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Abstract

The study of the implicit regularization induced by gradient-
based optimization in deep learning is a long-standing pur-
suit. In the present paper, we characterize the implicit reg-
ularization of momentum gradient descent (MGD) in the
continuous-time view, so-called momentum gradient flow
(MGF). We show that the components of weight vector are
learned for a deep linear neural networks at different evolu-
tion rates, and this evolution gap increases with the depth.
Firstly, we show that if the depth equals one, the evolution
gap between the weight vector components is linear, which is
consistent with the performance of ridge. In particular, we es-
tablish a tight coupling between MGF and ridge for the least
squares regression. In detail, we show that when the regu-
larization parameter of ridge is inversely proportional to the
square of the time parameter of MGF, the risk of MGF is no
more than 1.54 times that of ridge, and their relative Bayesian
risks are almost indistinguishable. Secondly, if the model be-
comes deeper, i.e. the depth is greater than or equal to 2,
the evolution gap becomes more significant, which implies
an implicit bias towards sparse solutions. The numerical ex-
periments strongly support our theoretical results.

Introduction
The central question of deep learning, how neural network-
s generalize, still eludes full theoretical understanding. Re-
cently, it has been shown that optimization may be a key
to understanding the generalization mystery of deep learn-
ing (Zhang et al. 2016). This finding, along with a series
of studies (Gunasekar et al. 2018; Soudry et al. 2018; Var-
di and Shamir 2021; Zhang et al. 2021), suggest that while
the hypothesis space itself is extremely complex, the search
strategy of optimization favors certain structured solution as
if some explicit regularization term appeared in its objec-
tive. This preference of optimization is called the implicit
regularization of optimization and how to characterize it has
developed as an open problem in deep learning theories.

Recent results state that increasing the depth of the neural
networks will modify the learning rule of optimization and
enhances the implicit regularization of optimization (Vaske-
vicius, Kanade, and Rebeschini 2019; Gidel, Bach, and
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Lacoste-Julien 2019; Li et al. 2021). For example, (Arora,
Cohen, and Hazan 2018) claims increasing depth can speed
up optimization. Based on this work,(Arora et al. 2019)
find that adding depth to a matrix factorization enhances an
implicit tendency towards low-rank solutions. Additional-
ly, (Gissin, Shalev-Shwartz, and Daniely 2019) shows that
a depth-2 model requires exponentially small initialization
for incremental learning to occur, while deeper models only
require the initialization to be polynomially small. Our work
deals with a simple setting, allowing us to explore that how
depth effect the implicit regularization of optimization.

In this paper, we aim to characterize the implicit regular-
ization of MGD (Polyak 1964), which is one of the most
popular optimization algorithms in practice because of its a-
bility to accelerate learning, especially for the cases of high
curvature, small but consistent gradients, or noisy gradients.
Many other variants and improvements of MGD have been
developed in (Cyrus et al. 2018; Lin, Li, and Fang 2020;
Even et al. 2021), and their convergence behaviors have been
analyzed. It has been empirically observed that MGD and
its variants (e.g., Nesterov) perform well in deep learning.
However, there is a lack of theoretical discussions to uncov-
er how MGD affects generalization performance, which is
our consideration in the present paper.

An important way to explore the implicit regularization
of optimization is to compare the optimization paths with the
explicit regularization paths. Recently, (Suggala, Prasad, and
Ravikumar 2018; Ali, Kolter, and Tibshirani 2019) showed
how the optimization path of GD is (point-wise) closely con-
nected to an explicit `2 regularization. In a similar idea, (Al-
i, Dobriban, and Tibshirani 2020) studied the implicit reg-
ularization of stochastic gradient descent (SGD). Further-
more, (Zou et al. 2021) showed that the generalization per-
formance of SGD is always no worse than that of ridge
regression in a wide range of overparameterized problem-
s. More results can be found in (Steinerberger 2021; Smith
et al. 2021; Sheng and Ali 2022).

