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Abstract

Large-scale high-quality data is critical for training mod-
ern deep neural networks. However, data acquisition can be
costly or time-consuming for many time-series applications,
thus researchers turn to generative models for generating syn-
thetic time-series data. In particular, recent generative adver-
sarial networks (GANs) have achieved remarkable success in
time-series generation. Despite their success, existing GAN
models typically generate the sequences in an auto-regressive
manner, and we empirically observe that they suffer from
severe distribution shifts and bias amplification, especially
when generating long sequences. To resolve this problem,
we propose Adversarial Error Correction GAN (AEC-GAN),
which is capable of dynamically correcting the bias in the past
generated data to alleviate the risk of distribution shifts and
thus can generate high-quality long sequences. AEC-GAN
contains two main innovations: (1) We develop an error cor-
rection module to mitigate the bias. In the training phase, we
adversarially perturb the realistic time-series data and then
optimize this module to reconstruct the original data. In the
generation phase, this module can act as an efficient regula-
tor to detect and mitigate the bias. (2) We propose an aug-
mentation method to facilitate GAN’s training by introducing
adversarial examples. Thus, AEC-GAN can generate high-
quality sequences of arbitrary lengths, and the synthetic data
can be readily applied to downstream tasks to boost their per-
formance. We conduct extensive experiments on six widely
used datasets and three state-of-the-art time-series forecast-
ing models to evaluate the quality of our synthetic time-series
data in different lengths and downstream tasks. Both the qual-
itative and quantitative experimental results demonstrate the
superior performance of AEC-GAN over other deep genera-
tive models for time-series generation.

1 Introduction
Time-series forecasting has been widely applied in both
academia and industry, such as disease propagation (Kapoor
et al. 2020), energy deployment (Zhou et al. 2021), and
quantitative investment (Ding et al. 2020). Recent research
has achieved significant progress in time-series forecast-
ing with the development of the temporal convolutional
network (TCN) (Bai, Kolter, and Koltun 2018) and trans-
former (Vaswani et al. 2017). With the increasing model ca-
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Figure 1: (a) is the time series used for training. (b-d)
are the synthetic time series auto-regressively generated
by corresponding methods. The time series generated by
(b) TimeGAN exhibits unstable frequency, and that gener-
ated by (c) SigCWGAN suffers from amplitude attenuation.
pacity, large-scale high-quality data is required to fully real-
ize the potential of time-series forecasting (Lim and Zohren
2021). For sufficient data, synthesizing data via deep gener-
ative models has achieved remarkable progress and has at-
tracted much attention (reviewed in Brophy et al. (2021)).

Generative Adversarial Network (GAN) (Goodfellow
et al. 2014) is a versatile generative framework for generat-
ing data and has shown excellent performance in computer
vision (Karras et al. 2020b, 2021). Meanwhile, much effort
has been devoted to applying GANs to time-series genera-
tion (Brophy et al. 2021). To name a few: (1) In a recursive
manner, Recurrent Condition GAN (RCGAN) (Esteban, Hy-
land, and Rätsch 2017) and QuantGAN (Wiese et al. 2020)
exploit LSTM or TCN to replace the Convolutional Neural
Network (CNN) for time-series generation. (2) Considering
the temporal nature, TimeGAN (Yoon, Jarrett, and Van der
Schaar 2019) borrows ideas from auto-regressive models
and explicitly models the temporal transitions p(xt|x1:t−1)
in the latent space. SigCWGAN (Ni et al. 2020) captures
the auto-regressive structure of sequences and builds a high-
quality conditional generative model.

Despite the encouraging progress in time-series genera-
tion, we argue that generating long sequences in an auto-
regressive manner still exhibits the inherent difficulty of dis-
tribution shifts. To demonstrate this problem, we implement
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several time-series GANs to generate a sine function. When
scaled to 1000 generation steps in the generation phase, the
generated time series of TimeGAN and SigCWGAN ex-
hibit unstable frequency or attenuated amplitude, as shown
in Fig. 1. This phenomenon amplifies along with the auto-
regressive generation. Due to cumulative errors in the se-
quence generation, the long sequence generation is sensitive
to the distribution shifts and inapplicable for the downstream
long sequence time-series forecasting (LSTF) task.

To address this issue, we propose a novel conditional
GAN, named Adversarial Error Correction GAN (AEC-
GAN). AEC-GAN refines generated sequences (regarded as
the conditioning variables) for high-quality long sequence
generation auto-regressively. Most importantly, we develop
a scalable error correction module to mitigate the bias in the
past generated data. The module is optimized to reconstruct
the realistic conditioning variables perturbed by an adversar-
ial attack algorithm. As the module recursively operates on
the condition in the generation phase, it enables the GAN
model to scale to the high-quality long sequence generation
based on auto-regressively refined conditions. Moreover, we
find that the adversarial examples can be used as augmented
data to stabilize the GAN’s training.

