
Meta-Reinforcement Learning Based on Self-Supervised Task Representation
Learning

Mingyang Wang1, Zhenshan Bing1, Xiangtong Yao1, Shuai Wang2,
Huang Kai3, 4, Hang Su5, Chenguang Yang6, *Alois Knoll1

1Department of Informatics, Technical University Munich,
2Tencent Robotics X Lab,

3School of Computer Science and Engineering, Sun Yat-Sen University,
4Shenzhen Institute, Sun Yat-Sen University

5Dipartimento di Elettronica, Politecnico di Milano,
6Bristol Robotics Laboratory, University of the West of England

mingyang.wang@tum.de, bing@in.tum.de, xiangtong.yao@tum.de, shuaiwanghit@gmail.com,
hang.su@polimi.it, cyang@ieee.org, huangk36@mail.sysu.edu.cn, knoll@in.tum.de

Abstract

Meta-reinforcement learning enables artificial agents to learn
from related training tasks and adapt to new tasks effi-
ciently with minimal interaction data. However, most exist-
ing research is still limited to narrow task distributions that
are parametric and stationary, and does not consider out-
of-distribution tasks during the evaluation, thus, restricting
its application. In this paper, we propose MoSS, a context-
based Meta-reinforcement learning algorithm based on Self-
Supervised task representation learning to address this chal-
lenge.We extend meta-RL to broad non-parametric task dis-
tributions which have never been explored before, and also
achieve state-of-the-art results in non-stationary and out-of-
distribution tasks. Specifically, MoSS consists of a task infer-
ence module and a policy module. We utilize the Gaussian
mixture model for task representation to imitate the paramet-
ric and non-parametric task variations. Additionally, our on-
line adaptation strategy enables the agent to react at the first
sight of a task change, thus being applicable in non-stationary
tasks. MoSS also exhibits strong generalization robustness in
out-of-distributions tasks which benefits from the reliable and
robust task representation. The policy is built on top of an off-
policy RL algorithm and the entire network is trained com-
pletely off-policy to ensure high sample efficiency. On Mu-
JoCo and Meta-World benchmarks, MoSS outperforms prior
works in terms of asymptotic performance, sample efficiency
(3-50x faster), adaptation efficiency, and generalization ro-
bustness on broad and diverse task distributions.

Introduction
Modern deep reinforcement learning (RL) has made signif-
icant progress in learning complex behavior (Mnih et al.
2015; Silver et al. 2016, 2017; Bing et al. 2021a). However,
they typically do not transfer learned skills to other tasks, re-
quire to re-train the policy for new tasks. In contrast, humans
can learn new skills efficiently using prior knowledge and
experience. Motivated by this, meta-reinforcement learning
(meta-RL) was developed to mimic the human learning pro-

*Corresponding Author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cess by learning a prior model from a set of related training
tasks and quickly adapt to unseen tasks during testing.

However, most existing meta-RL studies are severely
confined to narrow task distributions that are parametric
and stationary, let alone taking into consideration out-of-
distribution (OOD) test tasks. In prior works (Finn, Abbeel,
and Levine 2017; Stadie et al. 2018; Nichol and Schulman
2018; Rothfuss et al. 2019; Duan et al. 2016; Gupta et al.
2018; Rakelly et al. 2019; Fakoor et al. 2019; Humplik
et al. 2019; Li, Yang, and Luo 2020; Zintgraf et al. 2020,
2021), task distributions only involve parametric variations,
e.g., simulated robots can adapt to reach a new goal veloc-
ity after being trained on a set of different goal velocities
previously. It is therefore unreasonable to expect general-
ization to a completely new control task, e.g., reaching a
specified goal position. To extend the meta-RL adaptation
to qualitatively distinct tasks, training tasks should also in-
clude such non-parametric variability in which task differ-
ences cannot be expressed only using continuous parame-
ters. Also, humans can quickly adapt their behavior to un-
expected changes and perturbations, we expect the meta-RL
algorithm to be broadly useful in non-stationary scenarios
where the task may vary at any time step and exhibit strong
generalization robustness for out-of-distribution tasks.

As a promising approach to tackling the meta-RL prob-
lem, context-based meta-RL (Duan et al. 2016; Rakelly et al.
2019; Fakoor et al. 2019; Humplik et al. 2019; Zintgraf et al.
2020; Guo, Wu, and Lee 2022) extracts salient information
from past experience and generates latent representations on
which the policy is then conditioned. However, representing
tasks on broad task distributions poses new challenges to the
model as more complex relationships and dependencies be-
tween tasks must be captured. Existing studies (Rakelly et al.
2019; Zintgraf et al. 2020; Fakoor et al. 2019; Li, Yang, and
Luo 2020) often uses a single-component Gaussian for task
representation which is inadequate in such complex cases.

Furthermore, current meta-RL algorithms suffer from
sample inefficiency due to on-policy optimization (Finn,
Abbeel, and Levine 2017; Stadie et al. 2018; Nichol and
Schulman 2018; Rothfuss et al. 2019; Duan et al. 2016;

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

10157

Gupta et al. 2018; Zintgraf et al. 2020, 2021), or adaptation
inefficiency due to the few-shot adaptation strategy (Rakelly
et al. 2019; Fakoor et al. 2019; Li, Yang, and Luo 2020).
Although on-policy RL approaches are easy to incorporate
into meta-RL, they require a large quantity of data for train-
ing, making them sample inefficient. Recent works (Rakelly
et al. 2019; Fakoor et al. 2019; Li, Yang, and Luo 2020) inte-
grated the off-policy RL algorithm into the meta-RL frame-
work, resulting in a significant increase in sample efficiency.
However, they still suffer from adaptation inefficiency as
task representation is updated at the trajectory level, thus en-
able to accomplish non-stationary tasks.