In the present paper, for the depth N = 1, we firstly s-
tudy the implicit regularization of MGD by comparing its
path to the path of ridge for the least squares problems. Note
that MGD is a second-order iteration essentially, so the cor-
responding continuous-time form MGF is a second-order d-
ifferential equation. We find the analytical solution of MGF
by the singular value decomposition of the data matrix. But
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the solution is involved and it is more challenging to show
the coupling between MGF and ridge. For N ≥ 2, it is d-
ifficult to give the analytical solution of MGF. Therefor, we
will study the dynamics of MGF and the evolution gap of
the components of the weight vector in the depth-N linear
models. The main contributions of this paper are as follows:
• We give the analytical continuous-time form of MGD for

the least squares problems, called MGF, and prove that
MGD convergences to MGF as the step size ε→ 0.
• We find that MGF can be expressed as the solutions to

a sequence of `2 regularized least squares problems, and
then set the calibration of early stopping t =

√
2/λ.

• We show that the risk of MGF is no more than 1.54 times
that of ridge regression at tuning parameter λ = 2/t2.
And the ratio of the Bayes risk of MGF to that of ridge is
between 1 and 1.035 under the optimal tuning.
• We show that the components of weight vector are

learned for a depth-N linear networks at different evo-
lution rates, and this evolution gap increases with depth.
This tendency implies an implicit bias towards sparse so-
lutions, and intensifies with depth.
• We carry out the numerical experiments to verify our the-

oretical results.

Dynamical Analysis of the Least Squares
Problems

We begin by investigating the implicit regularization of
MGF for a simple yet striking model — the least squares
regression (i.e. depth-1 model). This will enable us to at-
tain the closed-form expression for MGF and obtain fruit-
ful analysis results. Specifically, we will see that the path of
MGF is extremely close to ridge, and they have the similar
generalization behavior.

Momentum Gradient Flow
LetX ∈ Rn×p, a column full-rank matrix, is the data matrix
and y ∈ Rn is the response vector. We would like to analyse
the learning by minimizing the loss function,

min
β∈Rp

L(f(X;β), y), (1)

whereL is the loss function, β ∈ Rp is the weight vector and
f(X;β) is the predicted output when the input is X . We are
particularly interested in the implicit regularization of MGD
applied to (1). Consider the standard MGD iterations

ṽk+1 = µ̃ṽk − ε̃g(βk),

βk+1 = βk + ṽk+1,

where g(βk) = ∇βL(f(X;β), y); ε̃ > 0 is the step size;
ṽ is momentum which is set to an exponentially decaying
average of the negative gradient; and µ̃ ∈ (0, 1) is the mo-
mentum parameter that determines how quickly the contri-
butions of previous gradients decay. To facilitate the follow-
ing analysis, we consider a rescaled version of MGD. By
redefining ε =

√
ε̃, vk = ṽk√

ε̃
and µ = 1−µ̃√

ε̃
, we have

vk+1 = vk − µεvk − εg(βk),

βk+1 = βk + εvk+1.
(2)

After rescaling, we have the momentum parameter µ ∈
(0, ε−1/2) from µ̃ ∈ (0, 1). It follows that

βk+1 = βk + εvk − µε2vk − ε2g(βk).

Moreover, let vk = βk−βk−1

ε , then we have

βk+1 = 2βk − βk−1 − µε(βk − βk−1)− ε2g(βk). (3)

(3) shows that MGD is a second-order iteration essentially.
Rearranging (3) yields that

βk+1 + βk−1 − 2βk
ε2

+ µ
(βk − βk−1)

ε
= −g(βk).

Letting ε→ 0, we get the continuous-time form of MGD

β′′(t) + µβ′(t) = −g(β(t)), (4)

over time t ≥ 0. We call (4) MGF which are the second-
order differential equations. For depth N = 1, we focus on
the analysis of the implicit regularization of MGF through
the least squares problem, which is

min
β∈Rp

L(f(X;β), y) =
1

2n
||y −Xβ||22, (5)

and g(βk) = 1
nX

TXβk − 1
nX

Ty. Let X =
√
nUS

1
2V T be

the singular value decomposition, thusXTX/n = V SV T is
the eigendecomposition, where S = diag(si)(i = 1, · · · , p)
and si are the eigenvalues of XTX/n satisfying s1 ≥ s2 ≥
· · · sp > 0. We note that XTX/n is a symmetric positive
definite matrix, since X has the rank p. And then apply-
ing MGD to (5) initialized at v0 = − εXTy