The contributions of our paper are summarized as follows:
• We argue that auto-regressively generating long time se-

ries is sensitive to distribution shifts, and we have em-
pirically observed severe distribution shifts in the long
sequence generation of existing time-series GANs.

• We propose an error correction module that dynamically
modifies the generated data to mitigate the risk of dis-
tribution shifts. Hence, AEC-GAN can auto-regressively
generate high-quality data with arbitrary lengths to adapt
to various downstream forecasting tasks.

• We theoretically explain how the error correction mod-
ule improves the long sequence generation in the auto-
regressive setting. In addition, we propose an augmenta-
tion method to stabilize the GAN’s training by introduc-
ing adversarial examples in training.

• We conduct extensive experiments on six widely used
datasets, and the results show that AEC-GAN outper-
forms other time-series GANs at different lengths. We
apply the synthetic data to downstream forecasting tasks
and boost the performances of three time-series forecast-
ing models by 17.9% on average.

2 Related Work
2.1 Generative Adversarial Network
Generative Adversarial Networks (GANs) (Goodfellow
et al. 2014) integrate generator and discriminator as a
two-player game, where the generator learns to generate
vivid contents to mislead the discriminator’s judgements.
WGAN (Arjovsky, Chintala, and Bottou 2017) and LS-
GAN (Mao et al. 2017) propose new objectives which mini-
mize the divergence between the realistic and synthetic dis-
tributions to stabilize the GAN’s training. When available
data is limited, optimizing GANs is more challenging, since
the discriminator overfits quickly and breaks the equilib-
rium (Karras et al. 2020a). To address this issue, Jiang et al.

(2021), Karras et al. (2020a) and Tran et al. (2021) adopt
augmentation for the training data to prevent overfitting.

Recently, GANs have attracted extensive attention in the
time-series generation. A broad literature (Esteban, Hyland,
and Rätsch 2017; Wiese et al. 2020; Yoon, Jarrett, and
Van der Schaar 2019) deploys LSTM or TCN to design net-
work architectures to adapt to domain-specific generation
tasks, such as limit order simulation (Li et al. 2020), au-
dio generation (Donahue, McAuley, and Puckette 2018), and
biomedical signal (Hazra and Byun 2020). Inspired by auto-
regressive models (Hamilton 2020), recent efforts (Yoon,
Jarrett, and Van der Schaar 2019; Ni et al. 2020; Jarrett,
Bica, and van der Schaar 2021) have been devoted to learn-
ing conditional dynamics, which is essential in downstream
time-series analysis. For the long sequence generation, PSA-
GAN (Paul et al. 2021) adopts a progressive growing archi-
tecture that adds additional modules during training.

2.2 Adversarial Attacks and Defenses
Adversarial attack algorithms usually add imperceptible per-
turbations to the inputs to mislead the neural networks (NNs)
into giving undesirable outputs (Chakraborty et al. 2018).
These subtly crafted inputs are well-known as adversarial
examples (Szegedy et al. 2013). PGD-attack (Madry et al.
2017) is an effective attack algorithm that exploits projected
gradient descent to search for efficient attack directions.
Furthermore, adversarial training (Goodfellow, Shlens, and
Szegedy 2014) mixes the adversarial examples into the orig-
inal training dataset to defend against corresponding attacks.

Adversarial algorithms have also been widely used in
GANs. Xiao et al. (2018) propose to generate adversar-
ial examples based on GANs. Liu and Hsieh (2019) reveal
how adversarial training and GANs can promote each other.
Technically, they propose Rob-GAN, which creates adver-
sarial examples to fool the discriminator. In contrast, the ad-
versarial examples in our AEC-GAN are created for the in-
put conditions and serve as fake conditions, aiming to assist
the training of the error correction module.

3 Preliminary
In this paper, the time-series dataset S contains a se-
quence of data points with d dimensions, i.e., S = {xt ∈
Rd}1≤t≤T . We suppose the time-series dataset obeys a con-
ditional distribution P(x|c) where c represents the knowl-
edge of the context, e.g., xt+1:t+q ∼ P(xt+1:t+q|ct). Fol-
lowing PSA-GAN (Paul et al. 2021), the knowledge of the
context is represented as a sequence, i.e., ct = xt−p+1:t,
where p is the context length. We denote the distribution of
the context c as P(c).