With these considerations in mind, we propose MoSS, a
context-based meta-RL algorithm based on self-supervised
task representation learning. The method aims to be
(1) applicable to diverse task distributions with paramet-
ric and non-parametric, stationary and non-stationary, in-
distribution, and out-of-distribution tasks. The general per-
formance of meta-RL algorithms on such broad task distri-
butions has never been explored before, and (2) sample effi-
cient by using as few data samples as possible for training,
and adaptation efficient by taking as few environmental steps
as possible to adapt to a new task during meta-testing.

MoSS is made up of two modules: a task inference mod-
ule that takes the task trajectory as input and encodes it as
latent variables, and a policy module that uses the task rep-
resentation to explore the environment and learn optimal ac-
tions. First, in the task inference module, we realize repre-
sentative and robust task inference using the Gaussian mix-
ture latent space for task representation and the contrastive
learning strategy. By extending the VAE-based inference
network with a Gaussian mixture latent space, MoSS accom-
modates non-parametric variations using different Gaussian
clusters and parametric variations with variability within
each Gaussian component. Additionally, contrastive learn-
ing enhances the ability of MoSS to differentiate different
tasks while clustering similar ones. Reliable task represen-
tation is a prerequisite for effective downstream RL. Second,
we use the gated recurrent unit (GRU) (Chung et al. 2014)
as the encoder and optimize it with the next-step reconstruc-
tion loss to achieve online adaptation. Unlike prior works
(Rakelly et al. 2019; Zintgraf et al. 2020) that generate task
variables based on trajectory-level context, our encoder up-
dates latent variables based on local context, so that the agent
can quickly adapt to new tasks and solve non-stationary
tasks. Third, we build our policy on top of the soft-actor-
critic(SAC) algorithm and condition the policy on the agent
state and the latent task variable, to account for task uncer-
tainty in its decision-making. We use a shared data buffer
for task inference and policy training to realize a fully off-
policy optimization that ensures high sample efficiency. We
evaluate MoSS on MuJoCo (Todorov, Erez, and Tassa 2012)
and Meta-World (Yu et al. 2020) benchmarks, including var-
ious robotic control and manipulation tasks. MoSS shows
state-of-the-art results in asymptotic performance, sample
and adaptation efficiency, and generalization robustness1.

1Implementation and videos available at https://sites.google.
com/view/metarl-moss

Background
From RL to Meta-RL
In standard RL, a task is formulated as a Markov De-
cision Process (MDP) (Bellman 1966) denoted as M =
(S,A, P,R, γ) where S is a state space, A is an action
space, P (s

′ |s,a) denoting the transition function, R(r|s,a)
the reward function and γ the discount factor. The ob-
jective is to find an optimal policy π that maximizes the
expected return in this MDP. Original RL algorithms are
mostly trained on one task at a time. While meta-RL lever-
ages a set of related tasks to learn a policy that can quickly
adapt to unseen test tasks. Specifically, during meta-training,
the algorithm has access to Ntrain tasks drawn from the
task distribution p(M). At meta-test time, new tasks are
also sampled from p(M). The meta-trained policy should
quickly adapt to new tasks to achieve maximum return, i.e.,
θ∗ = argmaxθ EM∼p(M)

[
Eτ∼p(τ |πθ)

[∑
t≥0 γ

trt
]]

. Here
τ:t = {st,at, rt, st+1}0:t represents the task trajectory that
collects the agent’s transitions (st,at, rt, st+1) up to the
current time step.

Meta-RL Environments
Parametric and non-parametric variability The vari-
ability of task distributions is a key property in the meta-RL
context. The formal definition of two properties of the task
distribution is given in (Yu et al. 2020) based on the kind
of structure tasks have in common. Parametric variability
describes tasks that qualitatively share the same property,
but the task parameterization varies, while non-parametric
variability describes tasks that are qualitatively distinct.
For example, in the Cheetah-Multi-Task benchmark, the
Cheetah-Velocity task aims to control the robot to run at dif-
ferent goal velocities. All tasks essentially share the same
qualitative task descriptions and are parameterized by the
goal velocity. While Cheetah-Velocity and Cheetah-Goal
tasks are qualitatively distinct. Although they both control
the robot to exhibit certain behaviors, the difference between
them cannot be described by parametric variations. Thus,
they belong to different task families (or base tasks).

Adaptation in meta-RL environments When being ex-
posed to new tasks, the meta-RL agent is usually allowed to
collect context data for a few episodes to get an increasingly
better task understanding. We use the term k-shot to repre-
sent the number of exploration episodes. The agent should
identify tasks and adapt the policy within k episodes, so k is
an important metric to evaluate the adaptation efficiency of
meta-RL algorithms. Note that we use k = 0 for MoSS, i.e.,
reported results are from the first evaluation rollout without
any previous data collection, which is a harder experiment
setting but also more realistic as the agent should solve the
task at first sight without any failed trials.

Related Work
Recent studies in meta-RL can be separated into two cat-
egories: optimization-based and context-based meta-RL.
Optimization-based meta-RL (Finn, Abbeel, and Levine

10158

Task Inference Module

Encoder
qϕ

Buffer

y

µ

σ

Lcontrastive

...
q(yt)

q(zt)

Decoder
pϕ

Ldecoder

zt

SAC
πθ

Policy Module

LSAC

st

q(zt)

st, rt

Figure 1: MoSS Architecture: MoSS consists of a task inference module and a policy module. The inference module encodes
the task context τ as latent task distributions qϕ(z), then the policy module conditions on the agent state s and the task
representation qϕ(z) to act in the environment.

