO hardly learns in Ant
Push and learns poorly in Ant Fall by using the standard RL
training based on the relabeled high-level actions, whereas
SAGA-HIRO enforces the policy to learn in a more sample
efficient manner. The empirical evaluation confirms that our
algorithm is a principled and generic approach which can
be applied in existing goal-conditioned HRL methods to
effectively address the non-stationarity issue.

>We use LESSON’s official implementation https://github.com/
SiyuanLee/LESSON which includes environments Ant Maze, Ant
Push and Ant Fall and adapt its task settings to be the same with
other baselines for fair comparisons
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Figure 3: Ablation studies of adversarial learning approaches, averaged over 10 independent trials.
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Figure 4: Learning curves with different coefficient of adversarial loss a,qy, averaged over 5 independent trials.

In the ablation studies of alternative adversarial learning
approaches in the goal-conditioned HRL framework, we in-
troduce two variants:

1. w/o state for D: a variant that uses a discriminator net-

work which is not conditioned on state;

2. wlo state for D/G: a variant that uses common generator
and discriminator networks which neither are conditioned
on state, i.e., the generator network takes as input a ran-
dom noise sampled from Normal distribution and then
trains the high-level critic using the generated subgoals,

similar to (Florensa et al. 2018) in flat RL case.

As shown in Table 1 and Fig. 3, the advantage of the discrim-
inator network conditioning on states is more pronounced in
challenging tasks Ant Push and Ant Fall, where subgoal dis-
tributions may heavily depend on the states. In other words,
state-conditioned discriminator network is able to account for
the dynamic elements in the environment and subsequently
enables subgoals that specifically interact with those ele-
ments. In the second variant, i.e., a vanilla GAN setting, the
generator network is no longer a surrogate of the high-level
actor network. The assumption that both generator and dis-
criminator are not depending on states leads to slow learning
of generator network and consequently the deteriorating non-
stationarity issue for the hierarchical policies.

Analysis of Hyperparameter Selection

We empirically study the effect of different coefficients of
adversarial loss a,gy. Fig. 4 shows that SAGA with three
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coefficients of adversarial loss 0.0005, 0.001 and 0.0015
shows asymptotically similar results and generally a,gy =
0.001 gives better performance across three tasks; we use
aagy = 0.001 for all the tasks presented in the paper. In
general, larger a,g, implies that the learning prioritizes the
adaptation of the generated subgoals to follow the distribution
of relabeled subgoals which speeds up its learning process
harnessing the more accurate learning signals provided. How-
ever, the learning process may slow down in case of very
large aagy since the learning of the high-level value function
will be slowed down and its subsequent exploration might
be affected. As a contrary, with smaller a,qgy the standard RL
training is more pronounced; SAGA eventually degenerates
to original baseline when its value is considerably small.

Analysis of Generated Subgoals

We visualize the generated subgoals of SAGA and the
reached subgoals i.e., the final state of k-step low-level roll-
out in Fig. 5. The subgoals generated by SAGA are generally
reachable and match the low-level trajectories, since they are
distributed in the close vicinity of the actually reached sub-
goals. This is further confirmed by the measure of distance
between generated subgoals and the reached subgoals i.e.,
the final state of k-step low-level roll-out in Table 2. This
suggests that SAGA generates the most reachable subgoals
and may give the most effective learning signal for the low
level to improve sample efficiency compared with HRAC and
HIRO.

We also visually compare the generated subgoals of SAGA,



Ant Maze | Ant Maze Sparse | Ant Gather | Ant Push Ant Fall
SAGA | 2.7910.08 2.13+0.26 1.65£0.52 | 2.62£0.46 | 2.49+ 0.23
HRAC | 3.41£0.31 4.384+0.84 3.59+£091 | 4.95£1.11 | 4.10 £1.03
HIRO | 10.74%1.05 14.14+0.0 13.71£1.15 | 9.38+2.85 | 11.44+1.69

Table 2: The distance between generated subgoals and the reached subgoals i.e., the final state of k-step low-level roll-out,

averaged over 10 randomly seeded trials with standard error.
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Figure 5: Visualization of generated subgoals by SAGA and the reached subgoals i.e., the final state of k-step low-level roll-out,
in one of the randomly seeded trials. The generated subgoals are reachable and generally match the low-level trajectories.
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Figure 6: Visualization of generated subgoals. Subgoals generated by SAGA are generally matching the low-level trajectories or
planed motions, which indicates that SAGA can generate reasonable subgoals for the low level to achieve and also guide the
optimization to jump out of the local optimum of the ant to move directly towards the target in complex tasks such as Ant Push
and Ant Fall. In contrast, subgoals generated by HRAC and HIRO frequently get stuck to local minimum and fail to guide the
agent to accomplish the final task. Subgoals generated by LESSON lie in a learned subgoal representation space and may not be

visualized along with other methods.

HIRO and HRAC in Fig. 6. The subgoals generated by SAGA
generally match the planned motions in Ant Maze, Ant Maze
Sparse and Ant Gather. Notably, SAGA generates subgoals
to guide the optimization to jump out of the local optimum
of the ant to move directly towards the target in Ant Push
and Ant Fall. In detail, under the hierarchical policy trained
by SAGA, in Ant Push the ant first moves to the left, then
pushes the block to the right and finally reaches the target;
guided by subgoals generated by SAGA, in Ant Fall, the ant
first moves to the right to push the block forward which fills
the gap and then walks across and moves to the left in order
to finally reach the target. HRAC can also generate relatively
reasonable subgoals to reach based on affinity constraints for
the low level, however these subgoals frequently get stuck in
a local optimum of moving directly to the target as illustrated
in Ant Push and Ant Fall. HIRO, on the contrary, fails to
generate achievable subgoals and cannot guide the agent to

achieve its final target.

Conclusion

We proposed a novel adversarially guided subgoal generation
framework for goal-conditioned HRL to mitigate the issue of
non-stationarity in off-policy training. The learning of high-
level policy is formulated as a two-player game where the
subgoal generator endeavours to generate subgoals compat-
ible with the current instantiation of low-level policy while
the proposed discriminator network tries to distinguish the
generated subgoals from the relabled subgoals. Empirical
studies show that the proposed adversarial learning is capa-
ble of reducing the shifts in data distribution from relabeled
experience to the current high-level policy behaviour and
consequently improving the overall learning efficiency and
stability.
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