Our goal is to generate high-quality time-series data with
arbitrary lengths given a short context ct (context length
is p) sampled from history data. We develop a condi-
tional GAN (modeling P(x|c)), which contains a genera-
tor Gθ and a discriminator Dϕ parameterized by θ and ϕ
respectively. In the training phase, given the context ct =
xt−p+1:t, the GAN model is optimized to generate a time se-
ries of the target length q, i.e., x̂t+1:t+q (we use ˆ to denote
the generated data). Specifically, the one-step generator Gθ
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Figure 2: The network architecture of generation in AEC-GAN. The generator Gθ generates sequences auto-regressively and
the correction module Mω modifies the conditioning variable per p steps. Slide conditioning window means updating the
conditioning variable by the newly generated data. The network parameters are shared across the generation of each step.

first transforms a Gaussian noise vector zt+1 ∈ Rd (drawn
from N (0, Id×d)) into the a generated data point x̂t+1

given the condition ct, i.e., x̂t+1 = Gθ(zt+1|ct) ∈ Rd.
Then Gθ generate x̂t+2 = Gθ(zt+2|ĉt+1) based on the
updated condition ĉt+1, where ĉt+1 = [xt−p+2:t, x̂t+1].
Auto-regressively, we obtain the target sequence x̂t+1:t+q =
[Gθ(zt+1|ct), ..., Gθ(zt+q|ĉt+q−1)]. For brevity, we over-
load the notation Gθ to denote the generations x̂t+1:t+q as
Gθ(zt+1:t+q|ct). The discriminator Dϕ is optimized to dis-
tinguish generated sequence x̂t+1:t+q from real sequence
xt+1:t+q , given the condition ct. For more realistic data,
Dϕ(·, ct) : Rd×q × Rd×p → R is desired to give a higher
discriminant score. In the rest of the paper, we omit the
subscripts of z unless required. The GAN’s objective func-
tion (Mirza and Osindero 2014) is shown in function (1).
After training, Gθ can generate sequences step by step after
feeding in a context ct, without generation length limitation.

min
θ

max
ϕ

E
ct∼P(c)

xt+1:t+q∈P(x|ct))

[
logDϕ(xt+1:t+q, ct)

]
+

E
ct∼P(c)
z∼N(0,I)

[
log

(
1−Dϕ(Gθ(z|ct), ct)

)]
.

(1)

4 Adversarial Error Correction GAN
In this section, we introduce AEC-GAN (Adversarial Error
Correction GAN) to generate high-quality sequences with
arbitrary lengths. First, we show that an auto-regressive gen-
eration process will inevitably deviate from the actual distri-
bution as the generated length increases. Then, we introduce
an error correction module to mitigate the distribution shifts
and propose an augmentation method to facilitate training.

4.1 Distribution Shifts in Existing GANs
A conditional GAN can naturally generate sequences of ar-
bitrary lengths auto-regressively (Sec. 3). Fig. 1 shows the
auto-regressively generated sine functions by several time-
series GANs. It shows that TimeGAN and SigCWGAN suf-
fer from unstable frequency and attenuated amplitude, and
this phenomenon amplifies as the generation proceeds.

We present the following Prop. 1 to explain this phe-
nomenon. Briefly speaking, for an AR(1) process (Hamil-
ton 2020), 1 the KL-divergence between the Lth step gener-
ation and the underlying distribution is Ω(δL), where L is
generation length and δ is estimation error in terms of max
eigenvalues. The proof of Prop. 1 is detailed in the appendix.
Proposition 1 Assume the ground-truth generation process
is an AR(1) process without drift, xt = Φxt−1+at, where
Φ ∈ Rd×d is symmetric and at ∼ N (0, I). We denote
x̂t = Φ̂x̂t−1 + ât as the estimated generation process,
where Φ̂ ∈ Rd×d is also symmetric and ât ∼ N (0, I).
The max eigenvalues of Φ and Φ̂ are denoted as λ and λ̂,
and they differ by a small quantity δ, i.e., |1 − λ̂/λ| = δ.
Generating L steps time-series data from x0, if λ ≥ 1, then

DKL

(
p(xL|x0)||p(x̂L|x0)

)
= Ω(δL), (2)

where DKL

(
· || ·

)
denotes the KL-divergence, p(·) denotes

the probability density function.
Prop. 1 indicates that generating long sequences is sensitive
to distribution shifts, since L gets larger as the generation
proceeds. Thus, we propose the following error correction
module to alleviate this problem.

4.2 Error Correction Module
In this section, we introduce an error correction module
Mω(·) : Rd×p → Rd×p, parameterized by ω, to mitigate
the bias in the past generated sequences. Given the condition
ct ∈ Rd×p ∼ P(c) to generate time-series data beginning
from the time t, the generator Gθ first generates a p-step se-
quence x̂t+1:t+p in a rolling way, which is regarded as the
next condition ĉt+p for the following generation. Mω modi-
fies the condition ĉt+p with ĉt+p+Mω(ĉt+p). Then the gen-
erator generates the following p-step sequence x̂t+p+1:t+2p

given the refined condition ĉt+p+Mω(ĉt+p). After this, Mω

modifies the new condition ĉt+2p (i.e., x̂t+p+1:t+2p) again.