2017; Stadie et al. 2018; Nichol and Schulman 2018; Roth-
fuss et al. 2019) learns a prior model based on training tasks
and then performs task-specific fine-tuning on unseen tasks
to quickly adapt to new tasks with a few gradient descent
steps. Although the idea is conceptually elegant, the gra-
dient descent update is uninformative for RL algorithms,
making it hard to explore a new, unknown environment. In
contrast, context-based meta-RL (Duan et al. 2016; Rakelly
et al. 2019; Fakoor et al. 2019; Humplik et al. 2019; Zint-
graf et al. 2020; Guo, Wu, and Lee 2022; Bing et al. 2022b,
2021b, 2022a; Yao et al. 2022) adapts to new tasks by aggre-
gating past experience into latent representations on which
the policy is then conditioned. Such methods realize a bet-
ter exploration-exploitation trade-off, as they maintain be-
lief over possible MDPs that enable reasonable exploration
by acting optimally according to these MDPs. Even with-
out any explicit fine-tuning, the meta-RL model can capture
some task characteristics and adapt to new test tasks.

As a context-based meta-RL method, RL2 (Duan et al.
2016) first proposed to condition the policy on hidden states
encoded from task trajectory. By structuring the agent as a
recurrent neural network, RL2 enables online policy learn-
ing based on RNN dynamics. Another popular training
mechanism is to disentangle the task inference and action
selection process to enable explicit task representations. In
PEARL (Rakelly et al. 2019), task context is encoded as
probabilistic latent variables via variational inference. Then
using posterior sampling, latent task encodings are inte-
grated with RL policy and guide the agent to act in the en-
vironment. In the following work (Humplik et al. 2019), the
task inference network is trained in a supervised way and the
policy directly conditions the posterior distributions to rea-
son for task uncertainty. Closely related to our approach is
VariBAD (Zintgraf et al. 2020), which adopts VAE for task
inference. The encoder processes the task context and gen-
erates latent task distributions, based on which the decoder
predicts past and future states and rewards. The network is
trained based on the prediction loss rather than using RL-
loss (Rakelly et al. 2019) or using privileged task informa-
tion(Humplik et al. 2019). Inspired by VariBAD, MoSS also
uses VAE for task inference. However, it uses a different
encoder-decoder training strategy. MoSS only reconstructs
the next-step state and reward instead of modeling all past

and future steps, i.e., we do not assume the task within one
episode is always consistent. Therefore, MoSS can adjust its
task belief to potential task changes within a single episode
and is applicable to non-stationary environments.

All the studies mentioned above only focus on the per-
formance of meta-RL algorithms on commonly used para-
metric task distributions and do not explore the applicability
of these algorithms on broad task distributions with non-
parametric task variability, non-stationary environments,
and out-of-distribution evaluation tasks. Some other works
discuss the meta-RL performance in non-stationary or OOD
tasks (Nagabandi et al. 2018; Fakoor et al. 2019; Mendonca
et al. 2020; Lee and Chung 2021). However, non-parametric
task distributions have never been explored specifically, and
no studies discuss these scenarios together to investigate the
algorithms’ general performance. For the first time, MoSS
explores the meta-RL algorithm applicable to broad and di-
verse task distributions.

Methodology
In the following, we first give an overview of our MoSS al-
gorithm. Then we explain the strategy of MoSS in the task
inference module and policy module to make it applicable to
the aforementioned task distributions with good sample and
adaptation efficiency. We also summarize the meta-training
procedure of MoSS as pseudo-code in Algorithm 1.

Algorithm Overview
MoSS disentangles task inference from policy control as in
(Rakelly et al. 2019; Zintgraf et al. 2020; Zhao et al. 2020).
The task inference module qϕ(zt|τ:t)), parameterized by ϕ,
encodes the task trajectory τ:t as latent task distributions
qϕ(zt)), and it is trained using a decoder pϕ(st+1, rt)) that
predicts next-step states and rewards from current states and
actions. The policy module πθ(at|st, qϕ(zt)), parameteried
by θ, conditions on the agent state st with the task belief
qϕ(zt) to act in the environment.

The model architecture of MoSS is shown in Figure 1. To
accommodate both the parametric and non-parametric task
variations in the task inference module, we extend the VAE
architecture with Gaussian mixture latent space for task rep-
resentation. To further improve the model’s ability to capture
complex relationships between tasks, inspired by (Guo, Wu,

10159

Algorithm 1: MoSS Meta-training

Input: Task distribution p(M), encoder qϕ, decoder pϕ, ac-
tor πθ , critic Qω , replay buffer B

1: while not done do
2: Sample tasks M = {Mi}Ni=1 from p(M)
3: Collect trajectories with πθ and add to buffer B
4: ▷ Data collection
5: for step in training steps do ▷ Training step
6: Sample training tasks Mtrain from p(M)
7: for Mi ∈Mtrain do
8: Sample τ:T ∼ Bi with trajectory length T
9: Infer task beliefs {qϕ(zt|τ:t)}0:T−1

10: Calculate ELBOi =
∑T−1

t=0 ELBOi, t(ϕ)
using Eq. 1

11: end for
12: Calculate contrastive loss Jcont using Eq. 2
13: Update ϕ← ϕ− αϕ∇ϕ(

∑
i ELBOi + Jcont)

14: ▷ Inference network update
15: Update (θ,ω) with SAC algorithm
16: ▷ SAC update
17: end for
18: end while

and Lee 2022; Dorfman, Shenfeld, and Tamar 2021),we in-
troduce contrastive loss as an auxiliary objective and jointly
train the task inference network in a self-supervised man-
ner. Moreover, to enable online adaptation, we use GRU
(Chung et al. 2014) as our encoder and update task represen-
tations at the transition level. In the policy module, following
the Bayes-Adaptive MDP setting (Duff 2002; Ghavamzadeh
et al. 2015; Zintgraf et al. 2020), we condition the policy on
the agent state augmented with the inferred task distribution
to incorporate task uncertainty in its action selection pro-
cess. Finally, we use a shared replay buffer for both modules
and train the network in a fully off-policy manner.