2n(1−µε) and β0 = 0

(which implies that β1 = 1
2nε

2XTy by (2)), we have

βk+1 =2βk − βk−1 − εD(µ)(βk − βk−1)

− ε2
(
V SV Tβk −

1√
n
V S

1
2UTy

)
, (6)

where D(µ) = diag(µ) and the corresponding MGF is

β′′(t) +D(µ)β′(t) + V SV Tβ(t) =
1√
n
V S

1
2UTy (7)

for t ≥ 0, which subjects to the initial conditions β(0) =
0, β′(0) = 0. Now, we derive the exact solution of MGF.
Lemma 1. Fix a response y and a data matrixX . The MGF
(7), subject to β(0) = 0, β′(0) = 0 and D(µ) � 2S1/2

admits the exact solution

β̂mgf(t) =
1√
n
V S−1 (I −H(S, t))S

1
2UTy (8)

where

H(S, t) =(
2
√
D(µ)2 − 4S

)−1 [(
D(µ) +

√
D(µ)2 − 4S

)
·

exp

(
1

2

(
−D(µ) +

√
D(µ)2 − 4S

)
t

)
−
(
D(µ)−

√
D(µ)2 − 4S

)
·

exp

(
1

2

(
−D(µ)−

√
D(µ)2 − 4S

)
t

)]
.

10150



Proof. The result follows from solving the second-order d-
ifferential equations (7)-see Supplement S.1.

Throughout this paper, H(S, t) is defined as above, ≺ de-
notes the Loewner ordering on the matrices (i.e., A ≺ B
means that B − A is positive definite), ‖v‖ denotes the Eu-
clidean norm of a vector v and ‖A‖ denotes the spectral nor-
m of a matrix A. The following lemma shows that MGD
(point-wise) convergences to MGF as the step size ε→ 0.
Lemma 2. For the least squares (5), consider MGD {βk :

k = 0, · · · , n} (6) initialized at v0 = − εXTy
2n(1−µε) and

β0 = 0, MGF {β(t) : t ∈ [0, T ]} (8) subjects to β(0) =
0, β′(0) = 0. Partition the interval of [0, T ] into a uniform
mesh with the step size ε, i.e. n+ 1 = bT/εc. It holds that

‖β̂mgf(tk+1)− βk+1‖ ≤ εC, (9)

where β̂mgf(tk+1) is the value of the exact solution of MGF
at the k + 1-th grid point and C is a positive constant.

Proof. The uniform bound is given by numerical analysis-
see Supplement S.2.

Lemma 2 ensures that we can use the exact solution of the
continuous-time MGF to study the implicit regularization of
MGD in the following analysis.

Basic Comparisons Between MGF and Ridge
Consider the ridge regression, the `2 regularized version of
(5), that is

min
β∈Rp

1

2n
||y −Xβ||22 + λ||β||22, (10)

where λ > 0 is a tuning parameter. The explicit ridge solu-
tion is

β̂ridge(λ) = (XTX + nλI)−1XTy. (11)
To compare the paths of ridge (11) and MGF (8), it is helpful
to rearrange them, on the scale of fitted values, to

Xβ̂ridge(λ) = US
1
2V TV (S + λI)−1S

1
2UTy

= US(S + λI)−1UTy. (12)

Xβ̂mgf(t) = US
1
2V TV S−1 (I −H(S, t))S

1
2UTy

= U (I −H(S, t))UTy. (13)
Letting ui ∈ Rn, i = 1, · · · , p denote the columns of U ,
we note that (12) and (13) are both linear smoothers (lin-
ear functions of y) of the form

∑p
i=1 ϕ(si, κ) · uiuTi y, for a

spectral shrinkage map ϕ(·, κ) : [0,∞) → [0,∞) and pa-
rameter κ. This map is ϕridge(s, λ) = s/(s + λ) for ridge,
and ϕmgf(s, t) = 1 − H(s, t) for MGF. We see that both
apply more shrinkage for smaller values of s, i.e., lower-
variance directions of XTX/n, but do so in apparently dif-
ferent ways. And the two shrinkage maps agree at the ex-
treme ends (i.e., set λ → 0 and t → ∞, ϕ(s, ·) → 1,
or λ → ∞ and t → 0, ϕ(s, ·) → 0). We note that the
parametrization λ = 2/t2 (the calibration setting is obtained
by Taylor expansion and will be explained in the next sub-
section.) gives the two shrinkage maps similar behaviors: see
Figure 1 for a visualization. Moreover, as we will show lat-
er, the two shrinkage maps (under the calibration λ = 2/t2)
lead to similar risk curves for MGF and ridge.