1An AR(p) process can be converted to an AR(1) process with
higher dimensions (Hamilton 2020).
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We repeat the procedure until we obtain the target length
q. In general, Mω modifies the generated condition ĉt+kp

with ĉt+kp+Mω(ĉt+kp) every time generating a p-step sub-
sequence in the auto-regressive generation process, and the
generator proceeds to the next round generation given the
modified condition ĉt+kp +Mω(ĉt+kp), where k ∈ Z+. In
such a way, Mω mitigates the bias adaptively. Finally, we
gather the generated x̂t+1:t+q as the final output denoted
by GM

θ (z|ct). The generation process with correction is de-
tailed in Algorithm 1 and illustrated in Fig. 2.

To optimize the module Mω , we perturb the realistic con-
dition ct with a slight perturbation δ and expect Mω(ct+δ)
to remove the perturbation. Specifically, δ is created from
the PGD-attack (Madry et al. 2017) within an l2 radius δmax,
as shown in Eq. (3). More discussions about the kinds of per-
turbations can be found in the appendix.

δ = argmin
||δ||2≤δmax

log
[
1−Dϕ(Gθ(z|ct), ct + δ)

]
. (3)

Besides modifying the adversarial example (i.e., ct + δ),
Mω(ct) is also supposed to output 0 for realistic ct. Hence,
the objective function minω LM (ω) for Mω is as follows:

min
ω

E
ct∈P(c)

[
L2(Mω(ct + δ),−δ) + L2(Mω(ct),0)

]
, (4)

where L2(·, ·) denotes the MSE loss. With Mω to mitigate
bias, we can generate high-quality long sequences, and we
explain the reason in what follows.

Intuitively, there exists a discrepancy between the training
and testing phases. In the training phase, Gθ only generates
sequences with a target length q, as shown in the objective
function (1). In the testing phase, Gθ is desired to generate
arbitrary length sequences auto-regressively, especially the
long sequences. For this issue, we argue that the error correc-
tion module can bridge the gap between generation lengths
in the training and testing phases to improve the quality of
long sequence generation.

We specify the generation length in training as p for con-
venience of analysis, i.e., Gθ(z|ct) ∈ Rd×p. In the test-
ing phase, suppose we are required to generate sequences
with length Kp, given cp ∼ P(cp) (i.e., x1:p). Concretely,
the generator Gθ first generates a p-step sequence ĉ2p (i.e.,
x̂p+1:2p) based on cp and then auto-regressively generates
ĉkp+p (i.e., x̂kp+1:kp+p) based on the refined generated data
ĉkp + Mω(ĉkp), where 2 ≤ k ≤ K. To assess the gen-
eration quality, we first assume that the realistic sequences
are ckp+p = xkp+1:kp+p ∼ P(xkp+1:kp+p|ckp) (note
that cp ∼ P(cp)). Then we calculate the generator’s loss
Ltest(θ, ϕ, ω) for the generated sequence, i.e., the loss of
the discriminator’s judgement about whether the generated
sequence x̂kp+1:kp+p = Gθ(z|ĉkp + Mω(ĉkp)) is drawn
from the ground-truth P(xkp+1:kp+p|ckp), as follows:

E
z∼N(0,I)
cp,...,cKp

K∑
k=2

log
[
1−Dϕ(Gθ(z|ĉkp +Mω(ĉkp)), ckp)

]
. (5)

We denote δk = ĉkp − ckp (related to z and ckp) as the
generation bias. Then, the generation part of the equation
(5) can be rewritten as follows:

Gθ(z|ckp + δk +Mω(ckp + δk)) (6)

Algorithm 1: Auto-Regressive Generation

Input: Condition ct ∈ Rd×p, generation length q,
generator Gθ, error-correction module Mω .

Output: x̂t+1:t+q ∈ Rd×q .
1 Init ĉt = ct.
2 for i = 0,...,q-1 do
3 if i+ 1 ≡ 0 (mod p) then
4 ĉt+i ← ĉt+i +Mω(ĉt+i)

5 zt+i+1 ← N (0, I) ∈ Rd.
6 x̂t+i+1 ← Gθ(zt+i+1|ĉt+i) ∈ Rd.
7 ĉt+i+1 ← pop(ĉt+i) ∪ x̂t+i+1. ▷ pop(·) means

to remove the earliest step.
8 Return: x̂t+1:t+q = [x̂t+1, · · · , x̂t+q].