MoSS works as follows: during meta-training, we sam-
ple trajectory data from training tasks and feed them into the
task inference module, which learns to infer latent variables
qϕ(zt) via self-supervised representation learning (details
see Section). Also, the policy network πθ(at|st, qϕ(zt))
takes in the agent state st with the current task belief
qϕ(zt) and learns to select optimal actions. While meta-
testing, the encoder generates and updates task representa-
tions qϕ(zt|τ:t) at each time step based on the collected task
experience τ:t. Then the policy πθ(at|st, qϕ(zt)) conditions
its actions on the agent state st augmented with the task be-
lief qϕ(zt) to interact with the environment.

Task Inference Module
VAE with Gaussian Mixture Latent Space Previous
context-based meta-RL works (Rakelly et al. 2019; Zhao
et al. 2020; Zintgraf et al. 2020; Humplik et al. 2019) use
single-component Gaussian distributions for task represen-
tation. However, representing tasks from complex task dis-
tributions poses new challenges to the inference network and
single-component Gaussian-based representation is there-
fore insufficient. To address this problem, we construct

a Gaussian mixture latent space that accommodates non-
parametric variability with different Gaussian clusters and
parametric variability using variations within each Gaus-
sian component. We use a categorical variable y ∼ Cat(π)
to indicate the base task probability and latent variables
z ∼ N(µ(y), σ(y)) as base task-specific Gaussian com-
ponents. Together with the input x, the joint probability is
factorized as p(x,y, z) = p(y)p(z|y)p(x|z) (Jiang et al.
2016; Rao et al. 2019). The posterior inference of p(y, z|x)
is intractable, we employ the learned approximate posterior
q(y, z|x) = q(z|x,y)q(y|x). The posterior inference and
data generation process run as follows: first, given the input
x, the cluster inference model q(y|x) produces the categori-
cal distribution q(y), and task encoding models q(z|x,y(k))
generate K independent Gaussians for each cluster. Then,
the decoder p(x|z) reconstructs data x from the latent vari-
able z. Following the variational inference approach and
Monte-Carlo approximation, the evidence lower bound ob-
jective (ELBO) is formulated as (derivation see Appendix):

ELBO ≈
K∑

k=1

Component
posterior︷ ︸︸ ︷

q(y(k)|x)
[Component-wise

reconstruction loss︷ ︸︸ ︷
log p(x|z(k))

− α

Component-wise regularizer︷ ︸︸ ︷
KL(q(z(k)|x,y(k))∥p(z|y(k)))

]
− β

Categorical regularizer︷ ︸︸ ︷
KL(q(y|x)∥p(y))

(1)

Here α and β represent the regularization weight for the
KL divergence term of the component-wise Gaussian dis-
tribution and the categorical distribution, respectively. Intu-
itively, the model can either have high entropy over q(y|x),
where all component-wise losses should be low, or assign
a high q(y(k)|x) for some k and use that component to
model the data well. Here we introduce hyperparameters α
and β to weight the component-wise and categorical reg-
ularization terms. We parameterize the decoder as two in-
dependent networks: state decoder pϕ(st+1|st,at, zt) and
reward decoder pϕ(rt|st,at, zt). Both networks are mod-
eled as regression networks, using the MSE loss between
predictions (ŝt+1, r̂t) and true targets (st+1, rt) from buffer
as supervision, therefore the networks are trained in a self-
supervised manner. Unlike prior works (Duan et al. 2016;
Rakelly et al. 2019), we do not back-propagate the RL loss
into the encoder, which completely decouples task inference
from policy learning. This modular structure facilitates the
encoder to identify tasks only based on task characteristics.
The decoder is not used at meta-test time. During meta-test,
given the trajectory up to the current time step τ:t, the en-
coder predicts the p(y) distribution and Gaussian param-
eters {µk,σk}k=1···K . We pick the Gaussian component
q(zt) = N(µz(yt(k

∗)),σz(yt(k
∗))) corresponding to the

most likely base task k∗ = argmaxk{q(y(k)
t |τ:t)}k=1···K

and get the best matching Gaussian at each time step.

10160

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

300

250

200

150

100

50

0
Av

er
ag

e
Re

tu
rn

Cheetah-Vel

0 1 2 3 4
Environment Steps 1e6

1000

0

1000

2000

Av
er

ag
e

Re
tu

rn

Cheetah-Dir

0 1 2
Environment Steps 1e7

600

500

400

300

200

100

Av
er

ag
e

Re
tu

rn

Ant-Goal

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

0

500

1000

1500

Av
er

ag
e

Re
tu

rn

Walker-Rand-Params

VariBAD PEARL RL2 MoSS

Figure 2: Meta-test performance in parametric MuJoCo environments: Average return (y-axis) against collected environment
steps during meta-training (x-axis).