Figure 1: Comparison of MGF and ridge spectral shrinkage
maps.

Underlying Regularization Problems
We are interested in the connection between MGF and ridge.
It is natural to wonder whether MGF can be expressed as
solutions to sequences of the regularized least squares. The
following lemma confirms this conjecture.
Lemma 3. Fix y andX . Under the initial conditions β(0) =
0, β′(0) = 0, for t ≥ 0, MGF (8) uniquely solves the opti-
mization problem

min
β∈Rp

1

2n
‖y −Xβ‖22 + βTQtβ, (14)

where Qt = V S
(
H(S, t)−1 − I

)−1
V T.

Proof. The result readily follows from MGF (8) and the so-
lution of (14)-see Supplement S.3.

Remark 1. Computing the first two orders of the Taylor’s
series of H(S, t)−1 at the point t = 0, we have

H(S, t)−1 ≈ I+H ′(S, t)−1t+
1

2
H ′′(S, t)−1t2 ≈ I+

1

2
t2S.

An application of the claim of Lemma 3 can give the expres-
sion of the regularization parameter

Qt = V S(H(S, t)−1−I)−1V T ≈ V S(
1

2
t2S)−1V T =

2

t2
I.

It shows that MGF is extremely close to ridge, under the
calibration λ = 2/t2.

Estimation Risk
For any feature matrix X ∈ Rn×p, we consider a generic
response model,

y | β0 ∼ (Xβ0, σ
2I), (15)

i.e., E(y | β0) = Xβ0,Cov(y | β0) = σ2I for the un-
derlying coefficient vector β0 ∈ Rp and the error variance
σ2 > 0. For an estimator β̂ (i.e., measurable function of
X, y), we define its estimation risk (or simply, risk) as

Risk(β̂;β0) = E[‖β̂ − β0‖22 | β0]. (16)

We consider a spherical prior,

β0 ∼ (0,
r2

p
I), (17)

10151



for some signal strength r2 = E‖β0‖22 > 0, and define the
Bayes risk of an estimator β̂ as

Risk(β̂) = E‖β̂ − β0‖22. (18)

Now, we give the expressions for the risk and Bayes risk of
MGF.

Lemma 4. Under the data model (15), for t ≥ 0, the risk of
the MGF (8) is

Risk(β̂mgf(t);β0) =
p∑
i=1

[
|βT

0 vi|2H2(si, t) +
σ2

n

(1−H(si, t))
2

si

]
, (19)

and under the prior (17), the Bayes risk is

Risk(β̂mgf(t)) =

σ2

n

p∑
i=1

[
αH2(si, t) +

(1−H(si, t))
2

si

]
, (20)

where α = r2n/(σ2p).

Proof. The results follow from the definitions of the risk, the
Bayes risk and the bias-variance decomposition-see Supple-
ment S.4.

Remark 2. Compare (19) to the risk of ridge,

Risk(β̂ridge(λ);β0) =
p∑
i=1

[
|βT

0 vi|2
λ2

(si + λ)2
+
σ2

n

si
(si + λ)2

]
, (21)

and compare (20) to the Bayes risk of ridge,

Risk(β̂ridge(λ)) =
σ2

n

p∑
i=1

[
αλ2 + si
(si + λ)2

]
, (22)

where α = r2n/(σ2p). These ridge results follow from stan-
dard calculations, which can be found in many other papers;
for completeness, we give the details in Supplement-see S.5.

Prediction Risk
In this section, we analyse the prediction risk. Let

x0 ∼ (0,Σ) (23)

for a positive semidefinite matrix Σ ∈ Rp×p, and assume
that x0 is independent of y | β0. We define the in-sample
prediction risk and the out-of-sample prediction risk as

Riskin(β̂;β0) =
1

n
E[‖Xβ̂ −Xβ0‖22 | β0], (24)

Riskout(β̂;β0) = E[(xT0 β̂ − xT0 β0)2 | β0], (25)

respectively, and their Bayes versions as Riskin(β̂) =
1
nE[‖Xβ̂ −Xβ0‖22],Riskout(β̂;β0) = E[(xT0 β̂ − xT0 β0)2],
respectively. Now, we give the expressions for the prediction
risk and Bayes prediction risk of MGF.