For brevity, we let ϵkp = δk +Mω(ckp + δk). With a pow-
erful Mω to mitigate the bias, ϵkp is small. Then with Taylor
expansion, we get the following upper bound:

Ltest = E
z∼N(0,I)
cp,...,cKp

K∑
k=2

log
[
1−Dϕ(Gθ(z|ckp + ϵkp), ckp)

]

≤ E
z∼N(0,I),
cp,...,cKp

K∑
k=2

{
log

[
1−Dϕ(Gθ(z|ckp), ckp)

]

+
∥∥∥∂ log(1−Dϕ)

∂Dϕ

∂Dϕ

∂Gθ

∂Gθ

∂ckp
· ϵkp

∥∥∥+O(∥ϵkp∥2)
}
.

(7)
Since Gθ(z|ckp) generates data with the length specified
in training given the real ckp, the first term represents the
generator’s loss in training: LG(z, ct; θ, ϕ) = log[1 −
Dϕ(x̂, ct)], where x̂ represents the generated data (i.e.,
Gθ(z|ct)). Then,

Ltest ≤ E
z∼N(0,I),
cp,...,cKp

K∑
k=2

{
LG(z, ckp; θ, ϕ)

+
∥∥∇x̂LG

∥∥ ·
∥∥∇ckpGθ

∥∥ · ∥ϵkp∥+O(∥ϵkp∥2)
}
.

(8)

From above, Ltest is bounded by the training loss and some
terms related to ∥ϵkp∥, and we explicitly minimize the ∥ϵkp∥
in the objective function (4). With the module Mω , we can
optimize the upper bound of the lossLtest to generate longer
sequences with high quality, rather than being limited to
the length specified in training. In addition, the gradients
∥∇cGθ∥ and ∥∇x̂LG∥ also affect the upper bound, and we
conduct experiments to quantify them in Sec. 5.4.

4.3 Augmentation Method
In this section, we propose an augmentation method to fa-
cilitate the GAN’s training. Generally, GANs only generate
x̂1
τ = Gθ(zτ |ct) to mislead Dϕ, where τ denotes a time

span (e.g., t+ 1 : t+ q). We propose to enrich the gener-
ations for training the GANs by using adversarial exam-
ples (i.e., ct + δ) and Mω , detailed as in Eq. (9),

x̂1
τ = Gθ(zτ |ct) x̂2

τ = Gθ(zτ |ct + δ)

x̂3
τ = GM

θ (zτ |ct) x̂4
τ = GM

θ (zτ |ct + δ).
(9)
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ETTh1 ETTh2 US Births ILI

Methods ACF Skew Kurt ACF Skew Kurt ACF Skew Kurt ACF Skew Kurt

QuantGAN 0.403 4.370 8.323 0.742 3.140 18.27 0.433 4.409 18.57 0.703 4.770 21.80
TimeGAN 0.636 2.596 2.103 0.169 2.117 3.013 0.844 0.315 0.822 0.804 27.54 5498
Cot-GAN 0.153 2.082 7.451 0.157 2.138 6.419 0.250 1.198 2.445 0.312 1.792 8.560

SigCWGAN 0.155 3.021 7.081 0.142 1.973 3.281 0.116 2.593 9.284 0.448 0.550 1.930

AEC-GAN 0.055 1.911 0.714 0.115 2.014 2.441 0.036 0.109 0.061 0.329 0.929 0.802

Table 1: Quantitative comparison of generation quality (lower is better, best results are in bold). All values represent the MSE
error of statistical indicators corresponding to synthetic and realistic sequences.

Among these data, x̂1
τ denotes the generated data optimized

in inequality (8), x̂2
τ and x̂4

τ encourage the Gθ to resist per-
turbation (i.e., δ) in the condition, and x̂3

τ denotes the gen-
eration in the testing phase. The objective function for Gθ,
i.e., minθ LAug

G (θ, ϕ, ω), consists of four parts as follows:

E
ct∼P(c)
z∼N(0,I)

[
log

(
1−Dϕ(x̂

1
τ , ct)

)
+ log

(
1−Dϕ(x̂

3
τ , ct)

)
log

(
1−Dϕ(x̂

2
τ , ct + δ)

)
+ log

(
1−Dϕ(x̂

4
τ , ct + δ)

)]
.