Contrastive Representation Learning Essentially, we
expect the encoder to cluster similar tasks and distinguish
different tasks by organizing their latent embeddings in a
structured way. This coincides with the idea of contrastive
learning, which learns a latent embedding space where
similar sample pairs stay close while dissimilar ones are
far apart. Motivated by (Guo, Wu, and Lee 2022; Dorf-
man, Shenfeld, and Tamar 2021), we introduce a contrastive
learning objective for task inference training to realize bet-
ter task identification. In contrastive learning, input data
are usually organized into positive and negative pairs. We
use the key-query definition in (Wu et al. 2018; Tian et al.
2020; Wang et al. 2021): a key-query pair is positive if
they are representations belong to the same data instance
and negative otherwise. Given a query Q and a set of keys
K = {ki}i=0. . . NK

consisting of 1 positive key and NK −1
negative keys, contrastive learning aims to ensure that the
query Q matches with the positive key k+ more than any of
the negative keys.

We use task embeddings z as queries and keys. Embed-
dings from the same task (but different time steps) build pos-
itive pairs, while embeddings from different tasks are nega-
tive pairs. Specifically, we sample two latent embeddings of
different time steps from each task as the query and its cor-
responding positive key, and sample NK − 1 embeddings
from other tasks as negative keys. We use the InfoNCE score
(Oord, Li, and Vinyals 2018) with the Euclidean distance as
the similarity metric to calculate the contrastive objective:

Jcont =
1

NQ

NQ−1∑
i=0

log
exp(sim(Qi,k+))∑NK−1

j=0 exp(sim(Qi,kj))
(2)

Here NQ is the number of sampled queries, and NK is the
number of keys for each query. The objective can be inter-
preted as the log-likelihood of an NK-way softmax classifier
where k+ is the label of the corresponding query. Then we
get the final objective J (ϕ) = ELBO + Jcont.

RNN-based Online Inference Moreover, we introduce a
recurrent version of the VAE (Chung et al. 2015) to map the
sequential input to time step-wise latent variables. Specifi-
cally, we model a VAE at each time step and explicitly study

the dependencies between latent variables across consecu-
tive time steps. Instead of sharing a global prior distribution
p0(y) and p0(z) for y and z of all time steps (as in (Rakelly
et al. 2019)), we use posterior distributions from the pre-
vious time step q(z|x<t,y) and q(y|x<t) as current prior.
The resulting time step-wise variational lower bound ELBO
is given in Appendix.

We use the GRU (Chung et al. 2014) as the encoder
qϕ(zt|τ:t). By recursively reasoning with its hidden states
qϕ(zt|τ:t) = qϕ(zt|st,at, rt,ht−1), MoSS combines his-
torical information with the current input and adjusts actions
step by step. On the one hand, it enables more efficient task
inference and policy adaptation. On the other hand, MoSS is,
therefore, applicable to non-stationary environments where
the task can potentially change at any time step.

Policy Module

We adopt the same strategy with (Zintgraf et al. 2020) in
the policy module by interpreting the meta-RL problem as
a planning problem in Bayes-Adaptive MDPs (BAMDPs)
(Duff 2002). A BAMDP is described by (S+,A, P,R, γ)
where the hyper-state s+t ∈ S+ = S × B consists of the
agent state st and the task belief b. In BAMDPs, the RL
policy conditions not only on the agent state but also on
the agent’s belief about the environment. A Bayes-optimal
agent learns to maximize the expected return by systemat-
ically seeking out actions to reduce its environmental un-
certainty (exploration) and then taking promising actions to
maximize the expected return (exploitation) (Zintgraf et al.
2020). Thus, the policy automatically learns how to trade off
exploration and exploitation under task uncertainty.

In MoSS, the hyper-state is denoted as s+t = (st, qϕ(zt))
with qϕ(zt) from the task inference module. It directly in-
corporates the task uncertainty, unlike the policy πθ(a|s, z)
in (Gupta et al. 2018; Rakelly et al. 2019; Zhao et al. 2020)
uses z ∼ qϕ(z) via posterior sampling. We build our policy
on top of the SAC (Haarnoja et al. 2018) and use a shared
data buffer for VAE and RL training to realize fully off-
policy training, unlike (Rakelly et al. 2019) that still uses
an on-policy VAE training buffer, which makes MoSS out-
perform prior algorithms with respect to sample efficiency.

10161

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

600

500

400

300

200

100

Av
er

ag
e

Re
tu

rn
Cheetah-Vel-OOD

0.0 0.5 1.0 1.5
Environment Steps 1e7

800

600

400

200

Av
er

ag
e

Re
tu

rn

Ant-Goal-OOD

VariBAD PEARL RL2 MoSS

(a) Training Curve

1 2 3 4 5
True Velocity

20

10

0

10

20

La
te

nt
 E

m
be

dd
in

gs

Cheetah-Vel-OOD

Train Test

(b) PEARL embeddings

1 2 3 4 5
True Velocity

40

20

0

20

40

La
te

nt
 E

m
be

dd
in

gs

Cheetah-Vel-OOD

Train Test

(c) MoSS embeddings

Figure 3: Meta-test performance in parametric MuJoCo environments with OOD tasks

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

400

300

200

100

Av
er

ag
e

Re
tu

rn

Cheetah-Velocity-Non-Stat

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e6

0

500

1000

Av
er

ag
e

Re
tu

rn

Cheetah-Direction-Non-Stat

0 2 4 6 8
Environment Steps 1e6

0

200

400

600

800

1000

1200

Av
er

ag
e

Re
tu

rn

Ant-Direction-Non-Stat

VariBAD PEARL RL2 MoSS

0 100 200 300 400 500
time t

1

0

1
Cheetah-Direction-Non-Stat

goal direction

0 100 200 300 400 500
time t

0.5

0.0

is velocity

Figure 4: Meta-test performance in non-stationary MuJoCo environments: (Left) Training curves; (Right) Agent Response in
the Cheetah-Direction-Non-Stat environment.