Lemma 5. Under (15) and (23), the out-of-sample predic-
tion risk of MGF (8) is

Riskout(β̂mgf(t);β0) = βT
0 V H(S, t)V TΣV H(S, t)V Tβ0

+
σ2

n
tr
[
S−1(I −H(S, t))2Σ

]
, (26)

and under (17), the Bayes out-of-sample prediction risk is

Riskout(β̂mgf(t)) =

σ2

n
tr
[
αH2(S, t)Σ + S−1(I −H(S, t))2Σ

]
.

(27)

Proof. The results follow from the definitions of the out-of-
sample prediction risk, Bayes out-of-sample prediction risk
and bias-variance decomposition- see Supplement S.6.

Remark 3. Similar to (26) and (27), we have the out-of-
sample prediction risk and Bayes out-of-sample prediction
risk of ridge

Riskout(β̂ridge(λ);β0) =

λ2βT
0 V (S + λI)−1V TΣV (S + λI)−1V Tβ0

+
σ2

n
tr[S(S + λI)−2Σ], (28)

Riskout(β̂ridge(λ)) =

σ2

n
tr
[
λ2α(S + λI)−2Σ + S(S + λI)−2Σ

]
,

(29)

respectively. More details can be found in Supplement S.7.

Remark 4. The results of the in-sample prediction risk of
MGF can be expressed as

Riskin(β̂mgf(t);β0) =
p∑
i=1

[
|βT

0 vi|2siH2(si, t) +
σ2

n
(1−H(si, t))

2

]
, (30)

and the Bayse prediction in-sample risk can be expressed as

Riskin(β̂mgf(t)) =

σ2

n

p∑
i=1

[
αsiH

2(si, t) + (1−H(si, t))
2
]
. (31)

Similarly, we can give the ridge results,

Riskin(β̂ridge(λ);β0) =
p∑
i=1

[
|βT

0 vi|2
λ2si

(si + λ)2
+
σ2

n

s2i
(si + λ)2

]
, (32)

Riskin(β̂ridge(λ)) =
σ2

n

p∑
i=1

[
αλ2si + s2i
(si + λ)2

]
. (33)

The proof can be found in the Supplement-see S.8.
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Relative Estimation Risk and Prediction Risk
In this section, we study the bound on the relative risk of
MGF to ridge, under the calibration λ = 2/t2. Firstly, we
need to introduce two critical inequalities.

Lemma 6. For t ≥ 0 and si > 0, we have (i) H(si, t) <

1.24 1
1+sit2/2

; (ii) 1−H(si, t) < 1.04 sit
2/2

1+sit2/2
.

Proof. The results follow from the numerically computing-
see Supplement S.9.

The following theorem gives the bounds of the relative
risk of MGF to ridge.

Theorem 1. Consider the data model (15). For all β0 ∈ Rp
and t ≥ 0, we have

Risk(β̂mgf(t);β0) < 1.5376·Risk(β̂ridge(2/t2);β0). (34)

Moreover, (34) also holds if we replace the risk by the Bayes
risk for any prior (17), the in-sample prediction risk, the
Bayes in-sample prediction risk for any prior (17), or the
Bayes out-of-sample prediction risk for any prior (17) and
the feature distribution (23).

Proof. For the risk, set λ = 2/t2 and denote the ith sum-
mand of (19) and (21) by ai and bi, respectively. Then we
have

ai = |vTi β0|2H2(sit) +
σ2

n

[1−H(si, t)]
2

si

< |vTi β0|21.242
1

(1 + sit2/2)2
+
σ2

n
1.042

si(t
2/2)2

(1 + sit2/2)2

< 1.5376 ·
[
|vTi β0|2

(2/t2)2

(si + 2/t2)2
+
σ2

n

si
(si + 2/t2)2

]
= 1.5376 · bi.

The first inequality follows from Lemma 6. Then the bound
of the risk follows by summing over i = 1, ..., p.

We have the bound of the Bayes risk just by taking expec-
tations on each side of (34).