(10)

Augmented with these generations, the objective function
maxϕ LAug

D (θ, ϕ, ω) for Dϕ can be formulated as follows:

max
ϕ

E
ct∼P(c)

xτ∼P(x|ct)

[
logDϕ(xτ , ct)

]
+ LAug

G (θ, ϕ, ω). (11)

It is worth noting that the slight perturbation δ aims to fool
the discriminator’s judgement, since it contradicts the dis-
criminator’s objective, as shown in Eq. (3). Hence, optimiz-
ing the discriminator to distinguish the ct + δ acts as a reg-
ularizer to prevent overfitting, as shown in Eq. (11).

In the training phase, we jointly optimize Gθ, Dϕ and
Mω . After training, GM

θ can generate sequences with arbi-
trary lengths by feeding in a context ct sampled from the
training set.

In summary, through an error correction module, we can
adaptively mitigate the distribution shifts and bridge the gap
between the training and testing phases (Sec. 4.2). More-
over, we propose an augmentation method to further facil-
itate the model’s training (Sec. 4.3). These parts together
comprise our AEC-GAN.

4.4 Implementation
We utilize the conditional AR-FNN (Ni et al. 2020) to imple-
ment the generator Gθ and discriminator Dϕ, which use the
past sequences as conditioning variables. For error correc-
tion module Mω , we implement it with a one-dimensional
convolutional neural network (Conv1d) and refine the con-
ditions per p steps generation as shown in Fig. 2.

5 Experiments
In this section, we conduct extensive experiments to demon-
strate the effectiveness of our methods. To guide the analy-
sis, we answer the following questions progressively.
• RQ1: How is the generation quality compared to other

deep generative models?

• RQ2: How does the generated data perform in the down-
stream forecasting task?

• RQ3: Why does AEC-GAN work effectively?

5.1 Experiment Settings
Dataset We conduct experiments on six widely used tem-
poral datasets: ETTh1, ETTh2, ETTm1, ETTm2 (Zhou et al.
2021), US Births (Godahewa et al. 2021) and ILI (Cen-
ters for Disease Control and Prevention 2020), covering
three practical domains: energy, population and disease. All
these datasets are split into training (80%) and testing (20%)
sets in chronological order. In the training phase, we let
p/q = 168/336 for ETTh* and US Birth, p/q = 96/192
for ETTm*, and p/q = 18/36 for ILI.

Benchmarks We compare AEC-GAN with the following
well-known time-series GANs: QuantGAN (Wiese et al.
2020), TimeGAN (Yoon, Jarrett, and Van der Schaar 2019),
Cot-GAN (Xu et al. 2020) and SigCWGAN (Ni et al. 2020).
Furthermore, we adopt three time-series forecasting models:
SCINet (Liu et al. 2021), Informer (Zhou et al. 2021), and
Autoformer (Wu et al. 2021), to assess the performance of
the generated time-series data in the downstream tasks.

Metrics We adopt the following indicators to assess the
quality of the generated data statistically.
• ACF: We calculate the autocorrelation function (ACF)

with the delay value ranging from 1 to 100:{
ACF (k) =

Cov(x̂t, x̂t−k)

V ar(x̂t)

∣∣∣1 ≤ k ≤ 100

}
. (12)

• Skew / Kurt: We compute the skewness and kurtosis of
the marginal distribution of generated data:

Skew = E
[
(x̂t − µx̂)

3

σx̂

]
,Kurt = E

[
(x̂t − µx̂)

4

σx̂

]
, (13)

where µx̂ = E[x̂t], σx̂ =
√
V ar(x̂t).

• FD: Following (Paul et al. 2021), we use the FD (Fréchet
Distance (Fréchet 1957)) score to assess the genera-
tion quality. A lower FD score means the synthetic se-
quences are closer to the realistic sequences. We encode
each sequence with unsupervised representations learned
by (Franceschi, Dieuleveut, and Jaggi 2019). Given the
mean and covariance of realistic and synthetic represen-
tations, i.e., (Mr,Cr) and (Ms,Cs), FD score is ob-
tained as follows:
FD = ||Mr −Ms||22 +Tr(Cr +Cs − 2(CrCs)

1/2). (14)
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GANs TimeGAN Cot-GAN SigCWGAN Ours
E

T
T

h1
256 3.945 1.747 0.255 0.203
512 4.001 2.190 0.469 0.274

1024 3.913 2.850 1.042 0.384
4000 3.854 4.811 5.606 0.752

E
T

T
h2

256 0.969 1.043 0.455 0.357
512 1.151 1.250 0.767 0.592

1024 1.514 1.707 1.341 0.945
4000 2.893 4.133 3.424 2.563

E
T

T
m

1 256 1.884 1.383 0.173 0.113
512 1.817 1.471 0.281 0.155

1024 1.700 1.587 0.478 0.245
4000 1.448 1.933 1.200 0.870

E
T

T
m

2 256 2.365 1.123 0.211 0.087
512 2.437 1.398 0.385 0.135

1024 2.443 1.752 0.770 0.296
4000 2.327 2.541 3.515 2.896

U
S

B
ir

th
s 256 0.395 1.329 0.116 0.050

512 0.453 1.777 0.226 0.067
1024 0.512 2.370 0.625 0.113
4000 0.655 4.219 6.302 0.447