Experiments
We evaluate the performance of MoSS on Mujoco (Todorov,
Erez, and Tassa 2012) and Meta-World (Yu et al. 2020)
benchmarks. We compare MoSS with RL2, PEARL and
VariBAD (Duan et al. 2016; Rakelly et al. 2019; Zint-
graf et al. 2020). First, we run experiments on commonly
used parametric task distributions. Additionally, to verify
the broad applicability of MoSS, we run experiments on
diverse task distributions with out-of-distribution test tasks,
non-stationary environments and non-parametric variations.
We also evaluate several design choices of MoSS through
ablation in Appendix. Note that we conduct the zero-shot
meta-test on MoSS (k = 0). In contrast, for MuJoCo tasks,
VariBAD and RL2 use k = 2 and PEARL uses k = 3.
For Meta-World tasks numbers are given in Table 1. All
the choices of k are the same as their original papers. We
truncate the x−axis at the number of time steps required
for MoSS to converge; for the full timescale results see Ap-
pendix. Other hyperparameters can be found in Appendix.

Parametric task distributions To validate the perfor-
mance of MoSS in parametric environments, we first com-
pare MoSS with baseline methods on MuJoCo and Meta-
World ML1 tasks. Results are given in Figure 2 and Ta-
ble 1. MuJoCo locomotion tasks require the model to adapt
across various reward functions or system dynamics (task
details see Appendix). Meta-World ML1 benchmark con-
sists of three robotic manipulation tasks where task varia-

Method k-th episode Reach Push Pick-Place

RL2 10 100 96 98
PEARL 10 68 44 28
MoSS 1 86 100 100

Table 1: Meta-World V2 ML1 result comparison: Success
rate results are given in percentage

2

tions are specified goal positions and use success rate as the
evaluation metric. Training curves are given in Appendix.

Parametric Task Distributions with Out-of-Distribution
Test Tasks To further investigate the generalization ro-
bustness of our algorithm, we set up two OOD environ-
ments where we distinguish task ranges during meta-training
and meta-test. For example, in Cheetah-Vel-OOD, we train
the agent on the velocity range of [2.0, 4.0] and test it on
[1.0, 2.0] ∪ [4.0, 5.0]. For the detailed setup see Appendix.

As plotted in Figure 3 (left), MoSS outperforms baseline
methods as it achieves higher average returns and better sta-

2Baseline results are taken from (Yu et al. 2020) as the perfor-
mance is highly sensitive to hyperparameters and hard to repro-
duce. VariBAD (Zintgraf et al. 2020) only uses the original Meta-
World V1, for a fair comparison we also include results comparison
on Meta-World V1 in Appendix.

10162

0 1 2 3
Environment Steps 1e7

200

150

100

50

Av
er

ag
e

Re
tu

rn

Cheetah-Multi-Task

VariBAD

PEARL

RL2

MoSS

0 1 2 3 4
Environment Steps 1e7

200

150

100

50

Av
er

ag
e

Re
tu

rn

Ant-Multi-Task

VariBAD

PEARL

RL2

MoSS

50 25 0 25 50
Latent Dim 1

50

25

0

25

50

La
te

nt
 D

im
 2

Cheetah-Multi-Task
goal_back
goal_front
jump
stand_back
stand_front
velocity_back
velocity_front

50 0 50
Latent Dim 1

50

25

0

25

50

La
te

nt
 D

im
 2

Ant-Multi-Task
goal_down
goal_left
goal_right
goal_up
jump
velocity_down
velocity_left
velocity_right
velocity_up

Figure 5: Meta-test performance in non-parametric MuJoCo environments

bility. We suppose this comes from the robust task represen-
tation of MoSS. Faced with new OOD test tasks, MoSS can
still capture the task characteristics, which share similarity
with previously seen tasks, and produce understandable rep-
resentations for the downstream policy network. In Figure 3
(right), we visualize the latent space of PEARL and MoSS
on Cheetah-Vel-OOD to demonstrate our assumption. The
x−axis is the ground-truth target velocity and the y−axis is
the t-SNE (Van der Maaten and Hinton 2008) visualization
of latent embeddings (1D). Over the entire velocity range,
MoSS shows a clear linear relationship between the latent
embeddings and true targets. While PEARL struggles to fig-
ure out how to represent OOD test tasks, especially in the
velocity range of [1.0, 2.0], which makes it hard for the RL
policy to learn optimal actions under unclear instruction.

Parametric, Non-stationary Task Distributions We also
set up three non-stationary environments where the goal ve-
locity or direction changes randomly every 100 time step.
We choose the changing steps of 100 as the agent needs
some time steps to adjust its behavior. For this reason, we
increase the time horizon to 500 600 in non-stationary tasks.
Additionally, at every 100 steps we hold a change probabil-
ity p = 0.5, i.e., the task changes at every 100 time step
at the probability of 0.5. Randomness is necessary for non-
stationary tasks otherwise the agent would remember the
changing patterns and cannot adapt well to dynamic changes
in more general non-stationary environments. Given the
changing randomness, the task is different in each episode so
that the agent will not remember the fixed changing pattern.
In Figure 4, we plot the experiment results and visualize the
agent response to task changes in Cheetah-Direction-Non-
Stat, more visualizations see Appendix.