For the in-sample prediction risk, we can get the bound by
multiplying si to each summand in (34). By taking expecta-
tions for the in-sample prediction risk, we have the bound of
the Bayes in-sample prediction risk.

Since H(S, t) and S are diagonal matrices, the two in-
equalities in Lemma 6 can be extended to matrix operations,
i.e. H2(S, t) < 1.5376(I + St2/2)−2; (I −H(S, t))

2
<

1.0816(S2t4/4)(I+St2/2)−2. Note that Σ � 0 in (27) and
(29). Then for the Bayes out-of-sample prediction risk, we
have

αH2(S, t)Σ + S−1(I −H(S, t))2Σ

=
(
αH2(S, t) + S−1(I −H(S, t))2

)
Σ

< 1.5376 ·
[
α(2/t2)2(2/t2I + S)−2 + S(2/t2I + S)−2

]
Σ.

Relative Risks at the Optima
Note that the Bayes risk (22), the Bayes prediction risk (27)
and (33) of ridge are minimized at λ∗ = 1/α (Dicker and
Lee 2016). In the special case that the distributions of y |
β0 and the prior β0 are normal, we know that β̂ridge(λ∗) is
the Bayes estimator, which achieves the optimal Bayes risk
(hence certainly the lowest Bayes risk over the whole ridge
family). So the Bayes risk of β̂mgf(t), for t ≥ 0, must be
at least that of β̂ridge(λ∗). Applying the fact that λ = 2/t2

and λ∗ = 1/α, we can set the optima time t =
√

2α for the
MGF. The following inequality is a key step to obtain the
relative Bayes risk and the Bayes prediction risk of MGF to
ridge, when both are optimally tuned.

Lemma 7. For all si > 0 and α > 0, it holds that

αH2
(
si,
√

2α
)

+

[
1−H(si,

√
2α)
]2

si
< 1.035

1

α(1 + si)
.

Proof. The result follows from the numerically computing-
see Supplement S.10.

Theorem 2. Consider the data model (15), the prior (17)
and the (out-of-sample) feature distribution (23). It holds
that

1 ≤ inft>0 Risk(β̂mgf(t))

infλ>0 Risk(β̂ridge(λ))
< 1.035. (35)

Moreover, (35) also holds if we replace the Bayes risk by the
Bayes in-sample prediction risk, or the Bayes out-of-sample
prediction risk.

Proof. Note that in the special case of a normal-normal
likelihood-prior pair, the minimum of the Bayes risk of
β̂mgf(t) is not less than that of β̂ridge(λ∗). But the Bayes
risks of MGF (20) and ridge (22) do not depend on the like-
lihood and the prior (only on their first two moments), thus
we prove the lower bound must be hold in general. For the
upper bound, set t =

√
2α, and denote the ith summand in

(20) and in (22) by ai and bi, respectively. By Lemma 7, we
have

ai = αH2
(
si,
√

2α
)

+
[
1−H(si,

√
2α)
]2
/si

< 1.035 [1/α(1 + si)] = 1.035bi

The proof of the Bayes in-sample prediction risk is similar
to Theorem 1 and we omit it here.

Since H(S,
√

2α) and S are diagonal matrices, the in-
equality in Lemma 7 can be extended to matrix oper-
ations, i.e. αH2

(
S,
√

2α
)

+ S−1
(
I −H(S,

√
2α)
)2 ≺

1.035α(I + S)−1. Then for the Bayes out-of-sample pre-
diction risk, we have

αH2(S,
√

2α)Σ + S−1(I −H(S,
√

2α))2Σ

=
[
αH2(S,

√
2α) + S−1(I −H(S,

√
2α))2

]
Σ

≺ 1.035
[
α(I + S)−1

]
Σ.
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Figure 2: Comparison of the Bayes risks and asymptotic risk
for MGF, GF and ridge. MGFA, GFA, and RidgeA stand
for the asymptotic risk of MGF, GF and Ridge, respectively.
We generate features via X = Σ1/2Z, for a matrix Z with
i.i.d. entries from a standard Gaussian and set Σ = I, n =
1000, p = 500, σ2 = r2 = 1 and D(µ) = diag(µi) =
diag(2

√
si + 10−3)(i = 1, · · · , p).