IL
I

256 53.352 2.859 0.763 0.545
512 96.474 4.459 1.347 1.291

1024 156.660 5.564 1.687 1.644
4000 307.928 8.245 2.157 2.082

Table 2: FD scores with different generation lengths.
5.2 Experiment 1: Generation Quality

For each algorithm, we randomly generate 1000 sequences,
each of which is auto-regressively generated with 4000
steps (much longer than that in training, e.g., GANs are
trained to generate 36 steps on ILI). Under such a long gen-
eration, we measure the MSE error of the statistical indi-
cators between the generated and realistic sequences (Ni
et al. 2020), as shown in Table 1 (Results of ETTm1/ETTm2
are shown in the appendix due to the space limitation). It
shows that AEC-GAN exhibits a low relative error in statis-
tics, while other methods have a certain degree of distribu-
tion shift. Some generated examples are shown in Fig. 3, in
which QuantGAN is ignored due to its poor performance. It
shows that AEC-GAN’s generation is closer to the real data
both visually and statistically.

We evaluate the quality of generated data with different
lengths. We respectively generate 1000 sequences with var-
ious lengths (256, 512, 1024, 4000) for each algorithm, and
calculate the FD score to assess the generation quality of
the generated sequences. Table 2 illustrates that AEC-GAN
outperforms others in different lengths on the FD score. Fur-
thermore, we visualize the generated data in the latent space
via t-SNE (Van der Maaten and Hinton 2008), in Fig. 4. We
observe that AEC-GAN matches the realistic distribution
better than other benchmarks at different lengths. Especially
when the generation length is 4000, there are clear bound-
aries in TimeGAN and SigCWGAN, and apparent anoma-
lies in Cot-GAN. To sum up, AEC-GAN can mitigate the
distribution shifts and generate high-quality long sequences.

0 250 500 0 250 500

(a) Realistic Data (b) TimeGAN

0 250 500 0 250 500

(c) Cot-GAN (d) SigCWGAN

0 250 500

(e) AEC-GAN

Figure 3: Generation examples of the variate HUFL in
ETTh1. (a) reports the real data sample and (b-e) are gen-
erated samples.

(a) TimeGAN (b) Cot-GAN (c) SigCWGAN (d) AEC-GAN

Figure 4: T-SNE plots on ETTh1. Each row represents a gen-
eration length (256, 512, 1024, 4000). Red and blue points
represent the realistic and generated data respectively.
5.3 Experiment 2: Downstream Performance
After generating the synthetic data, we quantify how much
it can help the downstream forecasting task. In this exper-
iment, we develop a fake dataset by GANs to replace the
original training set for training the forecasting model and
evaluate the model’s performance on the original testing
set (Yoon, Jarrett, and Van der Schaar 2019). Note that all
the GANs are trained on the training set. For a fair compar-
ison, we control the same amount of data between the fake
dataset and the original training set (i.e., GANs generate se-
quences with the same amount as the sequences gained by
consecutive slicing in the original training set).

We conduct experiments on SCINet, Informer and Aut-
oformer, and all models are implemented with their sug-
gested parameters. Table 3 shows our AEC-GAN achieves
much lower errors than other methods with SCINet (results
for two others can be found in the appendix). The improve-
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Models AEC-GAN SigCWGAN Cot-GAN TimeGAN QuantGAN Original

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1 168 0.403 0.432 0.519 0.495 0.497 0.465 0.923 0.696 1.398 0.943 0.450 0.453

336 0.498 0.496 0.627 0.566 0.650 0.556 0.953 0.711 1.777 1.042 0.528 0.513
720 0.501 0.504 0.710 0.616 0.713 0.599 0.881 0.678 1.239 0.811 0.597 0.571

E
T

T
h2 168 0.393 0.420 0.483 0.450 0.387 0.423 0.466 0.459 2.125 1.064 0.554 0.517

336 0.390 0.428 0.516 0.491 0.377 0.428 0.496 0.493 1.923 0.956 0.657 0.576
720 0.495 0.510 0.509 0.512 0.537 0.539 0.538 0.535 1.504 0.879 1.118 0.776

E
T

T
m

1 96 0.190 0.279 0.316 0.352 0.266 0.339 0.248 0.351 0.550 0.532 0.197 0.294
288 0.306 0.354 0.369 0.398 0.354 0.392 0.318 0.384 0.422 0.442 0.350 0.405
672 0.376 0.395 0.538 0.486 0.412 0.428 0.419 0.445 0.454 0.455 1.214 0.836