Non-parametric Task Distributions Finally, we set up
two non-parametric benchmarks Cheetah-Multi-Task and

Ant-Multi-Task. Both of them consist of multiple base tasks
that are qualitatively distinct and sub-tasks inside each base
task. The detailed task description is given in Appendix.

As Figure 5 shows, MoSS outperforms prior works in
both environments. We use t-SNE (Van der Maaten and Hin-
ton 2008) to visualize the latent embeddings of MoSS in two
dimensions in Figure 5. We use different colors to represent
sub-tasks with different goal directions from the same base
task as they usually exhibit dissimilar task characteristics,
e.g., goal back and goal front are both in base task Cheetah-
Goal, but we plot them in different colors. Each refined base
task consists of 5 sub-tasks with different goal values cor-
responding to small clusters in the picture. MoSS can dif-
ferentiate different tasks and cluster embeddings from the
same task. Given explicit task representations as guidance,
it is easier for the policy to learn optimal actions.

Conclusion
In this paper, we propose MoSS, an algorithm to address
the meta-RL problem on diverse task distributions with su-
perior sample and adaptation efficiency. We showed that re-
liable and robust task representations are crucial for meta-
RL, especially on complex task distributions. Our approach
represents tasks as a mixture of Gaussians in the latent
space to accommodate parametric and non-parametric task
variations. Together with contrastive learning, we realize
effective task identification, which alleviates the difficulty
of downstream policy learning. Furthermore, MoSS can
rapidly adapt to new tasks in non-stationary environments
via GRU-based online task inference and adaptation. We
train the network completely off-policy to ensure high sam-
ple efficiency. MoSS outperforms existing methods in terms
of asymptotic performance, sample and adaptation effi-
ciency, and generalization robustness on various robot con-
trol and manipulation tasks with the single episode result.

10163

Acknowledgements
This work was supported by the Shenzhen Ba-
sic Research Grants (JCYJ20180508152434975,
JCYJ20180507182508857), the European Union’s Horizon
2020 Framework Programme for Research and Innovation
under the Specific Grant Agreement No. 945539 (Human
Brain Prohect SGA3).

References
Bellman, R. 1966. Dynamic programming. Science,
153(3731): 34–37.
Bing, Z.; Brucker, M.; Morin, F. O.; Li, R.; Su, X.; Huang,
K.; and Knoll, A. 2021a. Complex Robotic Manipulation
via Graph-Based Hindsight Goal Generation. IEEE Trans-
actions on Neural Networks and Learning Systems, 1–14.
Bing, Z.; Knak, L.; Robin, F. O.; Huang, K.; and
Knoll, A. 2021b. Meta-Reinforcement Learning in
Broad and Non-Parametric Environments. arXiv preprint
arXiv:2108.03718.
Bing, Z.; Koch, A.; Yao, X.; Morin, F. O.; Huang, K.; and
Knoll, A. 2022a. Meta-Reinforcement Learning via Lan-
guage Instructions. arXiv preprint arXiv:2209.04924.
Bing, Z.; Lerch, D.; Huang, K.; and Knoll, A. 2022b. Meta-
Reinforcement Learning in Non-Stationary and Dynamic
Environments. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 1–17.
Chung, J.; Gulcehre, C.; Cho, K.; and Bengio, Y. 2014. Em-
pirical evaluation of gated recurrent neural networks on se-
quence modeling. arXiv preprint arXiv:1412.3555.
Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A. C.;
and Bengio, Y. 2015. A recurrent latent variable model for
sequential data. Advances in neural information processing
systems, 28.
Dorfman, R.; Shenfeld, I.; and Tamar, A. 2021. Offline Meta
Reinforcement Learning–Identifiability Challenges and Ef-
fective Data Collection Strategies. Advances in Neural In-
formation Processing Systems, 34: 4607–4618.
Duan, Y.; Schulman, J.; Chen, X.; Bartlett, P. L.; Sutskever,
I.; and Abbeel, P. 2016. RL2: Fast reinforcement learn-
ing via slow reinforcement learning. arXiv preprint
arXiv:1611.02779.
Duff, M. O. 2002. Optimal Learning: Computational proce-
dures for Bayes-adaptive Markov decision processes. Uni-
versity of Massachusetts Amherst.
Fakoor, R.; Chaudhari, P.; Soatto, S.; and Smola, A. J. 2019.
Meta-q-learning. arXiv preprint arXiv:1910.00125.
Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. 34th In-
ternational Conference on Machine Learning, ICML 2017,
3: 1856–1868.
Ghavamzadeh, M.; Mannor, S.; Pineau, J.; Tamar, A.; et al.
2015. Bayesian reinforcement learning: A survey. Founda-
tions and Trends® in Machine Learning, 8(5-6): 359–483.
Guo, Y.; Wu, Q.; and Lee, H. 2022. Learning Action Trans-
lator for Meta Reinforcement Learning on Sparse-Reward