In the first column of Figure 2, we plot MGF versus ridge
(calibrated according to λ = 2/t2) and GF (gradient flow,
which is the continuous-time form of GD) versus ridge (cal-
ibrated according to λ = 1/t (Ali, Kolter, and Tibshi-
rani 2019)) and its asymptotic risk expressions which can
be found in supplement S.11. It shows that there is a fair-
ly strong agreement between the risk curves, and MGF is
much closer to ridge than GF over the entire path; the max-
imum ratio of the Bayes risk of MGF to ridge is 1.1097 and
the maximum ratio of the optima is 1.0208 which are low-
er than that of GF to ridge, which are 1.3663 and 1.0914,
respectively; in addition, it shows that MGF converges to
ridge faster than GD, which is compatible with the theoret-
ical results (the tuning parameter λ of ridge is proportional
to O(1/t2) in MGF and GF requires O(1/t)). The second
column shows the remarkable agreement of the risk over the
whole path when parameterized by the `2 norm of the un-
derlying estimator (more details can be found Supplement
S.12). And MGF is closer to ridge than GD, too. Moreover,
the four plots show that the finite-sample and asymptotic risk
curves are identical, which implies that the convergence is
rapid. The results for other settings (the results are grossly
similar) can be found in Supplement S.12.

Dynamical Analysis of the Depth-N Model
Is MGD still close to ridge as the model depth increases?
If not, what solution would MGD prefer? We will answer
this question by a simple but non-trivial depth-N linear neu-
ral networks. A natural strategy is to give the closed-form
expression of MGF as for N = 1. Unfortunately, it is ex-

tremely difficult for the depth-N model even if for the linear
setting. So, to explicitly characterize how the depth N af-
fects the implicit regularization of MGF, we embed N into
the evolution of the components of the weight vector.

The Depth-N Linear Model
We will consider the depth-N diagonal linear neural net-
works (i.e. where the weight matrices have diagonal struc-
ture). The input is x ∈ Rd, y ∈ R and the predictor is linear
model with positive weights, such that

f(w, x) = 〈w, x〉, w ∈ Rd > 0 (36)
The diagonal linear networks has d units, with each unit con-
nected to just a single input unit and the output. By param-
eterizing w using β ∈ Rd > 0, we introduce the depth into
our model

w = βN � βN−1 � · · · � β1, (37)
where � represents the Hadamard product. (Woodworth
et al. 2020) shows that if the input and output weights for
each hidden unit are initialized to have the same magnitude,
then their magnitudes will remain equal and their signs will
not flip throughout training. Based on (37), we equivalently
parametrize the model in terms of a single shared input and
output weight β for each hidden unit and get the model

f(β, x) = 〈βN , x〉. (38)
We will study the dynamics of this model for general N un-
der the squared loss

LN (β) =
1

2N
(ŷ − y)2 =

1

2N
(〈βN , x〉 − y)2. (39)

By running MGF over LN (β) (39), for any i, we can get the
dynamics of βi

β̈i(t) = −µβ̇i − βN−1i xi(ŷ − y), (40)
where βi ∈ R and xi ∈ R are the i-th components of β
and x, respectively. From the definition of w in (37) and the
dynamics of βi, we can get the dynamics of wi

ẅi(t) =
N − 1

N
w−1i (t)ẇ2

i (t)− µẇi(t)

−N [wi(t)]
2(N−1)

N xi(ŷ − y). (41)

Implicit Regularization Towards the Sparse
Solutions
Let i, j ∈ {1, · · · , d}. By (41), we can give the relationship
of the evolution between wi(t) and wj(t)[

ẅi(t)−
N − 1

N
w−1i (t)ẇ2

i (t) + µẇi(t)

]
·(

− 1

N
(wi(t))

− 2(N−1)
N

1

xi

)
=[

ẅj(t)−
N − 1

N
w−1j (t)ẇ2

j (t) + µẇj(t)

]
·(

− 1

N
(wj(t))

− 2(N−1)
N

1

xj

)
. (42)

The following theorem states that wi(t) can be expressed as
a function of wj(t).
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Theorem 3. For the depth-N diagonal linear model de-
scribed in (38) and wi > 0, there exist the following rela-
tionship between wi(t) and wj(t) in the dynamics of MGF
(41) over the squared loss (39)

wi(t) =



xi
xj
wj(t) + C · exp(−ut) + C, N = 1;

wj(t)
xi
xj exp (H(t) + C · exp(−µt) + C) ,

N = 2;[
xi
xj
wj(t)

−N−2
N − (N − 1)(N − 2)

N2
G(t)

+ C · exp(−µt) + C

]− N
N−2

, N ≥ 3.

where G(t) and H(t) are the functions of t, xi and xj are
the i-th and j-th components of input, respectively. And C is
a constant independent of t.