E
T

T
m

2 96 0.315 0.345 0.489 0.436 0.484 0.438 0.909 0.609 0.861 0.639 0.330 0.377
288 0.416 0.402 0.547 0.493 0.607 0.501 1.144 0.721 0.754 0.593 0.383 0.408
672 0.490 0.455 0.893 0.643 0.677 0.525 0.743 0.541 0.780 0.590 0.501 0.490

B
ir

th
s 168 0.231 0.345 0.702 0.662 1.735 1.151 2.299 1.310 3.828 1.651 0.268 0.376

336 0.611 0.602 1.126 0.896 2.835 1.379 5.784 1.957 6.077 2.002 0.865 0.737
720 0.567 0.581 1.488 0.982 2.845 1.377 4.640 1.750 3.729 1.558 1.775 1.140

IL
I 36 3.498 1.278 3.826 1.378 4.915 1.572 5.539 1.705 9.574 2.331 4.089 1.400

48 3.531 1.297 3.878 1.395 4.939 1.586 5.071 1.621 8.809 2.242 4.076 1.401
60 3.598 1.329 4.183 1.467 5.037 1.618 5.069 1.639 9.321 2.329 4.216 1.452

Table 3: MSE and MAE errors of SCINet trained on the generated data generated by GANs (lower is better, best results are in
bold). Each dataset has experimented with three different forecasting horizons (as shown in the second column).

128 256 512 1024 2048 4000
Generated Length

0

15

30

FD
 s

co
re Baseline

AEC-GAN w/o EC
AEC-GAN w/o Aug
AEC-GAN

ACF Skew Kurt
Indicators

1

2

3

4

Av
er

ag
e 

Ra
nk Baseline

AEC-GAN w/o EC

AEC-GAN w/o Aug

AEC-GAN

Figure 5: (Left) FD scores with different generation lengths
on ETTh2. (Right) The performance rankings of these four
models over three indicators averaged on six datasets.
ment gradually increases along with the longer forecasting
horizons, indicating our excellent performance in the long
sequence generation. Moreover, AEC-GAN obtains an av-
erage 17.9% promotion regarding the forecasting errors on
three forecasting models. Furthermore, GANs can generate
an arbitrary amount of data. With the increasing amount of
data, the performance of the forecasting model can be fur-
ther improved and the results are shown in the appendix.

5.4 Experiment 3: Ablation Study
As aforementioned, AEC-GAN mainly gains from two inno-
vations: the error correction module and the augmentation
method. Hence, we study the effects of these two compo-
nents on the generation quality. We remove the error cor-
rection module in the testing phase, denoted as AEC-GAN
w/o EC. We remove the augmented data in training, i.e.,
x̂2
τ , x̂

3
τ , x̂

4
τ , denoted as AEC-GAN w/o Aug. We denote

the vallina GAN as Baseline. Fig. 5 shows the performance
of the above three models. The poor performance of AEC-
GAN w/o EC in the long sequence generation (4000 steps)
demonstrates the effectiveness of the error correction mod-
ule. In addition, the augmentation also decreases the FD
score and improves the generation quality on the statistical

0 5000 10000
Training Steps

Va
lu

e

||∇cG|| AEC-GAN
AEC-GAN w/o Aug

0 5000 10000
Training Steps

Va
lu

e

||∇ ̂xG|| AEC-GAN
AEC-GAN w/o Aug

Figure 6: Values of ∥∇cG∥ and ∥∇x̂LG∥ during the training
of ILI. ∥·∥ denotes the l2 norm.
measures (ACF, Skewness and Kurtosis).

Furthermore, we study how the augmentation method im-
proves generation quality. In inequality (8), smaller ∥∇cG∥
and ∥∇x̂LG∥ can reduce the gap between the training and
testing phases. In Fig. 6, we record these two gradients
during the training of ILI. It shows that the augmentation
method significantly reduces both ∥∇cG∥ and ∥∇x̂LG∥,
stabilizes the GAN’s training, and improves the long se-
quence generation.

6 Conlusion
In this paper, we present a novel method called AEC-
GAN (Adversarial Error Correction GAN) to generate more
realistic time-series data with arbitrary length. In AEC-
GAN, we propose a generic error correction module to
mitigate the distribution shift and an augmentation method
to facilitate the GAN’s training. Experimental results have
demonstrated our superior performance over other deep gen-
erative models for time-series generation on six datasets and
three forecasting models. AEC-GAN provides a promising
approach to generating large-scale high-quality data, and
how to employ these data to facilitate the downstream tasks
still deserves to be explored.
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