Tasks. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, 6792–6800.
Gupta, A.; Mendonca, R.; Liu, Y.; Abbeel, P.; and Levine, S.
2018. Meta-reinforcement learning of structured exploration
strategies. Advances in neural information processing sys-
tems, 31.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. In International
conference on machine learning, 1861–1870. PMLR.
Humplik, J.; Galashov, A.; Hasenclever, L.; Ortega, P. A.;
Teh, Y. W.; and Heess, N. 2019. Meta reinforcement learn-
ing as task inference. arXiv preprint arXiv:1905.06424.
Jiang, Z.; Zheng, Y.; Tan, H.; Tang, B.; and Zhou, H.
2016. Variational deep embedding: An unsupervised
and generative approach to clustering. arXiv preprint
arXiv:1611.05148.
Lee, S.; and Chung, S.-Y. 2021. Improving Generalization
in Meta-RL with Imaginary Tasks from Latent Dynamics
Mixture. arXiv preprint arXiv:2105.13524.
Li, L.; Yang, R.; and Luo, D. 2020. Focal: Efficient
fully-offline meta-reinforcement learning via distance met-
ric learning and behavior regularization. arXiv preprint
arXiv:2010.01112.
Mendonca, R.; Geng, X.; Finn, C.; and Levine, S. 2020.
Meta-reinforcement learning robust to distributional shift
via model identification and experience relabeling. arXiv
preprint arXiv:2006.07178.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature, 518: 529–533.
Nagabandi, A.; Clavera, I.; Liu, S.; Fearing, R. S.;
Abbeel, P.; Levine, S.; and Finn, C. 2018. Learning to
adapt in dynamic, real-world environments through meta-
reinforcement learning. arXiv preprint arXiv:1803.11347.
Nichol, A.; and Schulman, J. 2018. Reptile: a scalable meta-
learning algorithm. arXiv preprint arXiv:1803.02999, 2(3):
4.
Oord, A. v. d.; Li, Y.; and Vinyals, O. 2018. Representation
learning with contrastive predictive coding. arXiv preprint
arXiv:1807.03748.
Rakelly, K.; Zhou, A.; Finn, C.; Levine, S.; and Quillen, D.
2019. Efficient off-policy meta-reinforcement learning via
probabilistic context variables. In International conference
on machine learning, 5331–5340. PMLR.
Rao, D.; Visin, F.; Rusu, A. A.; Teh, Y. W.; Pascanu, R.;
and Hadsell, R. 2019. Continual unsupervised representa-
tion learning. arXiv preprint arXiv:1910.14481.
Rothfuss, J.; Asfour, T.; Lee, D.; Clavera, I.; and Abbeel,
P. 2019. PrOMP: Proximal meta-policy search. 7th Interna-
tional Conference on Learning Representations, ICLR 2019,
1–25.

10164

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre,
L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou,
I.; Panneershelvam, V.; Lanctot, M.; Dieleman, S.; Grewe,
D.; Nham, J.; Kalchbrenner, N.; Sutskever, I.; Lillicrap, T.;
Leach, M.; Kavukcuoglu, K.; Graepel, T.; and Hassabis, D.
2016. Mastering the game of Go with deep neural networks
and tree search. Nature, 529(7587): 484–489.
Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; Chen, Y.; Lillicrap, T.; Hui, F.; Sifre, L.; van den Driess-
che, G.; Graepel, T.; and Hassabis, D. 2017. Mastering the
game of Go without human knowledge. Nature, 550: 354–.
Stadie, B. C.; Yang, G.; Houthooft, R.; Chen, X.; Duan, Y.;
Wu, Y.; Abbeel, P.; and Sutskever, I. 2018. Some consider-
ations on learning to explore via meta-reinforcement learn-
ing. arXiv preprint arXiv:1803.01118.
Tian, Y.; Sun, C.; Poole, B.; Krishnan, D.; Schmid, C.; and
Isola, P. 2020. What makes for good views for contrastive
learning? Advances in Neural Information Processing Sys-
tems, 33: 6827–6839.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ interna-
tional conference on intelligent robots and systems, 5026–
5033. IEEE.
Van der Maaten, L.; and Hinton, G. 2008. Visualizing data
using t-SNE. Journal of machine learning research, 9(11).
Wang, B.; Xu, S.; Keutzer, K.; Gao, Y.; and Wu, B. 2021.
Improving Context-Based Meta-Reinforcement Learning
with Self-Supervised Trajectory Contrastive Learning. arXiv
preprint arXiv:2103.06386.
Wu, Z.; Xiong, Y.; Yu, S. X.; and Lin, D. 2018. Unsuper-
vised feature learning via non-parametric instance discrimi-
nation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 3733–3742.
Yao, X.; Bing, Z.; Zhuang, G.; Chen, K.; Zhou, H.; Huang,
K.; and Knoll, A. 2022. Learning from Symmetry: Meta-
Reinforcement Learning with Symmetric Data and Lan-
guage Instructions. arXiv preprint arXiv:2209.10656.
Yu, T.; Quillen, D.; He, Z.; Julian, R.; Hausman, K.; Finn,
C.; and Levine, S. 2020. Meta-world: A benchmark and
evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, 1094–1100. PMLR.
Zhao, T. Z.; Nagabandi, A.; Rakelly, K.; Finn, C.; and
Levine, S. 2020. MELD: Meta-Reinforcement Learning
from Images via Latent State Models. arXiv preprint
arXiv:2010.13957.
Zintgraf, L.; Shiarlis, K.; Igl, M.; Schulze, S.; Gal, Y.; Hof-
mann, K.; and Whiteson, S. 2020. VariBAD: a very good
method for Bayes-adaptive deep RL via meta-learning. Pro-
ceedings of ICLR 2020.
Zintgraf, L. M.; Feng, L.; Lu, C.; Igl, M.; Hartikainen, K.;
Hofmann, K.; and Whiteson, S. 2021. Exploration in ap-
proximate hyper-state space for meta reinforcement learn-
ing. In International Conference on Machine Learning,
12991–13001. PMLR.

10165