Proof. The proof is complicated and can be found in Sup-
plement S.13.

Remark 5. If the depth N = 1, the wi(t) will grow lin-
early with wj(t), which is consistent with the performance
of MGF for the least squares (the component of label is
rescaled by a linear factor). If N ≥ 2, the evolution gap
between wi(t) and wj(t) will increase rapidly. In detail-
s, as the depth increasing the components of weight vector
learned at different evolution rates. We note that the larger
components of weight vector are subject to an enhancement
effect of the increase of the depth, while the smaller ones are
subject to attenuation. This tendency will incline to sparse
solutions and intensifies with the depth. Furthermore, if we
apply the early-stopping for MGD with sufficiently small ini-
tialization and step size over the depth-N models, the larger
components of weight vector will be learned and the smaller
ones fail to be learned so that this implicit sparse regular-
ization effect is more likely to take place.

Figure 3 present the empirical demonstration of our con-
clusion from Theorem 3. It shows that for the depth-N di-
agonal linear neural networks, under MGD with the suffi-
ciently small step size and initialization, the components of
weight vector are learned at different evolution rates (i.e.
the smaller ones converge slower and the larger ones con-
verge faster), and this evolution gap increases according to
the depth. Moreover, we note that the early stopping is cru-
cial for MGD to converge to the sparse model. In the case of
N = 3, if we perform the early-stopping for MGD when the
time threshold is 400, the three largest values (w5−w3) have
converged, while the two smallest (w1 andw2) progress very
slowly (close to 0), which will cause the model to be sparse.

Conclusion
The present paper studied the implicit regularization of
MGF for the depth-N models. For the depth-1 model (the
least squares), we characterized the close connections be-
tween MGF and ridge. In details, we proved that the risk of
MGF is no more than 1.54 times that of ridge under the cal-
ibration t =

√
2/λ and the relative Bayes risk of MGF to

Figure 3: Dynamics of MGD over the deep regression mod-
el. Fix the same sufficiently small initialization w0 = 0.01
and step size ε = 0.001, we plot the path of w for different
N = 1, 2, 3, 4. The five curves show the evolution of the five
largest values of w separately. For depth N = 1, we can see
that the evolution rate of the components of weight vector
are similar, and converge nearly at the same time threshold.
For depth N ≥ 2, w progress very slowly after initializa-
tion (when close to zero); then, the largest one (w5 = 8)
converges first, followed by w4 = 4, while the smallest one
barely changes even for the large time thresholds. As the
depth increases, we can find that w will converge at the s-
maller time threshold, and the movement of w will be sharp-
er. We note that as the depth increases, the evolution gap of
the components of weight vector becomes more significant.
This is an implicity regularization towards sparse solutions,
which intensifies with the depth.

ridge is between 1 and 1.035 under the optimal tuning. For
the depth-N model, we showed that the components of the
weight vector are learned at different evolution rates, and
this evolution gap increases with depth N . This tendency
implies an implicit bias towards sparse solutions. The nu-
merical experiments strongly support our theoretical results.

There are some worthwhile directions for the further
work. For example, it would be interesting to explore how
hyperparameters (e.g. momentum parameters and learning
rate) affect the generalization performance of MGD (or oth-
er acceleration optimization algorithms, e.g. Nesterov) for
the deep models. It would also be interesting to explain why
there is a much tighter coupling of MGF to ridge and under
`2 norms calibration in theory. Moreover, we try to theoret-
ically characterize the impact of the depth, early-stopping
and initialization on the implicit regularization of optimiza-
tion. Furthermore, we carry out the experiments for the ma-
trix factorization which can be found in Supplement S.14.
The results implied that as the depth increasing, MGD in-
clines to the low-rank solutions. In our future work, we will
try to give the theoretical explanations.
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